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Résumé 3
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Electre Tri-C: Une Méthode Multicritère de Tri Ordinal

Prenant Appui sur des Actions de Références Centrales

Résumé

On propose dans cet article une nouvelle méthode qui s’insère dans la famille Electre.
Elle permet de traiter les problèmes de tri ordinaux lorsque les catégories sont définies
par des actions de référence centrales et non pas des profils limites. Nous avons appelé
cette nouvelle méthode Electre Tri-C. La méthode appelée jusqu’à présent Electre

Tri qui prend appui sur des profils limites qui servent à borner les catégories sera ci-
après appelée Electre Tri-B. Après avoir mis en évidence l’intérêt de cette méthode,
on introduit les hypothèses fondamentales sur lesquelles elle repose ainsi que les exigences
structurelles auxquelles il nous parâıt naturel qu’elle satisfasse. Electre Tri-C est
constituée de deux procédures dites descendante et ascendante. Celles-ci sont similaires
aux procédures pseudo-conjonctive (initialement appelée pessimiste) et pseudo-disjonctive
(initialement appelée optimiste) qui constituent Electre Tri-B. Elles conduisent toute-
fois à des affectations différentes comme on le montre dans cet article.

Mots Clés: Aide multicritère à la décision, Tri ordinal, Méthodes Electre, Actions de
référence centrales

Electre Tri-C: A Multiple Criteria Sorting Method

Based on Central Reference Actions

Abstract

In this paper, we propose a new method within the Electre framework. This method
deals with sorting problems where the pre-defined and ordered categories are based on
central reference actions instead of boundary actions (boundary profiles). We will call
this method Electre Tri-C. Therefore, the well-known method called up to now Elec-

tre Tri based on boundary actions will be designated here by Electre Tri-B. After
setting the interest of this new sorting method, we introduce the assumptions and struc-
tural requirements which seem natural to be fulfilled by the method. Electre Tri-C

provides two assignment rules: a descending rule and an ascending rule. These rules are
quite similar to the pseudo-conjunctive rule (formerly called pessimistic) and the pseudo-
disjunctive rule (formerly called optimistic) belonging to Electre Tri-B. Therefore,
there exist differences on the assignment results which will be outlined in this paper.

Keywords: Multiple Criteria Decision Aiding, Sorting, Electre methods, Central
Reference Actions
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1 Introduction

In Multiple Criteria Decision Aiding (MCDA), the analyst can envisage the decisional
analysis according to several perspectives, or problematics, which provide an idea of what
is expected to be done with the object of a decision (i.e., the possible output) (Roy, 1996;
Bouyssou et al., 2006). One of these problematics, the sorting problem, considers a set of
categories C1, . . . , Ch, . . . , Cq, which are defined a priori by those to whom the decision
aiding is offered (i.e., the decision-makers).

The categories are defined in order to assign the objects of a decision (i.e., the actions).
These actions can be credit demand files, patients waiting for treatment, risk zones, or
R&D projects, among the many possibilities, and are subject to treatment or analysis
depending on the category to which they are assigned. A credit demand file can be
accepted without additional information, accepted subject to additional information, sent
to a particular department for further analysis, rejected under certain conditions, or
rejected with no conditions at all. Or, based on a set of exams, a patient can be subject to
a certain type of medical treatment among those defined a priori for the set of pathologies
studied. Thus, the set of categories emerges naturally from the decision-aiding context
through a process of interaction with the decision-makers.

Many outranking based sorting procedures have been proposed, such as the tricho-
tomic segmentation procedure (Moscarola and Roy, 1977), N-Tomic (Massaglia and
Ostanello, 1991), filtering based procedures (Perny, 1998), Proaftn (Belacel, 2000),
Trinomfc (Léger and Martel, 2002), multi-profile trichotomic procedure (Norese and
Viale, 2002), Iris (Dias et al., 2002b; Dias and Mousseau, 2003), PairClas (Doumpos
and Zopounidis, 2004), Smaa-Tri (Tervonen et al., 2007), and a variant of Electre

Tri based on “central” profiles (Nemery, 2008) which is significantly different from our
approach. However, Electre Tri (Yu, 1992; Roy and Bouyssou, 1993) is still currently
one of the most used procedures in MCDA for dealing with the sorting problem, with
many applications having been analyzed with Electre Tri over the last fifteen years
(see Dimitras et al., 1995; Arondel and Girardin, 2000; Raju et al., 2000; Joerin et al.,
2001; Georgopoulou et al., 2003; Merad et al., 2004; André and Roy, 2007).

In Electre Tri the categories are assumed to be ordered from the “worst”, C1

(e.g., the one that contains the worst actions, the lowest priority actions, the most risky
actions) to the “best”, Cq, where q ≥ 2 (e.g., the one that contains the best actions, the
highest priority actions, the least risky actions). Boundary actions are defined to mark
the frontiers between two consecutive ordered categories. Each category is, therefore,
delimited by a lower and an upper boundary action. These boundary actions are defined
through reference actions that can be realistic or unrealistic. They can be defined either
by direct interaction with the decision-maker or by using an aggregation/disaggregation
procedure in order to elicit the boundary actions that allow a correct assignment of some
training actions previously assigned by the decision-maker to the categories (see Mousseau
and S lowiński, 1998; Ngo The and Mousseau, 2002; Dias et al., 2002a; Doumpos and
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Zopounidis, 2002; Mousseau and Dias, 2004; Doumpos and Zopounidis, 2007).
Defining reference actions is often a very hard task. This is particularly the case when

the decision-maker has a fuzzy idea of the frontier between two consecutive categories.
In order to improve the interaction with the decision-maker, the difficulties that may
occur of setting boundary actions led us to apprehend the categories by defining central
reference actions, where the frontiers between two consecutive categories are not explicitly
defined. The procedure proposed in this paper, designated Electre Tri-C, is intended
to achieve this goal. Therefore, the well-known method based on boundary actions called
up to now Electre Tri will be designated here by Electre Tri-B.

