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1 Introduction

Let us consider a d-dimensional diffusion process (Xs)0≤s≤T and a q-dimensional Brownian
motion (Ws)0≤s≤T . X satisfies the following SDE

dX i
s = bi(s,Xs)ds+

q
∑

j=1

σij(s,Xs)dW
j
s , Xi

0 = xi,∀i ∈ {1, · · · , d}. (1.1)

We approximate X by its Euler scheme with N (N ≥ 1) time steps, say XN , defined as
follows. We consider the regular grid {0 = t0 < t1 < · · · < tN = T} of the interval [0, T ], i.e.
tk = k T

N . We put XN
0 = x and for all i ∈ {1, · · · , d} we define

XN,i
u = XN,i

tk
+ bi(tk, X

N
tk

)(u− tNk ) +

q
∑

j=1

σij(tk, X
N
tk

)(W j
u −W j

tk
), for u ∈ [tk, tk+1[. (1.2)

The continuous Euler scheme is an Itô process verifying

XN
u = x+

∫ u

0
b(ϕ(s), XN

ϕ(s))ds+

∫ u

0
σ(ϕ(s), XN

ϕ(s))dWs

where ϕ(u) := sup{tk : tk ≤ u}. If σ is uniformly elliptic, the Markov process X admits a
transition probability density p(0, x; s, y). Concerning XN (which is not Markovian except
at times (tk)k), X

N
s has a probability density pN (0, x; s, y), for any s > 0. We aim at

proving sharp estimates of the difference p(0, x; s, y) − pN (0, x; s, y).

It is well known (see Bally and Talay (1996), Konakov and Mammen (2002), Guyon (2006))
that this difference is of order 1

N . However, the known upper bounds of this difference are
too rough for small values of s. In this work, we provide tight upper bounds of |p(0, x; s, y)−
pN (0, x; s, y)| in s (see Theorem 3), so that we can estimate quantities like

E[f(XN
T )] − E[f(XT )] or E

[∫ T

0
f(XN

ϕ(s))ds

]

− E

[∫ T

0
f(Xs)ds

]

(1.3)

(without any regularity assumptions on f) more accurately than before (see Theorem 5).
For other applications, see Labart (2007). Unlike previous references, we allow b and σ to
be time-dependent and assume they are only C3 in space. Besides, we use Malliavin’s
calculus tools.

Background results

The difference p(0, x; s, y)−pN (0, x; s, y) has been studied a lot. We can found several results
in the literature on expansions w.r.t. N . First, we mention a result from Bally and Talay
(1996) (Corollary 2.7). The authors assume

Hypothesis 1 σ is elliptic (with σ only depending on x) and b, σ are C∞(Rd) functions
whose derivatives of any order greater or equal to 1 are bounded.

By using Malliavin’s calculus, they show that

p(0, x;T, y) − pN (0, x;T, y) =
1

N
πT (x, y) +

1

N2
RN

T (x, y), (1.4)
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with |πT (x, y)| + |RN
T (x, y)| ≤ K(T )

T q exp(−c |x−y|2

T ), where c > 0, q > 0 and K(·) is a non
decreasing function. We point out that q is unknown, which doesn’t enable to deduce the
behavior of p− pN when T → 0.

Besides that, Konakov and Mammen (2002) have proposed an analytical approach based
on the so-called parametrix method to bound p(0, x; 1, y) − pN (0, x; 1, y) from above. They
assume

Hypothesis 2 σ is elliptic and b, σ are C∞(Rd) functions whose derivatives of any order are
bounded.

For each pair (x, y) they get an expansion of arbitrary order j of pN (0, x; 1, y). The coefficients
of the expansion depend on N

p(0, x; 1, y) − pN (0, x; 1, y) =

j−1
∑

i=1

1

N i
πN,i(0, x; 1, y) +O(

1

N j
). (1.5)

The coefficients have Gaussian tails : for each i they find constants c1 > 0, c2 > 0 s.t. for all
N ≥ 1 and all x, y ∈ R

d, |πN,i(0, x; 1, y)| ≤ c1 exp(−c2|x − y|2). To do so, they use upper
bounds for the partial derivatives of p (coming from Friedman (1964)) and prove analogous
results on the derivatives of pN . Strong though this result may be, nothing is said when
replacing 1 by t, for t→ 0. That’s why we present now the work of Guyon (2006).

