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A NOTE ON JAMES SPACES AND SUPERSTRICTLY

SINGULAR OPERATORS

ISABELLE CHALENDAR, EMMANUEL FRICAIN AND DAN TIMOTIN

Abstract. An elementary lemma is used in order to show that the natural

inclusion Jp → Jq of James spaces is superstrictly singular for p < q. As a con-

sequence, it is shown that an operator without nontrivial invariant subspaces

constructed by Charles Read is superstrictly singular.

1. Introduction

An operator T : X → Y between two Banach spaces is called

(1) compact if the image of the unit ball is relatively compact;

(2) strictly singular [3] if there is no infinite-dimensional subspace E of X such

that the restriction T |E is bounded below;

(3) superstrictly singular [4, 5] if for every ǫ > 0 there exists n ∈ N such that

inf
x∈E,‖x‖=1

‖Tx‖ < ǫ

for every n-dimensional subspace E of X .

It is easy to see that any compact operator is superstrictly singular, and any su-

perstrictly singular operator is strictly singular. Also, on a Hilbert space the three

classes coincide. In general, they are closed ideals; also, they are preserved un-

der formation of finite direct sums. These properties can be found, for instance,

in [3] for the first two classes and in [4] (see also [5]) for the third class. Note

that superstrictly singular are sometimes called in the literature finitely strictly

singular [7].

In [5, 7] it is shown that the natural inclusion of ℓp into ℓq (p < q) is superstrictly

singular. This fact is used in [7] for the investigation of the ideal structure of

L(ℓp ⊕ ℓq).

On the other hand, Charles Read constructs in [6] an example of a strictly

singular operator without nontrivial closed invariant subspaces (this seems to be
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an older question of Pe lczyński). Read’s operator acts on an infinite direct sum

of James spaces. The James space Jp (0 < p < ∞) is introduced for p = 2 in [2]

and for other values of p in [6]. It is the subspace of c0 formed by those vectors

a = (ai)
∞
i=1 such that

‖a‖Jp = sup
{(

n
∑

j=2

|aij − aij−1
|p

)1/p
: i1 < · · · < in, n ∈ N

}

<∞.

A short account of the basic properties of J2 can be found in [8]. Most notably

(endowed with an equivalent norm) it has been the first example of a non-reflexive

Banach space that is isometrically isomorphic to its second dual.

The starting point of the construction in [6] is the observation that the natural

inclusion of Jp into Jq (p < q) is strictly singular. Our main result below (Theo-

rem 2.2) states that this natural inclusion is in fact even superstrictly singular. As

an application, we show that the operator without nontrivial invariant subspaces

constructed in [6] is actually superstrictly singular.

Our basic tool will be an interesting elementary result (Lemma 2.1), which might

find applications also in other areas. Namely, it is not hard to prove that if X ⊂ c0

is a k-dimensional subspace, then there is a vector x ∈ X of norm 1, with k

coordinates equal in modulus to 1 (see, for instance, [4]). We show that one can

actually ensure that these k coordinates have alternating signs.

The authors thank Charles Read for bringing this problem to their attention.

2. Main results

We rely on the following technical result, whose proof will be given in section 3.

Lemma 2.1. If X ⊂ c0 is a subspace of dimension k, then there is x ∈ X, ‖x‖ = 1

and indices i1 < · · · < ik, such that xij = (−1)j.

In order to show that for p < q the natural inclusion from Jp into Jq is super-

strictly singular, we will adapt the proof of Proposition 3.3 in [7]. The main point

is that we have to use Lemma 2.1 above instead of the simpler lemma from [4].

Theorem 2.2. If p < q, then the natural inclusion Ip,q : Jp → Jq is superstrictly

singular.

Proof. For any x ∈ Jp we have

|xi+1 − xi|
q ≤ (2‖x‖∞)q−p|xi+1 − xi|

p,
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and therefore

‖Ip,qx‖Jq ≤ 2
q−p

p ‖x‖
q−p

p
∞ ‖x‖

p
q

Jp
.

Suppose that E is a subspace of Jp with dimE = k. Since Jp ⊂ c0, Lemma 2.1

yields the existence of x ∈ E, ‖x‖∞ = 1 and indices i1 < · · · < ik such that

xij = (−1)j . This implies that

‖x‖Jp ≥
(

(k − 1)2p
)1/p

= 2(k − 1)1/p.