Electre Tri-C is, therefore, a new assignment procedure. Like Electre Tri-B,
it assumes that each action to be considered for an assignment to a certain category is
evaluated on a coherent family of criteria g1, . . . , gj, . . . , gn. The assignment of an action
only takes into account the intrinsic evaluation of this action on all the criteria and does
not depend on nor influence the category to which another action should be assigned.
The actions to be assigned are not compared to reference actions that define a lower and
an upper bound of the category, but instead are compared to reference actions that we
call “central”. To perform this new kind of actions comparison, the same outranking
credibility indices used in Electre Tri-B are used as they were originally defined (i.e.,
the same as in Electre III; see, Roy and Bouyssou, 1993).

The rest of this paper is organized as follows. Section 2 introduces and reviews the
concepts, definitions, and notation related to the outranking credibility indices. Section 3
is devoted to the proposed Electre Tri-C method which contains the basic assumptions
and the two assignment rules. Section 4 presents the properties of the Electre Tri-C

assignment rules. Section 5 presents an overview of Electre Tri-B and a comparison
between Electre Tri-C and Electre Tri-B. Section 6 provides a numerical example
of Electre Tri-C. Section 7 presents some additional results such as the comparison of
the two Electre Tri-C assignment rules. Finally, the last section offers our concluding
remarks and some avenues for future research.

2 The credibility index: Definitions and notation

Let a1, a2, . . . denote the potential actions. The set of such actions, A, can be partially
known a priori, and the actions can appear progressively during the decision aiding
process. The objective is to assign the actions to a set of ordered categories C1, . . ., Ch,
. . ., Cq, with q ≥ 2, the nature of which was provided in the previous section. Suppose
that a coherent family F of n criteria g1, . . . , gj, . . . , gn, with n ≥ 2, has been defined in
order to evaluate any action considered for assignment to a certain category.

Let us consider the criterion gj ∈ F and two actions a and a′. Taking into account the
preference direction of this criterion, the advantage of action a over action a′ is defined as
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follows:

Ωj(a, a′) =

{
gj(a) − gj(a

′) if gj is to be maximized
gj(a

′) − gj(a) if gj is to be minimized
(2.1)

Below, each criterion gj will be considered as a pseudo-criterion, which means that two
thresholds are associated to gj: an indifference threshold, qj , and a preference threshold,
pj , such that pj ≥ qj ≥ 0. These thresholds are introduced in order to take into account
the imperfect character of the data from the computation of the performances gj(a) as
well as the arbitrariness that affects the definition of the criteria. Based on the definition
of such thresholds, their values should be interpreted as follows:

1) |Ωj(a, a′)| ≤ qj represents a non-significant advantage of a over a′, meaning that a

is indifferent to a′ according to gj, denoted aIja
′.

2) Ωj(a, a′) > pj represents a significant advantage of a over a′, meaning that a is
strictly preferred to a′ according to gj, denoted aPja

′.

3) qj < Ωj(a, a′) ≤ pj represents an ambiguity zone. The advantage of a over a′ is a
little large to conclude about an indifference between a and a′, but this advantage
is not enough to conclude about a strict preference in favour of a. This means that
there is a hesitation between indifference and strict preference. In such a case, a is
weakly preferred to a′, denoted aQja

′.

Let us notice that qj can be null and/or equal to pj .
The indifference and preference have been presented as constants. However, in prac-

tice, they can vary according to the performances gj(a) or gj(a
′). In order to simplify

the Electre Tri-C method the basic formulae (2.2) and (2.6) have been written with
constants thresholds. The way to generalized these formulae for taking into account vari-
able thresholds, which is often absolutely required in several Case Studies, is analyzed in
the Appendix A.1 (for more details, see Roy and Vincke, 1984 and Roy, 1996, p. 184-194).

When using the outranking concept, the main idea is that an action a outranks an
action a′ according to the criterion gj (denoted aSja

′) if a is judged at least as good as
a′ on the criterion gj. This is true without ambiguity when Ωj(a, a′) ≥ −qj . But, when
−pj ≤ Ωj(a, a′) < −qj , the possibility of indifference between a and a′ cannot be excluded.
This indifference is less and less credible when Ωj(a, a′) moves closer to −pj . From this
point of view, the credibility indices cj(a, a′), or the partial concordance indices, of an
outranking of a over a′ are defined as follows:

cj(a, a′) =






0 if Ωj(a, a′) ≤ −pj
Ωj(a,a′) + pj

pj − qj
if −pj < Ωj(a, a′) < −qj

1 if Ωj(a, a′) ≥ −qj

(2.2)

Let us notice that despite the way the value of cj(a, a′) is modeled within the “small
range” [−pj ,−qj [, this value is only related to the ordinal definition of the criterion gj.
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Finally, the credibility of the comprehensive outranking of a over a′, meaning that a

may be judged at least as good as a′ when taking all the criteria from F into account, is
defined as follows. Let σ(a, a′) denote such a credibility index.

