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In this work, we approximate a diffusion process by its Euler scheme and we study the convergence of the density of the marginal laws. We improve previous estimates especially for small time.

Introduction

Let us consider a d-dimensional diffusion process (X s ) 0≤s≤T and a q-dimensional Brownian motion (W s ) 0≤s≤T . X satisfies the following SDE dX i s = b i (s, X s )ds + q j=1 σ ij (s, X s )dW j s , X i 0 = x i , ∀i ∈ {1, • • • , d}.

(1.1)

We approximate X by its Euler scheme with N (N ≥ 1) time steps, say X N , defined as follows. We consider the regular grid

{0 = t 0 < t 1 < • • • < t N = T } of the interval [0, T ], i.e. t k = k T N .
We put X N 0 = x and for all i ∈ {1, • • • , d} we define

X N,i u = X N,i t k + b i (t k , X N t k )(u -t N k ) + q j=1 σ ij (t k , X N t k )(W j u -W j t k ), for u ∈ [t k , t k+1 [. (1.2)
The continuous Euler scheme is an Itô process verifying

X N u = x + u 0 b(ϕ(s), X N ϕ(s) )ds + u 0 σ(ϕ(s), X N ϕ(s) )dW s
where ϕ(u) := sup{t k : t k ≤ u}. If σ is uniformly elliptic, the Markov process X admits a transition probability density p(0, x; s, y). Concerning X N (which is not Markovian except at times (t k ) k ), X N s has a probability density p N (0, x; s, y), for any s > 0. We aim at proving sharp estimates of the difference p(0, x; s, y)p N (0, x; s, y).

It is well known (see [START_REF] Bally | The law of Euler scheme for stochastic differential equations: convergence rate of the density[END_REF], [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF], Guyon (2006)) that this difference is of order 1 N . However, the known upper bounds of this difference are too rough for small values of s. In this work, we provide tight upper bounds of |p(0, x; s, y)p N (0, x; s, y)| in s (see Theorem 3), so that we can estimate quantities like

E[f (X N T )] -E[f (X T )] or E T 0 f (X N ϕ(s) )ds -E T 0 f (X s )ds (1.3)
(without any regularity assumptions on f ) more accurately than before (see Theorem 5).

For other applications, see [START_REF] Labart | [END_REF]. Unlike previous references, we allow b and σ to be time-dependent and assume they are only C 3 in space. Besides, we use Malliavin's calculus tools.

Background results

The difference p(0, x; s, y)p N (0, x; s, y) has been studied a lot. We can found several results in the literature on expansions w.r.t. N . First, we mention a result from [START_REF] Bally | The law of Euler scheme for stochastic differential equations: convergence rate of the density[END_REF] (Corollary 2.7). The authors assume Hypothesis 1 σ is elliptic (with σ only depending on x) and b, σ are C ∞ (R d ) functions whose derivatives of any order greater or equal to 1 are bounded.

By using Malliavin's calculus, they show that

p(0, x; T, y) -p N (0, x; T, y) = 1 N π T (x, y) + 1 N 2 R N T (x, y), (1.4) with |π T (x, y)| + |R N T (x, y)| ≤ K(T ) T q exp(-c |x-y| 2 T )
, where c > 0, q > 0 and K(•) is a non decreasing function. We point out that q is unknown, which doesn't enable to deduce the behavior of pp N when T → 0.

Besides that, [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF] have proposed an analytical approach based on the so-called parametrix method to bound p(0, x; 1, y)p N (0, x; 1, y) from above. They assume Hypothesis 2 σ is elliptic and b, σ are C ∞ (R d ) functions whose derivatives of any order are bounded.

For each pair (x, y) they get an expansion of arbitrary order j of p N (0, x; 1, y). The coefficients of the expansion depend on N p(0, x; 1, y)p N (0, x;

1, y) = j-1 i=1 1 N i π N,i (0, x; 1, y) + O( 1 N j ).
(1.5)

The coefficients have Gaussian tails : for each i they find constants

c 1 > 0, c 2 > 0 s.t. for all N ≥ 1 and all x, y ∈ R d , |π N,i (0, x; 1, y)| ≤ c 1 exp(-c 2 |x -y| 2 ).
To do so, they use upper bounds for the partial derivatives of p (coming from [START_REF] Friedman | Partial differential equations of parabolic type[END_REF]) and prove analogous results on the derivatives of p N . Strong though this result may be, nothing is said when replacing 1 by t, for t → 0. That's why we present now the work of Guyon (2006).