Guyon (2006) improves (1.4) and (1.5) in the following way.

Definition 1. Let Gl(R
d), l ∈ Z be the set of all measurable functions π : R

d× (0, 1]×R
d → R

s.t.

• for all t ∈ (0, 1], π(·; t, ·) is infinitely differentiable,

• for all α, β ∈ N
d, there exist two constants c1 ≥ 0 and c2 > 0 s.t. for all t ∈ (0, 1] and

x, y ∈ R
d,

|∂α
x ∂

β
y π(x; t, y)| ≤ c1t

−(|α|+|β|+d+l)/2 exp(−c2|x− y|2/t).

Under Hypothesis 2 and for T = 1, the author has proved the following expansions

pN − p =
π

N
+
πN

N2
, (1.6)

pN − p =

j−1
∑

i=1

πN,i

N i
+

j
∑

i=2

(

t− ⌊Nt⌋
N

)i

π′N,i +
π′′N,j

N j
, (1.7)

where π ∈ G1(R
d) and (πN , N ≥ 1) is a bounded sequence in G4(R

d). For each i ≥ 1,
(πN,i, N ≥ 1) is a bounded family in G2i−2(R

d), and (π′N,i, N ≥ 1), (π′′N,i, N ≥ 1) are two

bounded families in G2i(R
d). These expansions can be seen as improvements of (1.4) and

(1.5) : it also allows infinite differentiations w.r.t. x and y and makes precise the way the
coefficients explode when t tends to 0.
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As a consequence (see Guyon (2006, Corollary 22)), one gets

|p(0, x; s, y) − pN (0, x; s, y)| ≤ c1

Ns
d+2
2

e−c2
|x−y|2

s , (1.8)

for two positive constants c1 and c2, and for any x, y and s ≤ 1. This result should be
compared with the one of Theorem 3 (when T = 1), in which the upper bound is tighter (s
has a smaller power).

2 Main Results

Before stating the main result of the paper, we introduce the following notation

Definition 2. Ck,l
b denotes the set of continuously differentiable bounded functions φ : (t, x) ∈

[0, T ] × R
d with uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp.

up to order l).

The main result of the paper, whose proof is postponed to Section 4, is established under the
following Hypothesis

Hypothesis 3 σ is uniformly elliptic, b and σ are in C1,3
b and ∂tσ is in C0,1

b .

Theorem 3. Assume Hypothesis 3. Then, there exist a constant c > 0 and a non decreasing
function K, depending on the dimension d and on the upper bounds of σ, b and their derivatives
s.t. ∀(s, x, y) ∈]0, T ] × R

d × R
d, one has

|p(0, x; s, y) − pN (0, x; s, y)| ≤ K(T )T

Ns
d+1
2

exp

(

−c|x− y|2
s

)

.

Corollary 4. Assume Hypothesis 3. From the last inequality and Aronson’s inequality (A.1),
we deduce

∣

∣

∣

∣

p(0, x;T, x) − pN (0, x;T, x)

p(0, x;T, x)

∣

∣

∣

∣

≤ K(T )

N

√
T . (2.1)

This inequality yields p(0, x;T, x) ∼ pN (0, x;T, x) when T → 0.

Theorem 3 enables to bound quantities like in (1.3) in the following way

Theorem 5. Assume Hypothesis 3. For any function f such that |f(x)| ≤ c1e
c2|x|, it holds

∣

∣E[f(XN
T )] − E[f(XT )]

∣

∣ ≤ c1e
c2|x|K(T )

√
T

N
,

∣

∣

∣

∣

E

[∫ T

0
f(XN

ϕ(s))ds

]

− E

[∫ T

0
f(Xs)ds

]∣

∣

∣

∣

≤ c1e
c2|x|K(T )

T

N
.