σ(a, a′) = c(a, a′)

n∏

j=1

Tj(a, a′) (2.3)

where

Tj(a, a′) =

{
1 − dj(a,a′)

1 − c(a,a′)
if dj(a, a′) > c(a, a′)

1 otherwise
(2.4)

This credibility index aggregates a comprehensive concordance index, c(a, a′), and the
partial discordance indices, dj(a, a′), j = 1, . . . , n. These two types of indices make use
of two more parameters associated with each criterion gj, j = 1, . . . , n: the weights,
denoted wj , where wj > 0, and the veto thresholds, denoted vj , such that vj ≥ pj. When
using variable thresholds, see the Appendix A.1 for more details. In the following, assume
without loss of generality, that

∑n

j=1 wj = 1.

c(a, a′) =
n∑

j=1

wj cj(a, a′) (2.5)

dj(a, a′) =






0 if Ωj(a, a′) ≥ −pj
Ωj(a,a′) + pj

pj − vj
if −vj < Ωj(a, a′) < −pj

1 if Ωj(a, a′) ≤ −vj

(2.6)

See, for example, (Roy, 1991; Yu, 1992; Roy and Bouyssou, 1993) for more details
about the original formulae as well as their interpretations. Different variants, or exten-
sions, for such indices have been proposed without changing the fundamental properties
(see, for example, Mousseau and Dias, 2004; Figueira et al., 2006; Roy and S lowiński,
2008). The definitions and results presented in the next sections remain valid with these
variants, or extensions.

3 Problem statement and assignment rules

The aim of this section is to present the Electre Tri-C method, including the basic
assumptions, the structural requirements, and the assignment rules.

3.1 Basic assumptions and structural requirements

Let bh denote a central reference action introduced to characterize category Ch. Assume
that the actions bh, h = 1, . . . , q, have been defined through an interaction procedure with

7



the decision-maker. Notice that C1 is the worst category and Cq the best one, with q ≥ 2.
Therefore, let B = {b0, b1, . . . , bh, . . . , bq, bq+1} denote the set of (q + 2) reference actions,
where b0 and bq+1 are two particular reference actions defined as follows: gj(b0) is the
worst possible performance on criterion gj, and gj(bq+1) is the best possible performance
on the same criterion gj, for all gj ∈ F .

Consider two reference actions, bh and bh+1. According to the ordered character of
the categories, it does not seem restrictive to assume that bh+1 strictly dominates bh. Let
bh+1∆F bh denote the (strict) dominance relation, such that

∀j, Ωj(bh+1, bh) ≥ 0 and ∃j, Ωj(bh+1, bh) > 0; h = 0, . . . , q (3.7)

However, the intuition lead us to think that if Ωj(bh+1, bh) is too small with respect
to the indifference and preference thresholds, there is the possibility of having a certain
ambiguity on the assignment of some actions to categories Ch and Ch+1. It will be proved
in Section 4 that this is true for Electre Tri-C when the following condition is not
verified.

Condition 1 (Strict separability)
The set of reference actions, B, fulfills the strict separability condition if and only if

Ωj(bh+1, bh) > pj , j = 1, . . . , n; h = 0, . . . , q (3.8)

When using variable thresholds, see the Appendix A.1 for more details. If the strict
separability condition holds, then cj(bh+1, bh) = 1 and cj(bh, bh+1) = 0, for all gj ∈ F .
Since there is no discordance on all criteria, σ(bh+1, bh) = 1 and σ(bh, bh+1) = 0.

For further analysis of the impact of the (strict) dominance relation and the strict
separability condition on the results as well as the consistency of the assignment rules
based on central reference actions, it seems natural to introduce the following structural
requirements.

Definition 1 (Structural requirements)

1) Conformity: Each central reference action, bh, must be assigned to the category, Ch,
h = 1, . . . , q.

2) Monotonicity: If an action a strictly dominates a′, then a is assigned to a category
at least as good as the category a′ is assigned to.

3) Homogeneity: Two actions must be assigned to the same category when they compare
themselves in an identical manner with respect to the reference actions.

4) Stability: After a modification of the set B by applying either a merging or a splitting
procedure (see Definition 2), the non-adjacent categories to the modified ones will
remain with the same actions as before the modification. More precisely:
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a) After merging two consecutive categories, any action a previously assigned to
the non-modified categories will remain in the same category. Moreover, the
actions previously assigned to the merged categories will be assigned either to
the new category or to one of the two adjacent categories.

b) After splitting the category Ch into two new consecutive categories, any action
that was not previously assigned to Ch+1 nor to Ch−1 will remain in the same
category. Furthermore, the actions previously assigned to the former category
Ch will be assigned to one of the two new categories. Moreover, an action
previously assigned to Ch+1 will be assigned either to the same category or to
the best of the two new categories. Similarly, an action previously assigned to
Ch−1 will be assigned either to the same category or to the worst of the two new
categories.

Definition 2 (Basic modification procedures)

1) Merging procedure: The distinction between two consecutive categories, Ch−1 and
Ch, will be ignored by introducing a new central reference action, b′h, such that
Ωj(b

′

h, bh−1) ≥ 0 and Ωj(bh, b
′

h) ≥ 0, for all gj ∈ F .