Guyon ( 2006) improves (1.4) and (1.5) in the following way.

Definition 1. Let G l (R d ), l ∈ Z be the set of all measurable functions π :

R d × (0, 1] × R d → R s.t.
• for all t ∈ (0, 1], π(•; t, •) is infinitely differentiable,

• for all α, β ∈ N d , there exist two constants c 1 ≥ 0 and c 2 > 0 s.t. for all t ∈ (0, 1] and

x, y ∈ R d , |∂ α x ∂ β y π(x; t, y)| ≤ c 1 t -(|α|+|β|+d+l)/2 exp(-c 2 |x -y| 2 /t).
Under Hypothesis 2 and for T = 1, the author has proved the following expansions

p N -p = π N + π N N 2 , (1.6) p N -p = j-1 i=1 π N,i N i + j i=2 t - ⌊N t⌋ N i π ′ N,i + π ′′ N,j N j , (1.7) where π ∈ G 1 (R d ) and (π N , N ≥ 1) is a bounded sequence in G 4 (R d ). For each i ≥ 1, (π N,i , N ≥ 1) is a bounded family in G 2i-2 (R d )
, and (π ′ N,i , N ≥ 1), (π ′′ N,i , N ≥ 1) are two bounded families in G 2i (R d ). These expansions can be seen as improvements of (1.4) and (1.5) : it also allows infinite differentiations w.r.t. x and y and makes precise the way the coefficients explode when t tends to 0.

As a consequence (see Guyon (2006, Corollary 22)), one gets

|p(0, x; s, y) -p N (0, x; s, y)| ≤ c 1 N s d+2 2 e -c 2 |x-y| 2 s , (1.8) 
for two positive constants c 1 and c 2 , and for any x, y and s ≤ 1. This result should be compared with the one of Theorem 3 (when T = 1), in which the upper bound is tighter (s has a smaller power).

Main Results

Before stating the main result of the paper, we introduce the following notation Definition 2. C k,l b denotes the set of continuously differentiable bounded functions φ : (t, x) ∈ [0, T ] × R d with uniformly bounded derivatives w.r.t. t (resp. w.r.t. x) up to order k (resp. up to order l).

The main result of the paper, whose proof is postponed to Section 4, is established under the following Hypothesis

Hypothesis 3 σ is uniformly elliptic, b and σ are in C 1,3 b and ∂ t σ is in C 0,1 b .
Theorem 3. Assume Hypothesis 3. Then, there exist a constant c > 0 and a non decreasing function K, depending on the dimension d and on the upper bounds of σ, b and their derivatives s

.t. ∀(s, x, y) ∈]0, T ] × R d × R d , one has |p(0, x; s, y) -p N (0, x; s, y)| ≤ K(T )T N s d+1 2 exp - c|x -y| 2 s .
Corollary 4. Assume Hypothesis 3. From the last inequality and Aronson's inequality (A.1), we deduce

p(0, x; T, x) -p N (0, x; T, x) p(0, x; T, x) ≤ K(T ) N √ T . (2.1)
This inequality yields p(0, x; T, x) ∼ p N (0, x; T, x) when T → 0.

Theorem 3 enables to bound quantities like in (1.3) in the following way Theorem 5. Assume Hypothesis 3. For any function

f such that |f (x)| ≤ c 1 e c 2 |x| , it holds E[f (X N T )] -E[f (X T )] ≤ c 1 e c 2 |x| K(T ) √ T N , E T 0 f (X N ϕ(s) )ds -E T 0 f (X s )ds ≤ c 1 e c 2 |x| K(T ) T N .
Had we used the results stated by Guyon (2006) (and more precisely the one recalled in (1.8)), we would have obtained

E[f (X N T )] -E[f (X T )] = O( 1 N ).
Intuitively, this result is not optimal: the right hand side doesn't tend to 0 when T goes to 0 while it should. Analogously, regarding E

T 0 f (X N ϕ(s) )ds -E T 0 f (X ϕ(s) )ds , we would obtain O( T ln N N ) instead of O( T N ). Proof of Theorem 5. Writing E[f (X N T )]-E[f (X T )] as R d f (y)(p N (0,
x; T, y)-p(0, x; T, y))dy and using Theorem 3 yield the first result.