Then, if z = x
‖x‖Jp

, then ‖z‖Jp = 1, ‖z‖∞ ≤ 1
2(k−1)1/p , whence

‖Ip,qz‖Jq ≤ 2−p/q 1

(k − 1)
q−p
pq

.

It is now clear that for any ǫ > 0 we can find k such that the quantity in the right

hand side is smaller than ǫ. This proves that Ip,q is superstrictly singular. �

We apply now Theorem 2.2 to discuss an operator considered by Charles Read.

In [6], one constructs on the Banach space X = ℓ2 ⊕X1, where

X1 = (

∞
⊕

i=1

Jpi)ℓ2

(pi a strictly increasing sequence of integers), an operator T which is strictly singular

and has no nontrivial invariant subspaces. The construction is rather intricate: one

finds a certain basis (ei)
∞
i=0 and define T by the conditions Tei = ei+1; there is

then a lot of work to show that T extends to a continuous operator that is strictly

singular and has no nontrivial invariant subspaces.

It turns out however that with the aid of Theorem 2.2 one can show that the

operator T is actually superstrictly singular. Indeed, in [6] one shows that T is a

compact perturbation of (0 ⊕W1) , with W1 : X1 → X1 a weighted unilateral shift

with weights tending to 0; thus

W1((x1, x2, x3, . . . )) = (0, β1x1, β2x2, . . . )

with βi → 0. Note that one should rather write βiIpi,pi+1
xi instead of βixi.

Lemma 2.3. The operator W1 is superstrictly singular.

Proof. Since βi → 0 and ‖Ii,i+1‖ ≤ 1, we have W1PN −W1 → 0, with PN the

natural projection onto the first N coordinates. The ideal of superstrictly singular

operators being norm closed, it is enough to show that each W1PN is superstrictly
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singular. But W1PN is obtained by adding as direct summands zero operators to

the operator

W ′
N = β1Ip1,p2

⊕ · · · ⊕ βNIpN ,pN+1
:

N
⊕

i=1

Jpi →
N+1
⊕

i=2

Jpi .

Since by Theorem 2.2 all summands are superstrictly singular, it follows that W ′
N

is superstrictly singular. Therefore W1 is superstrictly singular. �

The arguments in [6] yield then the next theorem.

Theorem 2.4. Read’s operator T is superstrictly singular.

Thus T is a strictly singular operator without nontrivial invariant subspaces.

3. The technical lemma

Fix a natural number N , and denote BN = {x ∈ R
N : ‖x‖∞ ≤ 1}, ΣN−1 = {x ∈

R
N : ‖x‖∞ = 1}. For k ≥ 1 we define

Γ(k) = {x ∈ BN : x has at least k alternating coordinates ±1},

A+(k) = {x ∈ BN : x has at least k alternating coordinates ±1, starting with 1},

A−(k) = −A+(k).

Put also A+(0) = A−(0) = Γ(0) = BN . For k ≥ 1, Γ(k), A±(k) ⊂ ΣN−1 and we

have

A+(k) ∪A−(k) = Γ(k),

A+(k) ∩A−(k) = Γ(k + 1).

Note that the first relation above is true also for k = 0.

We start with a simple lemma.

Lemma 3.1. Suppose p is a real polynomial of degree m, and there are m+ 2 real

numbers t1 < t2 < · · · < tm+2, such that p(ti) ≥ 0 for i odd and p(ti) ≤ 0 for i

even. Then p ≡ 0.

Proof. We do induction with respect to m. If m = 0, the result is obvious. If the

lemma has been proved up to m− 1, and p is a polynomial of degree m, then p has

at least one real root s. We write p(t) = (t − s)q(t), and q (or −q) has a similar

property, with respect to at least m− 1 values ti—so we can apply induction. �
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Lemma 3.2. There exists a sequence of subspaces πk ⊂ R
N , πk ⊃ πk+1, dim πk =

N − k, such that, if Pk is the orthogonal projection onto πk, then Pk|A+(k) is

injective.

Proof. For 1 ≤ j ≤ N we define the vectors ζj ∈ R
N by the formula ζj

i = ij−1.

One checks easily that the ζj ’s are linearly independent. Define π0 = R
N , and, for

k ≥ 1, πk = (span {ζ1, . . . , ζk})⊥.