2) Splitting procedure: The category Ch will be split into two new consecutive categories
by introducing two new central reference actions, b′h and b′′h, such that bh+1 strictly
dominates b′′h, b′′h strictly dominates b′h, b′h strictly dominates bh−1, Ωj(b

′′

h, bh) ≥ 0,
and Ωj(bh, b

′

h) ≥ 0, for all gj ∈ F .

It should be noticed that adding or removing a category are particular cases of these
two basic procedures.

3.2 Electre Tri-C assignment rules

As for the definition of the assignment rules, it is useful to introduce the concept of
slackness functions as well as the related properties as follows.

Definition 3 (Slackness functions)
Let λ ∈ [0.5, 1] denote the chosen majority level:

1) Direct slackness function: ξ+
h (a, λ) = σ(a, bh) − λ, h = (q + 1), . . . , 0.

2) Reverse slackness function: ξ−h (a, λ) = σ(bh, a) − λ, h = 0, . . . , (q + 1).

Proposition 1

a) The direct slackness function does not decrease when moving from a given category to
a worst one.

b) The reverse slackness function does not decrease when moving from a given category
to a best one.
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Proof

a) When moving from a given category to a worst one, the direct slackness function
ξ+
h (a, λ) does not decrease because the credibility indices σ(a, bh) are non-increasing

functions on the set B.

b) When moving from a given category to a best one, the reverse slackness function
ξ−h (a, λ) does not decrease because the credibility indices σ(bh, a) are non-decreasing
functions on the set B. 2

Therefore, two assignment rules for Electre Tri-C are defined as follows.

Definition 4 (Descending assignment rule)
Choose a majority level λ (0.5 ≤ λ ≤ 1). Decrease h from (q + 1) until the first value
t such that ξ+

t (a, λ) ≥ 0. If t > 0 and ξ+
t (a, λ) ≤ |ξ+

t+1(a, λ)|, then assign action a to
category Ct. Otherwise, assign a to Ct+1.

Taking into account that for all a, ξ+
q+1(a, λ) < 0 and ξ+

0 (a, λ) ≥ 0, according to
Proposition 1.a there exists necessarily a value t such that ξ+

t (a, λ) ≥ 0 and ξ+
t+1(a, λ) < 0.

Thus, any action a is assigned to a unique category by the descending rule.

Definition 5 (Ascending assignment rule)
Choose a majority level λ (0.5 ≤ λ ≤ 1). Increase h from 0 until the first value t such that
ξ−t (a, λ) ≥ 0. If t < (q + 1) and ξ−t (a, λ) ≤ |ξ−t−1(a, λ)|, then assign action a to category
Ct. Otherwise, assign a to Ct−1.

Taking into account that for all a, ξ−0 (a, λ) < 0 and ξ−q+1(a, λ) ≥ 0, according to
Proposition 1.b there exists necessarily a value t such that ξ−t (a, λ) ≥ 0 and ξ−t−1(a, λ) < 0.
Thus, any action a is assigned to a unique category by the ascending rule.

Notice that the assignment of a potential action a is independent from any others.

Remark 1 (A mirror equivalence)
Let F ∗ denote the coherent family of criteria g∗

j obtained from gj through the inversion of
the preference direction, for j = 1, . . . , n. Let σ∗(a, bh) and ξ∗+h (a, λ) denote the credibility
indices and the direct slackness functions, respectively. It is trivial to verify that, for all
a and bh:

1) σ∗(a, bh) = σ(bh, a)

2) ξ∗+h (a, λ) = ξ−h (a, λ)
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When using the new family of criteria, F ∗, the category C1 becomes the best cate-
gory and Cq the worst one. Let C∗

h = Cq+1−h, for h = 1, . . . , q, and b∗h = bq+1−h, for
h = 0, . . . , (q + 1). When the Electre Tri-C descending rule is applied to these new
categories, the direct slackness function ξ∗+h (a, λ) is used as the reverse slackness function
ξ−h (a, λ) in the Electre Tri-C ascending rule when this method is applied to the initial
categories.

This equivalence shows a way to replace the descending rule by the ascending rule. It
will be referred in what follows as a “transposition in the mirror”.

4 Properties of the assignment rules

The aim of this section is to analyze the properties of the Electre Tri-C assignment
rules according to the conditions imposed to the set of reference actions, B.

Theorem 1

a) The monotonicity, homogeneity, and stability requirements hold.

b) If the strict separability condition is fulfilled, then the conformity requirement holds.

The following proof is done for the descending rule. It remains valid for the ascending
rule by the transposition in the mirror (see Remark 1).

Proof

a.1) Monotonicity: a∆F a′ ⇒ ξ+
k (a, λ) ≥ ξ+

k (a′, λ), k = q, . . . , 1. Therefore, according to
the descending rule if h is the first value of k such that ξ+

k (a, λ) ≥ 0 and h′ the first
value of k such that ξ+

k (a′, λ) ≥ 0, then one necessarily has h ≥ h′. If h > h′, then
a is assigned either to the same category as a′ is assigned to or to a better category.
If h = h′, then the monotonicity would not be verified only when a is assigned
to Ch and a′ is assigned to Ch+1. Let us prove that this is impossible. Action
a′ is assigned to Ch+1 if and only if ξ+

h (a′, λ) > |ξ+
h+1(a

′, λ)|. Since ξ+
h (a′, λ) =

σ(a′, bh) − λ and |ξ+
h+1(a

′, λ)| = λ − σ(a′, bh+1), then σ(a′, bh) + σ(a′, bh+1) > 2λ.
Similarly, a is assigned to Ch if and only if σ(a, bh) + σ(a, bh+1) ≤ 2λ. Therefore,
σ(a, bh) + σ(a, bh+1) ≤ 2λ < σ(a′, bh) + σ(a′, bh+1). This is impossible because a∆F a′

means that σ(a, bh) ≥ σ(a′, bh) and σ(a, bh+1) ≥ σ(a′, bh+1).