Concerning the second result, we split

E T 0 (f (X N ϕ(s) ) -f (X s ))ds in two terms E T 0 (f (X N ϕ(s) ) -f (X ϕ(s) ))ds and E T 0 (f (X ϕ(s) ) -f (X s ))ds . First, using Theorem 3 leads to E T 0 (f (X N ϕ(s) ) -f (X ϕ(s) ))ds = R d dy T T N dsf (y)(p N (0, x; ϕ(s), y) -p(0, x; ϕ(s), y)) , ≤ K(T )T N c 1 e c 2 |x| T T N ds ϕ(s) ,
where we use the easy inequality

R d e c 2 |y| e -c|x-y| 2 s s d/2 dy ≤ K(T )e c 2 |x| . Since ϕ(s) ≥ s -T N , we get E T 0 (f (X N ϕ(s) ) -f (X ϕ(s) ))ds ≤ K(T )T 3/2 N c 1 e c 2 |x|
. Second, we write

E T 0 (f (X ϕ(s) ) -f (X s ))ds ≤ c 1 e c 2 |x| T N + R d dy T T N dsc 1 e c 2 |y| s ϕ(s) du|∂ u p(0, x; u, y)|.
Then, Proposition 13 yields

E T 0 (f (X ϕ(s) ) -f (X s ))ds ≤ c 1 e c 2 |x| T N + C T T N ln( s ϕ(s) )ds . Moreover, T T N ln( s ϕ(s) )ds = N -1 k=1 t k+1 t k ln( s t k )ds = T N N -1 k=1 ((k + 1) ln( k+1 k ) -1) ≤ C T N , using a second order Taylor expansion. This gives E T 0 (f (X ϕ(s) ) -f (X s ))ds ≤ c 1 e c 2 |x| K(T ) T N .
In the next section, we give results related to Malliavin's calculus, that will be useful for the proof of Theorem 3.

Basic results on Malliavin's calculus

We refer the reader to [START_REF] Nualart | Malliavin Calculus and Related Topics (2nd Edition)[END_REF], for more details. Fix a filtered probability space (Ω, F, (F t ), P) and let (W t ) t≥0 be a q-dimensional Brownian motion. For h(•)

∈ H = L 2 ([0, T ], R q ), W (h) is the Wiener stochastic integral T 0 h(t)dW t . Let S denote the class of random variables of the form F = f (W (h 1 ), • • • , W (h n )) where f is a C ∞ function with derivatives having a polynomial growth, (h 1 , • • • , h n ) ∈ H n and n ≥ 1. For F ∈ S, we define its derivative DF = (D t F := (D 1 t F, • • • , D q t F )) t∈[0,T ]
as the H valued random variable given by

D t F = n i=1 ∂ x i f (W (h 1 ), • • • , W (h n ))h i (t).
The operator D is closable as an operator from L p (Ω) to L p (Ω; H), for p ≥ 1. Its domain is denoted by D 1,p w.r.t. the norm F 1,p = [E|F | p + E( DF p H )] 1/p . We can define the iteration of the operator D, in such a way that for a smooth random variable F , the derivative D k F is a random variable with values on H ⊗k . As in the case k = 1, the operator

D k is closable from S ⊂ L p (Ω) into L p (Ω; H ⊗k ), p ≥ 1. If we define the norm F k,p = [E|F | p + k j=1 E( D j F p H ⊗j )] 1/p ,
we denote its domain by D k,p . Finally, set D k,∞ = ∩ p≥1 D k,p , and D ∞ = ∩ k,p≥1 D k,p . One has the following chain rule property

Proposition 6. Fix p ≥ 1. For f ∈ C 1 b (R d , R), and F = (F 1 , • • • , F d ) * a random vector whose components belong to D 1,p , f (F ) ∈ D 1,p and for t ≥ 0, one has D t (f (F )) = f ′ (F )D t F, with the notation D t F =    D t F 1 . . . D t F d    ∈ R d ⊗ R q .
We now introduce the Skorohod integral δ, defined as the adjoint operator of D.