Had we used the results stated by Guyon (2006) (and more precisely the one recalled in
(1.8)), we would have obtained E[f(XN

T )] − E[f(XT )] = O( 1
N ). Intuitively, this result is not

optimal: the right hand side doesn’t tend to 0 when T goes to 0 while it should. Analogously,

regarding E

[

∫ T
0 f(XN

ϕ(s))ds
]

−E

[

∫ T
0 f(Xϕ(s))ds

]

, we would obtain O(T ln N
N ) instead of O( T

N ).
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Proof of Theorem 5. Writing E[f(XN
T )]−E[f(XT )] as

∫

Rd f(y)(pN (0, x;T, y)−p(0, x;T, y))dy
and using Theorem 3 yield the first result. Concerning the second result,

we split E

[

∫ T
0 (f(XN

ϕ(s)) − f(Xs))ds
]

in two terms E

[

∫ T
0 (f(XN

ϕ(s)) − f(Xϕ(s)))ds
]

and

E

[

∫ T
0 (f(Xϕ(s)) − f(Xs))ds

]

. First, using Theorem 3 leads to

∣

∣

∣

∣

E

[∫ T

0
(f(XN

ϕ(s)) − f(Xϕ(s)))ds

]∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫

Rd

dy

∫ T

T
N

dsf(y)(pN (0, x;ϕ(s), y) − p(0, x;ϕ(s), y))

∣

∣

∣

∣

∣

,

≤ K(T )T

N
c1e

c2|x|

∫ T

T
N

ds
√

ϕ(s)
,

where we use the easy inequality
∫

Rd e
c2|y| e

−c|x−y|2

s

sd/2 dy ≤ K(T )ec2|x|. Since ϕ(s) ≥ s − T
N , we

get
∣

∣

∣
E

[

∫ T
0 (f(XN

ϕ(s)) − f(Xϕ(s)))ds
]∣

∣

∣
≤ K(T )T 3/2

N c1e
c2|x|. Second, we write

∣

∣

∣

∣

E

[∫ T

0
(f(Xϕ(s)) − f(Xs))ds

]∣

∣

∣

∣

≤ c1e
c2|x| T

N
+

∫

Rd

dy

∫ T

T
N

dsc1e
c2|y|

∫ s

ϕ(s)
du|∂up(0, x;u, y)|.

Then, Proposition 13 yields
∣

∣

∣
E

[

∫ T
0 (f(Xϕ(s)) − f(Xs))ds

]∣

∣

∣
≤ c1e

c2|x|
(

T
N + C

∫ T
T
N

ln( s
ϕ(s))ds

)

.

Moreover,
∫ T

T
N

ln( s
ϕ(s))ds =

∑N−1
k=1

∫ tk+1

tk
ln( s

tk
)ds = T

N

∑N−1
k=1 ((k+1) ln(k+1

k )−1) ≤ C T
N , using

a second order Taylor expansion. This gives
∣

∣

∣E

[

∫ T
0 (f(Xϕ(s)) − f(Xs))ds

]∣

∣

∣ ≤ c1e
c2|x|K(T ) T

N .

�

In the next section, we give results related to Malliavin’s calculus, that will be useful for the
proof of Theorem 3.

3 Basic results on Malliavin’s calculus

We refer the reader to Nualart (2006), for more details. Fix a filtered probability space
(Ω,F , (Ft),P) and let (Wt)t≥0 be a q-dimensional Brownian motion. For h(·) ∈ H =

L
2([0, T ],Rq), W (h) is the Wiener stochastic integral

∫ T
0 h(t)dWt. Let S denote the class

of random variables of the form F = f(W (h1), · · · ,W (hn)) where f is a C∞ function with
derivatives having a polynomial growth, (h1, · · · , hn) ∈ Hn and n ≥ 1. For F ∈ S, we define
its derivative DF = (DtF := (D1

tF, · · · ,Dq
tF ))t∈[0,T ] as the H valued random variable given

by

DtF =
n

∑

i=1

∂xif(W (h1), · · · ,W (hn))hi(t).