a.2) Homogeneity: By definition two different actions, a and a′, are compared themselves
in an identical manner with the reference actions if and only if the following condi-
tions are verified: σ(a, bh) = σ(a′, bh) and σ(bh, a) = σ(bh, a

′), for all h = 1, . . . , q.
Therefore, the homogeneity condition is verified because the assignment of an action
a to a category Ch by the descending rule only depends on σ(a, bh).
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a.3) Stability under a merging procedure: Assume that the consecutive categories Ch−1

and Ch are merged into only one category, denoted C ′

h. Let b′h denote the central
reference action introduced to characterize the new category C ′

h. From the conditions
imposed to b′h according to the merging procedure (Definition 2.1), the new set B′

obtained from B by replacing bh and bh−1 to b′h leads to bh+1∆F b′h and b′h∆F bh−2.
According to the descending rule, we will prove successively that:

1) If a was previously assigned to category Ck, k ≥ (h + 1), then a will be assigned
to the same category, after modification.

2) If a was previously assigned to category Ck, k ≤ (h − 2), then a will be assigned
to the same category, after modification.

3) If a was previously assigned either to Ch or Ch−1, then a will be assigned either
to the new category C ′

h or to one of the two adjacent categories to the modified
ones, i.e., Ch−2 and Ch+1, after modification.

Let us prove these three cases:

1) Any action a such that ξ+
h+1(a, λ) ≥ 0 is assigned to one category Ck, k ≥

(h + 1). It is clear that a merging procedure does not change the assignment
of a. Thus, on the one hand, a was previously assigned to Ck, k > (h + 1)
if and only if ξ+

h+1(a, λ) ≥ 0. On the other hand, a could have been assigned
to Ch+1 with ξ+

h+1(a, λ) < 0 when ξ+
h (a, λ) > |ξ+

h+1(a, λ)|. Let us prove that
according to these conditions a remains assigned to Ch+1 after modification. Let
ξ′+h (a, λ) = σ(a, b′h)−λ. After modification a will be assigned to Ch+1 if and only
if ξ′+h (a, λ) > |ξ+

h+1(a, λ)|. This inequality is necessarily verified since ξ′+h (a, λ) ≥
ξ+
h (a, λ) because Ωj(bh, b

′

h) ≥ 0 ⇒ σ(a, b′h) ≥ σ(a, bh).

2) Any action a such that ξ+
h−2(a, λ) < 0 is assigned to one category Ck, k ≤ (h−2).

It is clear that a merging procedure does not change the assignment of a. Thus,
on the one hand, a was previously assigned to Ck, k < (h − 2) if and only if
ξ+
h−2(a, λ) < 0. On the other hand, a could have been assigned to Ch−2 with

ξ+
h−2(a, λ) ≥ 0 when ξ+

h−1(a, λ) < 0 and ξ+
h−2(a, λ) ≤ |ξ+

h−1(a, λ)|. Let us prove
that according to these conditions a remains assigned to Ch−2 after modification.
Since Ωj(b

′

h, bh−1) ≥ 0 one obtains σ(a, b′h) ≤ σ(a, bh−1). Thus, ξ′+h (a, λ) ≤
ξ+
h−1(a, λ). This latter quantity being negative, then |ξ′+h (a, λ)| ≥ |ξ+

h−1(a, λ)|.
Therefore, ξ+

h−2(a, λ) ≤ |ξ′+h (a, λ)|, which proves that a will remain assigned to
category Ch−2, after modification.

3) From the two above paragraphs, only the actions previously assigned to the former
categories Ch−1 and Ch could be assigned to the new category C ′

h after modifi-
cation. But, nothing proves that all of those actions are assigned to the new
category. Some of them can be assigned to one of the two adjacent categories (if
they exist), Ch−2 and Ch+1, after modification.
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i) Consider an action a previously assigned to Ch−1 with ξ+
h−1(a, λ) < 0 and

ξ+
h−2(a, λ) > |ξ+

h−1(a, λ)|. From 2), according to these conditions, |ξ′+h (a, λ)| ≥
|ξ+

h−1(a, λ)|. Thus, an action a can verify the following condition: |ξ′+h (a, λ)| >

ξ+
h−2(a, λ). In such a case, a will be assigned to Ch−2 after modification.

ii) Consider an action a previously assigned to Ch with ξ+
h (a, λ) ≥ 0 and

ξ+
h (a, λ) ≤ |ξ+

h+1(a, λ)|. Since Ωj(bh, b
′

h) ≥ 0 one obtains σ(a, b′h) ≥ σ(a, bh).
Thus, ξ′+h (a, λ) ≥ ξ+

h (a, λ). This latter quantity being positive, the follow-
ing condition can hold: ξ′+h (a, λ) > |ξ+

h+1(a, λ)|. In such a case, a will be
assigned to Ch+1 after modification.

a.4) Stability under a splitting procedure: Assume that the category Ch is split into two
new consecutive categories, denoted C ′

h and C ′′

h . Let b′h denote the central reference
action introduced to characterize the worst of the two new categories, C ′

h, and b′′h the
central reference action introduced to characterize the best of the two new categories,
C ′′

h . According to the descending rule, we will prove successively that:

1) If a was previously assigned to Ck, k 6= {h− 1, h, h + 1}, then a will be assigned
to the same category, after modification.