Proposition 7. δ is a linear operator on

L 2 ([0, T ] × Ω, R q ) with values in L 2 (Ω) s.t.
• the domain of δ (denoted by

Dom(δ)) is the set of processes u ∈ L 2 ([0, T ] × Ω, R q ) s.t. |E( T 0 D t F • u t dt)| ≤ c(u)|F | L 2 for any F ∈ D 1,2 . • If u belongs to Dom(δ), then δ(u)
is the one element of L 2 (Ω) characterized by the integration by parts formula

∀F ∈ D 1,2 , E(F δ(u)) = E T 0 D t F • u t dt .
Remark 8. If u is an adapted process belonging to L 2 ([0, T ] × Ω, R q ), then the Skorohod integral and the Itô integral coincide : δ(u) = T 0 u t dW t , and the preceding integration by parts formula becomes

∀F ∈ D 1,2 , E F T 0 u t dW t = E T 0 D t F • u t dt . (3.1)
This equality is also called the duality formula.

This duality formula is the corner stone to establish general integration by parts formula of the form

E[∂ α g(F )G] = E[g(F )H α (F, G)]
for any non degenerate random variables F . We only give the formulation in the case of interest F = X N t .

Proposition 9. We assume that σ is uniformly elliptic and b and σ are in C 0,3 b . For all p > 1, for all multi-index α s.t. |α| ≤ 2, for all t ∈]0, T ], all u, r, s ∈ [0, T ] and for any functions f and g in C |α| b , there exist a random variable H α ∈ L p and a function K(T ) (uniform in N, x, s, u, r, t, f and g) s.t.

E[∂ α x f (X N t )g(X N u , X N r , X N s )] = E[f (X N t )H α ], (3.2) with |H α | Lp ≤ K(T ) t |α| 2 g C |α| b . (3.3)
These results are given in the article of [START_REF] Kusuoka | Applications to the Malliavin calculus I. Stochastic Analysis[END_REF] Although this upper bound seems to be quite standard, to our knowledge such a result has not appeared in the literature before, except in the case of time homogeneous coefficients (see [START_REF] Konakov | Edgeworth type expansions for Euler schemes for stochastic differential equations[END_REF], proof of Theorem 1.1).

Proof. The inequality (1.32) of Kusuoka and Stroock (1984, Theorem 1.31) gives p N (0, x; s, y) ≤ K(T ) s d/2 for any x and y. This implies the required upper bound when |x -y| ≤ √ s. Let us now consider the case |x -y| > √ s. Using the same notations as in [START_REF] Kusuoka | Applications to the Malliavin calculus I. Stochastic Analysis[END_REF], we denote ψ(y) = ρ( |y-x| r ) where r > 0 and ρ is a

C ∞ b function such that 1 {[3/4,∞[} ≤ ρ ≤ 1 {[1/2,∞[} .
Then, combining inequality (1.33) of Kusuoka and Stroock (1984, Theorem 1.31) 

Proof of Theorem 3

In the following, K(•) denotes a generic non decreasing function (which may depend on b and σ). To prove Theorem 3, we take advantage of Propositions 9 and 10. The scheme of the proof is the following

• Use a PDE and Itô's calculus to write the difference p N (0, x; s, y)p(0, x; s, y)

= s 0 E d i=1 (b i (ϕ(r), X N ϕ(r) ) -b i (r, X N r ))∂ x i p(r, X N r ; s, y) + 1 2 d i,j=1 (a ij (ϕ(r), X N ϕ(r) ) -a ij (r, X N r ))∂ 2 x i x j p(r, X N r ; s, y)   dr := E 1 + E 2 . (4.1) • Prove the intermediate result ∀(r, x, y) ∈ [0, s[×R d × R d and c > 0 E exp -c |y -X N r | 2 s -r ≤ K(T ) s -r s d 2 exp -c ′ |x -y| 2 s , (4.2)
where c ′ > 0.