The operator D is closable as an operator from L
p(Ω) to L

p(Ω;H), for p ≥ 1. Its domain is
denoted by D

1,p w.r.t. the norm ‖F‖1,p = [E|F |p +E(‖DF‖p
H)]1/p. We can define the iteration

of the operator D, in such a way that for a smooth random variable F , the derivative DkF
is a random variable with values on H⊗k. As in the case k = 1, the operator Dk is closable
from S ⊂ L

p(Ω) into L
p(Ω;H⊗k), p ≥ 1. If we define the norm

‖F‖k,p = [E|F |p +

k
∑

j=1

E(
∥

∥DjF
∥

∥

p

H⊗j )]
1/p,
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we denote its domain by D
k,p. Finally, set D

k,∞ = ∩p≥1D
k,p, and D

∞ = ∩k,p≥1D
k,p. One has

the following chain rule property

Proposition 6. Fix p ≥ 1. For f ∈ C1
b (Rd,R), and F = (F1, · · · , Fd)

∗ a random vector
whose components belong to D

1,p, f(F ) ∈ D
1,p and for t ≥ 0, one has Dt(f(F )) = f ′(F )DtF,

with the notation

DtF =







DtF1
...

DtFd






∈ R

d ⊗ R
q.

We now introduce the Skorohod integral δ, defined as the adjoint operator of D.

Proposition 7. δ is a linear operator on L
2([0, T ] × Ω,Rq) with values in L

2(Ω) s.t.

• the domain of δ (denoted by Dom(δ)) is the set of processes u ∈ L
2([0, T ] × Ω,Rq) s.t.

|E(
∫ T
0 DtF · utdt)| ≤ c(u)|F |L2 for any F ∈ D

1,2.

• If u belongs to Dom(δ), then δ(u) is the one element of L
2(Ω) characterized by the

integration by parts formula

∀F ∈ D
1,2, E(Fδ(u)) = E

(∫ T

0
DtF · utdt

)

.

Remark 8. If u is an adapted process belonging to L
2([0, T ] × Ω,Rq), then the Skorohod

integral and the Itô integral coincide : δ(u) =
∫ T
0 utdWt, and the preceding integration by

parts formula becomes

∀F ∈ D
1,2, E

(

F

∫ T

0
utdWt

)

= E

(∫ T

0
DtF · utdt

)

. (3.1)

This equality is also called the duality formula.

This duality formula is the corner stone to establish general integration by parts formula of
the form

E[∂αg(F )G] = E[g(F )Hα(F,G)]

for any non degenerate random variables F . We only give the formulation in the case of
interest F = XN

t .

Proposition 9. We assume that σ is uniformly elliptic and b and σ are in C0,3
b . For all p > 1,

for all multi-index α s.t. |α| ≤ 2, for all t ∈]0, T ], all u, r, s ∈ [0, T ] and for any functions

f and g in C
|α|
b , there exist a random variable Hα ∈ L

p and a function K(T ) (uniform in
N, x, s, u, r, t, f and g) s.t.

E[∂α
x f(XN

t )g(XN
u , X

N
r , X

N
s )] = E[f(XN

t )Hα], (3.2)

with

|Hα|Lp ≤ K(T )

t
|α|
2

‖g‖
C

|α|
b

. (3.3)
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These results are given in the article of Kusuoka and Stroock (1984): (3.3) is owed to Theorem
1.20 and Corollary 3.7.
Another consequence of the duality formula is the derivation of an upper bound for pN .

Proposition 10. Assume σ is uniformly elliptic and b and σ are in C0,2
b . Then, for any

x, y ∈ R
d, s ∈]0, T ], one has

pN (0, x; s, y) ≤ K(T )

sd/2
e−c

|x−y|2

s , (3.4)

for a positive constant c and a non decreasing function K, both depending on d and on the
upper bounds for b, σ and their derivatives.

Although this upper bound seems to be quite standard, to our knowledge such a result has
not appeared in the literature before, except in the case of time homogeneous coefficients (see
Konakov and Mammen (2002), proof of Theorem 1.1).