2) If a was previously assigned to the former category Ch, then a will be assigned
to one of the new categories, C ′

h or C ′′

h, after modification.

3) If a was previously assigned to Ch+1, then a will be assigned either to the same
category or to the best of the two new categories, C ′′

h, after modification.

4) If a was previously assigned to Ch−1, then a will be assigned either to the same
category or to the worst of the two new categories, C ′

h, after modification.

Let us prove these four cases:

1) The proof is similar to the first two cases of the merging procedure, when a was
previously assigned either to category Ck, k ≥ (h + 2) or to Ck, k ≤ (h − 2).

2) Consider an action previously assigned to Ch. The following two cases must be
analyzed:

i) ξ+
h (a, λ) ≥ 0 and ξ+

h+1(a, λ) < 0, when ξ+
h (a, λ) ≤ |ξ+

h+1(a, λ)|. Since
Ωj(b

′′

h, bh) ≥ 0 one obtains ξ′′+h (a, λ) ≤ ξ+
h (a, λ). Since Ωj(bh+1, b

′′

h) ≥ 0 one
obtains ξ+

h+1(a, λ) ≤ ξ′′+h (a, λ). Therefore, ξ+
h+1(a, λ) ≤ ξ′′+h (a, λ) ≤ ξ+

h (a, λ).
When ξ′′+h (a, λ) ≥ 0, if ξ′′+h (a, λ) ≤ |ξ+

h+1(a, λ)|, then a will be assigned to
C ′′

h, after modification. Otherwise, if ξ′′+h (a, λ) < 0, then a will be assigned
at most to C ′′

h.

ii) ξ+
h (a, λ) < 0 and ξ+

h−1(a, λ) ≥ 0, when ξ+
h−1(a, λ) > |ξ+

h (a, λ)|. Since
Ωj(bh, b

′

h) ≥ 0 one obtains ξ′+h (a, λ) ≥ ξ+
h (a, λ). Since Ωj(b

′

h, bh−1) ≥ 0 one
obtains ξ′+h (a, λ) ≤ ξ+

h−1(a, λ). Therefore, ξ+
h (a, λ) ≤ ξ′+h (a, λ) ≤ ξ+

h−1(a, λ).

13



When ξ+
h−1(a, λ) < 0, if ξ+

h−1(a, λ) > |ξ′+h (a, λ)|, then a will be assigned to
C ′

h, after modification. Otherwise, if ξ′+h (a, λ) ≥ 0, then a will be assigned
at least to C ′

h.

3) Consider an action previously assigned to Ch+1. The following two cases must
be analyzed:

i) ξ+
h+1(a, λ) ≥ 0 and ξ+

h+2(a, λ) < 0, when ξ+
h+1(a, λ) ≤ |ξ+

h+2(a, λ)|. In such
a case, it is trivial to verify that a will remain in the same category, after
modification.

ii) ξ+
h+1(a, λ) < 0 and ξ+

h (a, λ) ≥ 0, when ξ+
h (a, λ) > |ξ+

h+1(a, λ)|. From 2.i) with
the same conditions it was proved that ξ+

h+1(a, λ) ≤ ξ′′+h (a, λ) ≤ ξ+
h (a, λ).

According to these inequalities the following condition holds: ξ′′+h (a, λ) ≤
|ξ+

h+1(a, λ)|. In such a case, a will be assigned to category C ′′

h .

4) Consider an action previously assigned to Ch−1. The following two cases must
be analyzed:

i) ξ+
h−1(a, λ) ≥ 0 and ξ+

h (a, λ) < 0, when ξ+
h−1(a, λ) ≤ |ξ+

h (a, λ)| From 2.ii) with
the same conditions it was proved that ξ+

h (a, λ) ≤ ξ′+h (a, λ) ≤ ξ+
h−1(a, λ).

According to these inequalities, the following condition holds: ξ+
h−1(a, λ) >

|ξ′+h (a, λ)|. In such a case, a will be assigned to category C ′

h.

ii) ξ+
h−1(a, λ) < 0 and ξ+

h−2(a, λ) ≥ 0, when ξ+
h−2(a, λ) > |ξ+

h−1(a, λ)|. In such
a case, it is trivial to verify that a will remain in the same category, after
modification.

b) Conformity: Assume that the strict separability condition holds. By construction
of the credibility indices: σ(bh, bh) = 1, σ(bh+1, bh) = 1, and σ(bh, bh+1) = 0, for
all h = 0, . . . , q. Therefore, from the direct slackness function (Definition 3.1)
ξ+
h (bh, λ) = 1 − λ ≥ 0 and ξ+

h+1(bh, λ) = −λ < 0. When applying the descending
rule, each central reference action bh is assigned to Ch if and only if ξ+

h (bh, λ) ≤
|ξ+

h+1(bh, λ)| which is equivalent to 1− λ ≤ λ. This is true because λ ≥ 1
2
. Thus, the

conformity of the reference actions is always verified. 2

The decision-maker can have some good reasons to introduce a set of reference actions,
B, that does not fulfill the strict separability condition, for certain ordered pairs (bh+1, bh).
As noticed in Section 3.1, when considering the possible minimum differences in the
performances, the strict dominance condition is not enough to clearly separate the cate-
gories. Indeed, the weak separability condition below defines the minimum differences in
the performances which seem to us adequate to impose between two consecutive central
reference actions.
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Condition 2 (Weak separability)
The set of reference actions, B, fulfills the weak separability condition if and only if