• Use Malliavin's calculus, Proposition 10 and the intermediate result, to show that each term E 1 and E 2 (see (4.1)) is bounded by

K(T )T N 1 s d+1 2 exp(-c |x-y| 2 s ).
Definition 11. We say that a term E(x, s, y) satisfies property

P if ∀(x, s, y) ∈ R d ×]0, T ]×R d |E(x, s, y)| ≤ K(T )T N 1 s d+1 2 exp -c |x -y| 2 s . (P)
4.1 Proof of equality (4.1)

First, the transition density function (r, x) -→ p(r, x; s, y) satisfies the PDE

(∂ r + L (r,x) )p(r, x; s, y) = 0, ∀r ∈ [0, s[, ∀x ∈ R d ,
where

L (r,x) is defined by L (r,x) = i,j a ij (r, x)∂ 2 x i x j + i b i (r, x)∂ x i , and a ij (r, x) = 1 2 [σσ * ] ij (r, x).
The function, as well as its first derivatives, are uniformly bounded by a constant depending on ǫ for |s -r| ≥ ǫ (see Appendix A). Second, since p N (0, x; s, y) is a continuous function in s and y (convolution of Gaussian densities), we observe that

p N (0, x; s, y) -p(0, x; s, y) = lim ǫ→0 E[p(s -ǫ, X N s-ǫ ; s, y) -p(0, x; s, y)].
Then, for any ǫ > 0, Itô's formula leads to

E[p(s -ǫ, X N s-ǫ ; s, y) -p(0, x; s, y)] = E s-ǫ 0 ∂ r p(r, X N r ; s, y)dr + E   s-ǫ 0 d i=1 b i (ϕ(r), X N ϕ(r) )∂ x i p(r, X N r ; s, y)dr + 1 2 s-ǫ 0 d i,j=1 a ij (ϕ(r), X N ϕ(r) )∂ 2 x i x j p(r, X N r ; s, y)dr   .
From the PDE, the above equality becomes

E[p(s -ǫ, X N s-ǫ ; s, y)-p(0, x; s, y)] = E s-ǫ 0 d i=1 (b i (ϕ(r), X N ϕ(r) ) -b i (r, X N r ))∂ x i p(r, X N r ; s, y)dr + 1 2 E   s-ǫ 0 d i,j=1 (a ij (ϕ(r), X N ϕ(r) ) -a ij (r, X N r ))∂ 2 x i x j p(r, X N r ; s, y)dr   , := s-ǫ 0 E[φ(r)]dr, where φ(r) = d i=1 (b i (ϕ(r), X N ϕ(r) ) -b i (r, X N r ))∂ x i p(r, X N r ; s, y) + 1 2 d i,j=1 (a ij (ϕ(r), X N ϕ(r) ) - a ij (r, X N r ))∂ 2 x i x j p(r, X N r ; s, y).
To get (4.1), it remains to prove that E(φ(r)) is integrable over [0, s]. We check it by looking at the rest of the proof.

Proof of the intermediate result (4.2)

We prove inequality (4.

2). E[exp(-c |y-X N r | 2 s-r )] = R d exp(-c |y-z| 2
s-r )p N (0, x; r, z)dz. Using Proposition 10, we get

E exp -c |y -X N r | 2 s -r ≤ K(T ) r d 2 R d exp -c |y -z| 2 s -r exp -c ′ |x -z| 2 r dz ≤ K(T )Π d i=1 R 1 √ r exp -c |y i -z i | 2 s -r exp -c ′ |x i -z i | 2 r dz i ,
and

R 1 2π (s-r) 2c exp(-c |y i -z i | 2 s -r ) 1 2π r 2c ′ exp(-c ′ |x i -z i | 2 r
)dz i is the convolution product of the density of two independant Gaussian random variables N (-x i , r 2c ′ ) and N (y i , s-r 2c ) computed at 0. Hence, the integral is equal to 1

2π( r 2c ′ + s-r 2c ) exp - |x i -y i | 2 r c ′ + s-r c . Then, R 1 √ r exp -c |y i -z i | 2 s -r exp -c ′ |x i -z i | 2 r dz i ≤ C s -r s 1 2 exp -c ′′ |x i -y i | 2 s
and (4.2) follows.

Upper bound for E 1

We recall that

E 1 = s 0 E d i=1 (b i (ϕ(r), X N ϕ(r) ) -b i (r, X N r ))∂ x i p(r, X N r ; s, y) dr.
For each i, we apply Itô's formula to b i (u, X N u ) between u = ϕ(r) and u = r. We get

b i (ϕ(r), X N ϕ(r) ) -b i (r, X N r ) = r ϕ(r) α i u du + r ϕ(r) q k=1 β i,k u dW k u , (4.3) 
where α i u depends on ∂ t b, ∂ x b, ∂ 2 x b, σ, and

β i u = -∇ x b i (u, X N u )σ(ϕ(r), X N ϕ(r) ). Since b, σ belong to C 1,3
b , α i and (β i,k ) 1≤k≤q uniformly bounded. Using (4.3) and the duality formula (3.1) yield

E 1 = d i=1 s 0 {E[ r ϕ(r) ∂ x i p(r, X N r ; s, y)α i u du + E[ r ϕ(r) D u (∂ x i p(r, X N r ; s, y)) • β i u du]}dr := E 11 + E 12 , (4.4) 
where β i u is a row vector of q components. We upper bound E 11 and E 12 .