Proof. The inequality (1.32) of Kusuoka and Stroock (1984, Theorem 1.31) gives

pN (0, x; s, y) ≤ K(T )

sd/2 for any x and y. This implies the required upper bound when
|x − y| ≤ √

s. Let us now consider the case |x − y| > √
s. Using the same notations

as in Kusuoka and Stroock (1984), we denote ψ(y) = ρ( |y−x|
r ) where r > 0 and ρ is a

C∞
b function such that 1{[3/4,∞[} ≤ ρ ≤ 1{[1/2,∞[}. Then, combining inequality (1.33) of

Kusuoka and Stroock (1984, Theorem 1.31) and Corollary 3.7 leads to

sup
|y−x|≥r

pN (0, x; s, y) ≤ K(T )
e−c r2

s

sd/2

(

1 +

√

s

r2

)

,

where we use |ψ(XN
s )|1,q ≤ K(T )e−c r2

s

(

1 +
√

s
r2

)

. This easily completes the proof in the
case |x− y| ≥ √

s. �

4 Proof of Theorem 3

In the following, K(·) denotes a generic non decreasing function (which may depend on d, b
and σ). To prove Theorem 3, we take advantage of Propositions 9 and 10. The scheme of the
proof is the following

• Use a PDE and Itô’s calculus to write the difference pN (0, x; s, y) − p(0, x; s, y)

=

∫ s

0
E

[

d
∑

i=1

(bi(ϕ(r), XN
ϕ(r)) − bi(r,X

N
r ))∂xip(r,X

N
r ; s, y)

+
1

2

d
∑

i,j=1

(aij(ϕ(r), XN
ϕ(r)) − aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y)



 dr := E1 + E2. (4.1)

• Prove the intermediate result ∀(r, x, y) ∈ [0, s[×R
d × R

d and c > 0

E

[

exp

(

−c |y −XN
r |2

s− r

)]

≤ K(T )

(

s− r

s

) d
2

exp

(

−c′ |x− y|2
s

)

, (4.2)

where c′ > 0.
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• Use Malliavin’s calculus, Proposition 10 and the intermediate result, to show that each

term E1 and E2 (see (4.1)) is bounded by K(T )T
N

1

s
d+1
2

exp(−c |x−y|2

s ).

Definition 11. We say that a term E(x, s, y) satisfies property P if ∀(x, s, y) ∈ R
d×]0, T ]×R

d

|E(x, s, y)| ≤ K(T )T

N

1

s
d+1
2

exp

(

−c |x− y|2
s

)

. (P)

4.1 Proof of equality (4.1)

First, the transition density function (r, x) 7−→ p(r, x; s, y) satisfies the PDE

(∂r + L(r,x))p(r, x; s, y) = 0, ∀r ∈ [0, s[,∀x ∈ R
d,

where L(r,x) is defined by L(r,x) =
∑

i,j aij(r, x)∂
2
xixj

+
∑

i bi(r, x)∂xi , and aij(r, x) =
1
2 [σσ∗]ij(r, x). The function, as well as its first derivatives, are uniformly bounded by a con-
stant depending on ǫ for |s− r| ≥ ǫ (see Appendix A).
Second, since pN (0, x; s, y) is a continuous function in s and y (convolution of Gaussian den-
sities), we observe that

pN (0, x; s, y) − p(0, x; s, y) = lim
ǫ→0

E[p(s− ǫ,XN
s−ǫ; s, y) − p(0, x; s, y)].

Then, for any ǫ > 0, Itô’s formula leads to

E[p(s− ǫ,XN
s−ǫ; s, y) − p(0, x; s, y)] = E

[∫ s−ǫ

0
∂rp(r,X

N
r ; s, y)dr

]

+ E





∫ s−ǫ

0

d
∑

i=1

bi(ϕ(r), XN
ϕ(r))∂xip(r,X

N
r ; s, y)dr +

1

2

∫ s−ǫ

0

d
∑

i,j=1

aij(ϕ(r), XN
ϕ(r))∂

2
xixj

p(r,XN
r ; s, y)dr



 .