∀j, Ωj(bh+1, bh) ≥ 0 and ∃j, Ωj(bh+1, bh) > pj ; h = 0, . . . , q. (4.9)

When using variable thresholds, see the appendix A.1 for more details. The weak
separability condition allows the existence of some criteria gj such that 0 ≤ Ωj(bh+1, bh) ≤
pj . In such criteria, one obtains cj(bh+1, bh) = 1 and cj(bh, bh+1) ≤ 1. Therefore, as there
is no discordance, if the weak separability condition is fulfilled, then σ(bh+1, bh) = 1
and σ(bh, bh+1) ≤ 1. As noticed in Section 3.1, when the strict separability condition is
fulfilled, then σ(bh+1, bh) = 1 and σ(bh, bh+1) = 0.

According to Theorem 1, the conformity requirement holds if the strict separability
condition is fulfilled. Let us analyze in which conditions such a requirement holds when
the strict separability condition is not fulfilled. Indeed, when the conformity requirement
does not hold, the assignment model becomes inconsistent and, therefore, it is not able
to support the assignment of the potential actions.

Theorem 2
If the weak separability condition is fulfilled, then there exists a compatible majority level,
λc, for which the conformity requirement holds, whenever the chosen majority level λ ≥ λc,
such that

λc =
1

2
+

1

2
max

h = 0, ..., q

{
σ(bh, bh+1)

}
(4.10)

The proof is done for the descending rule. It remains valid for the ascending rule by
the transposition in the mirror (see Remark 1).

Proof According to the descending rule σ(bh, bh) = 1 ⇒ ξ+
h (bh, λ) = 1− λ ≥ 0 and bh is

assigned to a category at least as good as Ch. The central reference action bh is assigned
to Ch if and only if ξ+

h+1(bh, λ) = σ(bh, bh+1) − λ < 0 and ξ+
h (bh, λ) ≤ |ξ+

h+1(bh, λ)| which
are equivalent to the following two inequalities:

λ > σ(bh, bh+1) and 1 − λ ≤ λ − σ(bh, bh+1) (4.11)

We have shown above that with the weak separability condition one obtains σ(bh, bh+1) < 1.
It follows that

1

2
+

1

2
σ(bh, bh+1) ≥ σ(bh, bh+1) (4.12)

Therefore, if the second inequality of 4.11 is true, then the first one is also true, and
consequently bh is assigned to Ch. Taking all central reference actions bh, h = 1, . . . , q,
into account, the conformity requirement holds if and only if

λ ≥
1

2
+

1

2
max

h = 0, ..., q

{
σ(bh, bh+1)

}
(4.13)

2
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Let us analyze the impact of the two separability conditions on the two basic modifi-
cation procedures defined for the stability requirement (Definition 2):

1) Let B denote a set of reference actions emerged from a practical situation with a
compatible conformity majority level λc, and λ denote the chosen majority level
such that λ ≥ λc. The value of λ will remain at least as good as λ′c, where λ′c is
the conformity majority level associated with B′ obtained after applying a merging
procedure (see a.3 in the Proof of Theorem 1).

2) The splitting procedure can provide different conclusions in comparison with the
merging procedure (see a.4 in the Proof of Theorem 1). Indeed, after applying
a splitting procedure, if λ < λ′c, then the conformity requirement does not hold.
Therefore, one can easily prove that:

- according to the descending procedure, b′h can be assigned to C ′′

h instead of C ′

h.

- according to the ascending procedure, b′′h can be assigned to C ′

h instead of C ′′

h .

Remark 2
When comparing an action a to the reference actions bh, h = 0, 1, . . . , (q + 1), it is also
useful to analyze the set of reference actions, B, as follows:

1) If ξ+
q (a, λ) ≥ 0, then the action a is assigned to Cq by the Electre Tri-C descend-

ing rule. This means that the action a is judged “very good” in comparison to all
central reference actions in B. Moreover, if the actions are systematically assigned
to Cq, then a deeply analysis must be done in order to conclude about the under-
evaluation of the set B, or to assume that all potential actions are really very good.

2) If ξ−1 (a, λ) ≥ 0, then the action a is assigned to C1 by the Electre Tri-C ascending
rule. This means that the action a is judged “very poor” in comparison to all central
reference actions in B. Moreover, if the actions are systematically assigned to C1,
then a deeply analysis must be done in order to conclude about the over-evaluation
of the set B, or to assume that all potential actions are really very poor.

3) From the two above cases, when a deeply analysis is required we can start to choose a
different majority level, if possible, since the previous one has been chosen too high.

16



5 Comparison with Electre Tri-B

This section presents an overview of Electre Tri-B and a comparison between the
Electre Tri-C and Electre Tri-B assignment results.