Suppose that x, y ∈ A+(k), and Pk(x) = Pk(y). There exist scalars α1, . . . , αk,

such that x − y =
∑k

j=1 αjζ
j . We have indices 1 ≤ r1 < · · · < rk ≤ N and

1 ≤ s1 < · · · < sk ≤ N , such that xrl
= ysl

= (−1)l−1. It follows that xrl
− yrl

≥ 0

for l odd and ≤ 0 for l even, while xsl
− ysl

≤ 0 for l odd and ≥ 0 for l even.

Let the polynomial p of degree k − 1 be given by p(t) =
∑k

j=1 αjt
j−1. If rl = sl

for all l, we obtain
∑

j

αjζ
j
rl

=
∑

j

αjrl
j−1 = 0

for all l = 1, . . . k. Thus p has k distinct zeros; it must be identically 0, whence

x = y.

Suppose now that we have rl 6= sl for at least one index l. We claim then that

among the union of the indices rl and sl we can find ι1 < ι2 < · · · < ιk+1, such that

xιl
−yιl

have alternating signs. This can be achieved by induction with respect to k.

For k = 1 we must have r1 6= s1, so we may take ι1 = min{r1, s1}, ι2 = max{r1, s1}.

For k > 1, there are two cases. If r1 = s1, we take ι1 = r1 = s1 and apply the

induction hypothesis to obtain the rest. If r1 6= s1, we take ι1 whichever is the first

among them, ι2 as the other one, and then we continue “accordingly” to ι2 (that

is, taking as ι’s the rest of r’s if ι2 = r1 and the rest of s’s if ι2 = s1).

Now, the way ιl have been chosen implies that p(t) defined above satisfies the

hypotheses of Lemma 3.1: it has degree k− 1 and the values it takes in ι1, . . . , ιk+1

have alternating signs. It must then be identically 0, which implies x = y. �

Since A−(k) = −A+(k), it follows that Pk|A−(k) is also injective.

Lemma 3.3. If πk, Pk are obtained in Lemma 3.2, then

∆k := Pk(Γ(k))

is a balanced, convex subset of πk, with 0 as an interior point (in πk). Moreover,

∆k = Pk(A−(k) = Pk(A−(k)) and ∂∆k = Pk(Γ(k+1)) (the boundary in the relative

topology of πk).
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Proof. We will use induction with respect to k. The statement is immediately

checked for k = 0 (note that P0 = IRN and ∂∆0 = ΣN−1 = Γ(1)).

Assume the statement true for k; we will prove its validity for k + 1. By the

induction hypothesis, we have

∆k+1 = Pk+1Pk(Γ(k + 1)) = Pk+1∂∆k = Pk+1∆k

and is therefore a balanced, convex subset of πk+1, with 0 as an interior point.

Take then y ∈
◦

∆k+1. Suppose P−1
k+1(y) ∩ ∂∆k contains a single point. Then

P−1
k+1(y) ∩ ∆k also contains a single point, and therefore P−1

k+1(y) ∩ πk is a support

line for the convex set ∆k. This line is contained in a support hyperplane (in πk);

but then the whole of ∆k projects onto πk+1 on one side of this hyperplane, and

thus y belongs to the boundary of this projection. Therefore y cannot be in
◦

∆k+1.

The contradiction obtained shows that P−1
k+1(y) ∩ ∂∆k contains at least two

points. But

∂∆k = Pk(Γ(k + 1)) = Pk(A+(k + 1)) ∪ Pk(A−(k + 1))

whence

Pk+1(∂∆k) = Pk+1(A+(k + 1)) ∪ Pk+1(A−(k + 1)).

Since Pk+1 restricted to each of the two terms in the right hand side is injective

by Lemma 3.2, it follows that P−1
k+1(y) ∩ ∂∆k is formed by exactly two points, one

in A+(k + 1) and the other in A−(k + 1). In particular,
◦

∆k+1⊂ Pk+1(A±(k + 1)).

But, ∆k+1 being a closed convex set with nonempty interior, it is the closure of

its interior
◦

∆k+1; since the two sets on the right are closed, we have actually

∆k+1 = Pk+1(A±(k + 1)).