From the PDE, the above equality becomes

E[p(s− ǫ,XN
s−ǫ; s, y)−p(0, x; s, y)] = E

[

∫ s−ǫ

0

d
∑

i=1

(bi(ϕ(r), XN
ϕ(r)) − bi(r,X

N
r ))∂xip(r,X

N
r ; s, y)dr

]

+
1

2
E





∫ s−ǫ

0

d
∑

i,j=1

(aij(ϕ(r), XN
ϕ(r)) − aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y)dr



 ,

:=

∫ s−ǫ

0
E[φ(r)]dr,

where φ(r) =
∑d

i=1(bi(ϕ(r), XN
ϕ(r))− bi(r,X

N
r ))∂xip(r,X

N
r ; s, y) + 1

2

∑d
i,j=1(aij(ϕ(r), XN

ϕ(r))−
aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y). To get (4.1), it remains to prove that E(φ(r)) is integrable over
[0, s]. We check it by looking at the rest of the proof.
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4.2 Proof of the intermediate result (4.2)

We prove inequality (4.2). E[exp(−c |y−XN
r |2

s−r )] =
∫

Rd exp(−c |y−z|2

s−r )pN (0, x; r, z)dz. Using
Proposition 10, we get

E

[

exp

(

−c |y −XN
r |2

s− r

)]

≤ K(T )

r
d
2

∫

Rd

exp

(

−c |y − z|2
s− r

)

exp

(

−c′ |x− z|2
r

)

dz

≤ K(T )Πd
i=1

∫

R

1√
r

exp

(

−c |yi − zi|2
s− r

)

exp

(

−c′ |xi − zi|2
r

)

dzi,

and

∫

R

1
√

2π (s−r)
2c

exp(−c |yi − zi|2
s− r

)
1

√

2π r
2c′

exp(−c′ |xi − zi|2
r

)dzi is the convolution product

of the density of two independant Gaussian random variables N (−xi,
r

2c′ ) and N (yi,
s−r
2c )

computed at 0. Hence, the integral is equal to
1

√

2π( r
2c′ + s−r

2c )
exp

(

−|xi − yi|2
r
c′ + s−r

c

)

. Then,

∫

R

1√
r

exp

(

−c |yi − zi|2
s− r

)

exp

(

−c′ |xi − zi|2
r

)

dzi ≤ C

(

s− r

s

) 1
2

exp

(

−c′′ |xi − yi|2
s

)

and (4.2) follows.

4.3 Upper bound for E1

We recall that E1 =
∫ s
0 E

[

∑d
i=1(bi(ϕ(r), XN

ϕ(r)) − bi(r,X
N
r ))∂xip(r,X

N
r ; s, y)

]

dr. For each i,

we apply Itô’s formula to bi(u,X
N
u ) between u = ϕ(r) and u = r. We get

bi(ϕ(r), XN
ϕ(r)) − bi(r,X

N
r ) =

∫ r

ϕ(r)
αi

udu+

∫ r

ϕ(r)

q
∑

k=1

βi,k
u dW k

u , (4.3)

where αi
u depends on ∂tb, ∂xb, ∂

2
xb, σ, and βi

u = −∇xbi(u,X
N
u )σ(ϕ(r), XN

ϕ(r)). Since b, σ belong

to C1,3
b , αi and (βi,k)1≤k≤q are uniformly bounded. Using (4.3) and the duality formula (3.1)

yield

E1 =
d

∑

i=1

∫ s

0
{E[

∫ r

ϕ(r)
∂xip(r,X

N
r ; s, y)αi

udu+ E[

∫ r

ϕ(r)
Du(∂xip(r,X

N
r ; s, y)) · βi

udu]}dr

:= E11 + E12, (4.4)

where βi
u is a row vector of q components. We upper bound E11 and E12.

Bound for E11 =
∑d

i=1

∫ s
0 E[

∫ r
ϕ(r) ∂xip(r,X

N
r ; s, y)αi

udu]dr.

Since |∑d
i=1 ∂xip(r,X

N
r ; s, y)αi

u| ≤ |αu||∂xp(r,X
N
r ; s, y)| and αu is uniformly bounded in u,

we have

|E11| ≤ C
T

N

∫ s

0
E|∂xp(r,X

N
r ; s, y)|dr.
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Besides that, from Proposition 13, |∂xp(r,X
N
r ; s, y)| ≤ K(T )

(s−r)
d+1
2

exp
(

− c |y−XN
r |2

s−r

)

. Then,

|E11| ≤ K(T )
T

N

∫ s

0

1

(s− r)
d+1
2

E

[

exp

(

−c |y −XN
r |2

s− r

)]

dr.