Bound for Besides that, from Proposition 13, |∂ x p(r, X N r ; s, y)| ≤ K(T ) (s-r)

E 11 = d i=1 s 0 E[ r ϕ(r) ∂ x i p(r, X N r ; s, y)α i u du]dr. Since | d i=1 ∂ x i p(r, X N r ; s, y)α i u | ≤ |α u ||∂ x p(
d+1 2 exp -c |y-X N r | 2 s-r . Then, |E 11 | ≤ K(T ) T N s 0 1 (s -r) d+1 2 E exp -c |y -X N r | 2 s -r dr.
Using the intermediate result (4.2) yields

|E 11 | ≤ K(T ) T N s 0 1 √ s -r 1 s d 2 exp -c |x -y| 2 s dr ≤ K(T ) T N 1 s d-1 2 exp -c |x -y| 2 s
and thus, E 11 satisfies property P (see Definition 11).

Bound for

E 12 = d i=1 s 0 E[ r ϕ(r) D u (∂ x i p(r, X N r ; s, y)) • β i u du]dr.
To rewrite E 12 , we use the expression of β i u and Proposition 6, which gives D u (∂ x i p(r, X N r ; s, y)) = ∇ x (∂ x i p(r, X N r ; s, y))σ(ϕ(r), X N ϕ(r) ). Then,

E 12 = - s 0 dr r ϕ(r) d i,k=1 E[∂ 2 x i x k p(r, X N r ; s, y)[(σσ * )(ϕ(r), X N ϕ(r) )(∇ x b i (u, X N u )) * ] k ]du. (4.5)
Using the integration by parts formula (3.2), we get that 

E 12 = -
p(r, X N r ; s, y)| d+1 d ] d/(d+1) ≤ K(T ) (s -r) d+1 2 s -r s d 2 2(d+1) exp -c |y -x| 2 s . (4.6)
Hence, E 12 is bounded by

K(T ) s d 2 2(d+1) T N exp -c |y -x| 2 s s 0 1 r 1/2 1 (s -r) d+1 2 -d 2 2(d+1) dr.
The above integral equals s

1 2 -d+1 2 + d 2 2(d+1) B( 1 2 , 1 2(d+1) ) where B is the function Beta. Thus |E 12 | ≤ K(T ) s d/2 T N exp(-c |y-x| 2 s )
, and E 12 satisfies property P.

Upper bound for E 2

We recall

E 2 = 1 2 s 0 E[ d i,j=1 (a ij (ϕ(r), X N ϕ(r) ) -a ij (r, X N r ))∂ 2
x i x j p(r, X N r ; s, y)]dr. As we did for E 1 , we apply Itô's formula to a ij (u, X N u ) between ϕ(r) and r. We get a ij (ϕ(r),

X N ϕ(r) ) - a ij (r, X N r ) = r ϕ(r) γ ij u du + r ϕ(r) δ ij u dW u , where γ ij u depends on σ, ∂ t σ, ∂ x σ, b, ∂ 2 xx σ and δ ij u is a row vector of size q, with l-th component (δ ij u ) l = -d k=1 ∂ x k a ij (u, X N u )σ kl (ϕ(r), X N ϕ(r)
). Then, the duality formula (3.1) leads to

E 2 = d i,j=1 s 0 {E[ r ϕ(r) ∂ 2 x i x j p(r, X N r ; s, y)γ ij u du + E[ r ϕ(r) D u (∂ 2 x i x j p(r, X N r ; s, y)) • δ ij u du]}dr := E 21 + E 22 .
Bound for

E 21 = d ij=1 s 0 E[ r ϕ(r) ∂ 2 x i x j p(r, X N r ; s, y)γ ij u du]dr. As σ, b, ∂ t σ, ∂ x σ, ∂ 2 x σ are C 1 b in space, γ ij u has the same smoothness properties as the term [(σσ * )(ϕ(r), X N ϕ(r) )(∇ x b i (u, X N u )
) * ] k appearing in (4.5). Thus, E 21 can be treated as E 12 and satisfies to the same estimate.