We want to show now that ∂∆k+1 = Pk+1(Γk+2). Suppose first that y ∈

Pk+1(Γk+2) = Pk+1(A+(k + 1)∩A−(k + 1)). Then the line ℓ ⊂ πk orthogonal in y

to πk+1 cannot have other points of intersection with A+(k+ 1) or with A−(k+ 1),

since Pk+1 is injective on these two sets. Therefore ℓ is a line of support of ∆k+1,

and is contained in a support hyperplane (inside πk), whence y ∈ ∂∆k+1.

Conversely, take y ∈ ∂∆k+1 = ∂(Pk+1(∆k). Take z+ ∈ A+(k + 1), z− ∈

A−(k + 1), such that Pk+1(z+) = Pk+1(z−) = y. We have then Pk(z+) ∈ ∂∆k

(if Pk(z+) ∈
◦

∆k, then Pk+1(z+) = Pk+1(Pk(z+)) must be in the interior of Pk+1∆k,

which is
◦

∆k+1). Similarly, Pk(z−) ∈ ∂∆k.

If Pk(z+) 6= Pk(z−), then Pk+1 applied to the whole segment [Pk(z+), Pk(z−)]

is equal to y. Therefore the segment belongs to ∂∆k. Since ∂∆k = Pk(A+(k +



A NOTE ON JAMES SPACES AND SUPERSTRICTLY SINGULAR OPERATORS 7

1) ∪ A−(k + 1)), there exist two values x1, x2 either both in A+(k + 1) or both in

A−(k + 1), such that Pkx1, Pkx2 ∈ [Pk(z+), Pk(z−)], and thus Pk+1x1 = Pk+1x2 =

y. This contradicts the injectivity of Pk+1 on A+(k + 1).

Therefore Pk(z+) = Pk(z−). But z+ and z− both belong to A+(k), on which

Pk is injective. It follows that z+ = z− ∈ A+(k + 1) ∩ A−(k + 1) = Γ(k + 2), and

Pk+1z+ = y. This ends the proof. �

The main consequence of Lemma 3.3, in combination with Lemma 3.2, is the

fact that the linear map Pk−1 maps homeomorphically Γ(k) into ∂∆k−1, which is

the boundary of a convex, balanced set, containing 0 in its interior.

Corollary 3.4. If X ⊂ R
N is a subspace of dimension k, then X ∩ Γ(k) 6= ∅.

Proof. As noted above, Pk−1 maps homeomorphically Γ(k) onto the boundary of

a convex, balanced set, containing 0 in its interior. Composing it with the map

x 7→ x
‖x‖ , we obtain a homeomorphic map φ from Γ(k) to SN−k, which satisfies the

relation φ(−x) = −φ(x).

IfX∩Γ(k) = ∅, then the projection of Γk ontoX⊥ does not contain 0. Composing

this projection with the map x 7→ x
‖x‖ , we obtain a continuous map from ψ : Γ(k) →

SN−k−1, that satisfies ψ(−x) = −ψ(x). Then the map Φ := ψ ◦ φ−1 : SN−k →

SN−k−1 is continuous and satisfies Φ(−x) = −Φ(x). This is however impossible: it

is known that such a map does not exist (see, for instance, [1]). Therefore we must

have X ∩ Γ(k) 6= ∅. �

Finally, we extend this result to the infinite dimensional Banach space c0 of

real-valued sequences that tend to zero, as stated in Lemma 2.1.

Proof of Lemma 2.1. Denote by PN the orthogonal projection onto the first N

coordinates. Since I − PN → 0 on each element of c0, and X is finite dimensional,

a standard argument shows that I − PN |X : X → c0 tends to 0 uniformly. In

particular, PN |X is bounded below for largeN , and thusXN = PNX has eventually

dimension k.

Applying Corollary 3.4 to XN yields vectors yN = PNx
N , xN ∈ X , ‖yN‖ = 1,

whose coordinates have k alternating 1 and −1. We have xN = yN + (I − PN )xN ,

whence ‖xN‖ ≤ 1 + ‖(1−PN)xN‖; therefore, if we take ‖I −PN‖ < 1/2, we obtain

that the sequence xN is bounded. Take x ∈ X to be the limit of a convergent

subsequence. Since

‖(I − PN )xN‖ ≤ ‖(I − PN )x‖ + ‖I − PN‖ · ‖x− xN‖,
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the indices of the coordinates of yN of modulus 1 are bounded by an absolute

constant. By passing to a subsequence we may assume that they are constant. It

follows then that x has the corresponding ±1 on those coordinates. �
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