Using the intermediate result (4.2) yields

|E11| ≤ K(T )
T

N

∫ s

0

1√
s− r

1

s
d
2

exp

(

−c |x− y|2
s

)

dr ≤ K(T )
T

N

1

s
d−1
2

exp

(

−c |x− y|2
s

)

and thus, E11 satisfies property P (see Definition 11).

Bound for E12 =
∑d

i=1

∫ s
0 E[

∫ r
ϕ(r) Du(∂xip(r,X

N
r ; s, y)) · βi

udu]dr.

To rewrite E12, we use the expression of βi
u and Proposition 6, which gives

Du(∂xip(r,X
N
r ; s, y)) = ∇x(∂xip(r,X

N
r ; s, y))σ(ϕ(r), XN

ϕ(r)). Then,

E12 = −
∫ s

0
dr

∫ r

ϕ(r)

d
∑

i,k=1

E[∂2
xixk

p(r,XN
r ; s, y)[(σσ∗)(ϕ(r), XN

ϕ(r))(∇xbi(u,X
N
u ))∗]k]du. (4.5)

Using the integration by parts formula (3.2), we get that

E12 = −
∫ s

0
dr

∫ r

ϕ(r)

d
∑

i,k=1

E[∂xip(r,X
N
r ; s, y)H i

ek
(r, u)]du

where ek is a vector whose k-th component is 1 and other components are 0. From (3.3), we

deduce E[|H i
ek

(r, u)|p]1/p ≤ CK(T )

r1/2 , where C only depends on |σ|∞, |∂xσ|∞, |∂xb|∞, |∂2
xxb|∞.

By the Hölder inequality, it follows that

|E12| ≤ K(T )

∫ s

0
dr

∫ r

ϕ(r)

1

r1/2
E[|∂xp(r,X

N
r ; s, y)| d+1

d ]
d

d+1du.

Using Proposition 13 leads to |∂xp(r,X
N
r ; s, y)| ≤ K(T )

(s−r)
d+1
2

exp(−c |y−XN
r |2

s−r ), and combining

this inequality with the intermediate result (4.2) yields

E[|∂xp(r,X
N
r ; s, y)| d+1

d ]d/(d+1) ≤ K(T )

(s− r)
d+1
2

(

s− r

s

) d2

2(d+1)

exp

(

−c |y − x|2
s

)

. (4.6)

Hence, E12 is bounded by

K(T )

s
d2

2(d+1)

T

N
exp

(

−c |y − x|2
s

) ∫ s

0

1

r1/2

1

(s− r)
d+1
2

− d2

2(d+1)

dr.

The above integral equals s
1
2
− d+1

2
+ d2

2(d+1)B(1
2 ,

1
2(d+1)) where B is the function Beta. Thus

|E12| ≤ K(T )

sd/2
T
N exp(−c |y−x|2

s ), and E12 satisfies property P.
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4.4 Upper bound for E2

We recall E2 =
1

2

∫ s

0
E[

d
∑

i,j=1

(aij(ϕ(r), XN
ϕ(r)) − aij(r,X

N
r ))∂2

xixj
p(r,XN

r ; s, y)]dr. As we did

for E1, we apply Itô’s formula to aij(u,X
N
u ) between ϕ(r) and r. We get aij(ϕ(r), XN

ϕ(r)) −
aij(r,X

N
r ) =

∫ r
ϕ(r) γ

ij
u du +

∫ r
ϕ(r) δ

ij
u dWu, where γij

u depends on σ, ∂tσ, ∂xσ, b, ∂
2
xxσ and δij

u is

a row vector of size q, with l-th component (δij
u )l = −∑d

k=1 ∂xk
aij(u,X

N
u )σkl(ϕ(r), XN

ϕ(r)).

Then, the duality formula (3.1) leads to

E2 =

d
∑

i,j=1

∫ s

0
{E[

∫ r

ϕ(r)
∂2

xixj
p(r,XN

r ; s, y)γij
u du+ E[

∫ r

ϕ(r)
Du(∂2

xixj
p(r,XN

r ; s, y)) · δij
u du]}dr

:= E21 + E22.