Bound for E

22 = d i,j=1 s 0 E[ r ϕ(r) D u (∂ 2 x i x j p(r, X N r ; s, y)) • δ ij u du]dr.
To rewrite E 22 , we use the expression of δ ij u and Proposition 6, which asserts

D u (∂ 2 x i x j p(r, X N r ; s, y)) = ∇ x (∂ 2 x i x j p(r, X N r ; s, y))σ(ϕ(r), X N ϕ(r)
). Thus,

E 22 = - d i,j,k=1 s 0 dr r ϕ(r) E[∂ 3 x i x j x k p(r, X N r ; s, y)[(σσ * )(ϕ(r), X N ϕ(r) )(∇ x a ij (u, X N u )) * ] k ]du.
To complete this proof, we split E 22 in two terms : E 1 22 (resp E 2 22 ) corresponds to the integral in r from 0 to s 2 (resp. from s 2 to s).

• On [0, s 2 ], E A Bounds for the transition density function and its derivatives

We bring together classical results related to bounds for the transition probability density of X defined by (1.1).

Proposition 12 [START_REF] Aronson | Bounds for the fundamental solution of a parabolic equation[END_REF]). Assume that the coefficients σ and b are bounded measurable functions and that σ is uniformly elliptic. There exist positive constants K, α 0 , α 1 s.t. for any x, y in R d and any 0 ≤ t < s ≤ T , one has 

K -1 (2πα 1 (s -t))

  : (3.3) is owed to Theorem 1.20 and Corollary 3.7. Another consequence of the duality formula is the derivation of an upper bound for p N . Proposition 10. Assume σ is uniformly elliptic and b and σ are in C 0,2 b . Then, for any x, y ∈ R d , s ∈]0, T ], one has p N (0, x; s, y) ≤ K(T ) s d/2 e -c |x-y| 2 constant c and a non decreasing function K, both depending on d and on the upper bounds for b, σ and their derivatives.

  This easily completes the proof in the case |x -y| ≥ √ s.

  r, X N r ; s, y)| and α u is uniformly bounded in u, we have |E 11 | ≤ C T N s 0 E|∂ x p(r, X N r ; s, y)|dr.

  x i p(r, X N r ; s, y)H i e k (r, u)]du where e k is a vector whose k-th component is 1 and other components are 0. From (3.3), we deduceE[|H i e k (r, u)| p ] 1/p ≤ C K(T ) r 1/2 ,where C only depends on |σ| ∞ , |∂ x σ| ∞ , |∂ x b| ∞ , |∂ 2 xx b| ∞ . By the Hölder inequality, it follows that |E 12 | ≤ K(T ) leads to |∂ x p(r, X N r ; s, y)| ≤ K(T ) ), and combining this inequality with the intermediate result (4.2) yields x

  3x i x j x k p(r, X N r ; s, y)|]dr. Using Proposition 13 and (4.2), it gives r) 3/2 dr.Hence, E 22 satisfies P.• On [ s 2 , s], we use the integration by parts formula (3.2) of Proposition 9, with |α| = 2. x i p(r, X N r ; s, y)H i e jk ]du, where e jk is a vector full of zeros except the j-th and the k-th components. Using Hölder's inequality and (3.3) (remember that σ ∈ C 1,3 b ), we obtain |E 2 22 | ≤ K(T ) x p(r, X N r ; s, y)|

  s-t) ≤ p(t, x; s, y) ≤ K 1 (2πα 2 (st))Proposition 13[START_REF] Friedman | Partial differential equations of parabolic type[END_REF]). Assume that the coefficients b and σ are Hölder continuous in time, C 2 b in space and that σ is uniformly elliptic. Then, ∂ m+a x ∂ b y p(t, x; s, y) exist and are continuous functions for all 0 ≤ |a| + |b| ≤ 2, |m| = 0, 1. Moreover, there exist two positive constants c and K s.t. for any x, y in R d and any 0 ≤ t < s ≤ T , one has |∂ m+a x ∂ b y p(t, x; s, y)| ≤ K (st) (|m|+|a|+|b|+d)/2 exp -c |y -x| 2 st .