Bound for E21 =
∑d

ij=1

∫ s
0 E[

∫ r
ϕ(r) ∂

2
xixj

p(r,XN
r ; s, y)γij

u du]dr.

As σ, b, ∂tσ, ∂xσ, ∂
2
xσ are C1

b in space, γij
u has the same smoothness properties as the term

[(σσ∗)(ϕ(r), XN
ϕ(r))(∇xbi(u,X

N
u ))∗]k appearing in (4.5). Thus, E21 can be treated as E12

and satisfies to the same estimate.

Bound for E22 =
∑d

i,j=1

∫ s
0 E[

∫ r
ϕ(r) Du(∂2

xixj
p(r,XN

r ; s, y)) · δij
u du]dr.

To rewrite E22, we use the expression of δij
u and Proposition 6, which asserts

Du(∂2
xixj

p(r,XN
r ; s, y)) = ∇x(∂2

xixj
p(r,XN

r ; s, y))σ(ϕ(r), XN
ϕ(r)). Thus,

E22 = −
d

∑

i,j,k=1

∫ s

0
dr

∫ r

ϕ(r)
E[∂3

xixjxk
p(r,XN

r ; s, y)[(σσ∗)(ϕ(r), XN
ϕ(r))(∇xaij(u,X

N
u ))∗]k]du.

To complete this proof, we split E22 in two terms : E1
22 (resp E2

22) corresponds to the integral
in r from 0 to s

2 (resp. from s
2 to s).

• On [0, s
2 ], E1

22 is bounded by C T
N

∫
s
2

0 E[|∂3
xixjxk

p(r,XN
r ; s, y)|]dr. Using Proposition 13

and (4.2), it gives

|E1
22| ≤

K(T )T

N

1

sd/2
exp

(

−c |x− y|2
s

) ∫ s
2

0

1

(s− r)3/2
dr.

Hence, E22 satisfies P.

• On [ s
2 , s], we use the integration by parts formula (3.2) of Proposition 9, with |α| = 2.

E2
22 = −

d
∑

i,j,k=1

∫ s

s
2

dr

∫ r

ϕ(r)
E[∂xip(r,X

N
r ; s, y)H i

ejk
]du,

where ejk is a vector full of zeros except the j-th and the k-th components. Using

Hölder’s inequality and (3.3) (remember that σ ∈ C1,3
b ), we obtain

|E2
22| ≤ K(T )

T

N

∫ s

s
2

1

r
E[|∂xp(r,X

N
r ; s, y)| d+1

d ]
d

d+1dr. (4.7)
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By applying (4.6), we get

|E2
22| ≤ K(T )

T

N

1

s
1+ d2

2(d+1)

exp

(

−c |x− y|2
s

) ∫ s

s
2

1

(s− r)
2d+1
2d+2

dr,

and the result follows.

A Bounds for the transition density function and its deriva-
tives

We bring together classical results related to bounds for the transition probability density of
X defined by (1.1).

Proposition 12 ( Aronson (1967)). Assume that the coefficients σ and b are bounded mea-
surable functions and that σ is uniformly elliptic. There exist positive constants K,α0, α1 s.t.
for any x, y in R

d and any 0 ≤ t < s ≤ T , one has

K−1

(2πα1(s− t))
d
2

e
−

|x−y|2

2α1(s−t) ≤ p(t, x; s, y) ≤ K
1

(2πα2(s− t))
d
2

e
−

|x−y|2

2α2(s−t) . (A.1)

Proposition 13 ( Friedman (1964)). Assume that the coefficients b and σ are Hölder con-
tinuous in time, C2

b in space and that σ is uniformly elliptic. Then, ∂m+a
x ∂b

yp(t, x; s, y) exist
and are continuous functions for all 0 ≤ |a| + |b| ≤ 2, |m| = 0, 1. Moreover, there exist two
positive constants c and K s.t. for any x, y in R

d and any 0 ≤ t < s ≤ T , one has

|∂m+a
x ∂b

yp(t, x; s, y)| ≤
K

(s− t)(|m|+|a|+|b|+d)/2
exp

(

−c |y − x|2
s− t

)

.
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