5.1 An overview of Electre Tri-B

According to (Yu, 1992) and (Roy and Bouyssou, 1993, p. 389-401), the assignment of
an action a by Electre Tri-B is based on pairwise comparisons between the action
a and the boundary actions which characterize the pre-defined and ordered categories.
The set of such categories is denoted here Ĉ = {Ĉ1, . . ., Ĉh, . . ., Ĉq}, where Ĉ1 is the

worst category and Ĉq is the best one, with q ≥ 2. Each category Ĉh is defined by a

lower boundary action, b̂h−1, and an upper boundary action, b̂h, such that b̂h∆F b̂h−1,
h = 1, . . . , q. Let B̂ = {b̂0, b̂1, . . ., b̂h, . . ., b̂q} denote the set of the (q + 1) boundary

actions. Furthermore, the role played by b̂0 and b̂q when using boundary actions is the
same as b0 and bq+1 with central reference actions.

When using the slackness functions (Definition 3), the most well-known assignment
rules of Electre Tri-B (formerly called pessimistic and optimistic, respectively) are
rewritten as follows. (Roy, 2002) showed that it would be suitable to replace pessimistic
by pseudo-conjunctive and optimistic by pseudo-disjunctive.

Definition 6 (Pseudo-conjunctive assignment rule)
Choose a majority level λ (0.5 ≤ λ ≤ 1). Decrease h from q until the first value such that

ξ+
h−1(a, λ) ≥ 0. Assign action a to category Ĉh.

Definition 7 (Pseudo-disjunctive assignment rule)
Choose a majority level λ (0.5 ≤ λ ≤ 1). Increase h from 0 until the first value such that

ξ−h (a, λ) ≥ 0 and ξ+
h (a, λ) < 0. Assign action a to category Ĉh.

Based on the above Electre Tri-B assignment rules, if an action a is assigned to
category Ĉk by the pseudo-conjunctive rule and to Ĉh by the pseudo-disjunctive rule, then
it was proved that k ≤ h (see Roy and Bouyssou, 1993, p. 395). Furthermore, the two
assignment rules provide the same results if and only if there is no t such that ξ+

t (a, λ) < 0
and ξ−t (a, λ) < 0 or there is at most one t such that ξ+

t (a, λ) ≥ 0 and ξ−t (a, λ) ≥ 0.

5.2 Comparing the assignment results

When applying Electre Tri-C, each category is characterized by a central reference
action. In Electre Tri-B, each category is delimited by a lower and an upper bound-
ary action. Theorem 3 allows to compare the assignment results of Electre Tri-C

and Electre Tri-B taking into account either the descending rule and the pseudo-
conjunctive rule, respectively, or the ascending rule and the pseudo-disjunctive rule,
respectively.
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Theorem 3

1) Consider (q + 2) reference actions defined to apply Electre Tri-C with q cate-
gories. When such reference actions are used as the boundary actions of the (q + 1)
categories in Electre Tri-B,

a) if an action a is assigned to Ch by the Electre Tri-C descending rule, then

a is assigned to Ĉh or Ĉh+1 by the Electre Tri-B pseudo-conjunctive rule.

b) if an action a is assigned to Ct by the Electre Tri-C ascending rule, then a

is assigned to Ĉk, with k ≥ t, by the Electre Tri-B pseudo-disjunctive rule.

2) Consider (q + 1) boundary actions defined to apply Electre Tri-B with q cate-
gories. When such boundary actions are used as the reference actions of the (q − 1)
categories in Electre Tri-C,

a) if an action a is assigned to Ĉh by the Electre Tri-B pseudo-conjunctive
rule, then a is assigned to Ch or Ch−1 by the Electre Tri-C descending
rule.

b) if an action a is assigned to Ĉt by the Electre Tri-B pseudo-disjunctive rule,
then a is assigned to Ck, with k ≤ t, by the Electre Tri-C ascending rule.

Proof

1) Assume that the (q + 2) reference actions were defined.

a) When applying the Electre Tri-C descending rule (Definition 4), an action
a is assigned to Ch if one of the two following cases holds. First, ξ+

h (a, λ) ≤
|ξ+

h+1(a, λ)|, with ξ+
h (a, λ) ≥ 0 and ξ+

h+1(a, λ) < 0. In such a case, a is assigned

to Ĉh+1 according to the Electre Tri-B pseudo-conjunctive rule (Defini-
tion 6). Second, ξ+

h−1(a, λ) > |ξ+
h (a, λ)|, with ξ+

h−1(a, λ) ≥ 0 and ξ+
h (a, λ) < 0.

In such a case, a is assigned to Ĉh according to the Electre Tri-B pseudo-
conjunctive rule.

b) When applying the Electre Tri-C ascending rule (Definition 5), an action
a is assigned to Ct if one of the following two cases holds. First, ξ−t (a, λ) ≤
|ξ−t−1(a, λ)|, with ξ−t (a, λ) ≥ 0 and ξ−t−1(a, λ) < 0. In such a case, accord-
ing to the Electre Tri-B pseudo-disjunctive rule (Definition 7), on the one

hand if ξ+
t (a, λ) < 0, then a is assigned to Ĉt, but on the other hand if there

exist p central reference actions such that ξ+
t+s(a, λ) ≥ 0, s = 0, . . . , (p − 1),

then a is assigned to Ĉt+p. Second, ξ−t+1(a, λ) > |ξ−t (a, λ)|, with ξ−t+1(a, λ) ≥ 0
and ξ−t (a, λ) < 0. In such a case, according to the Electre Tri-B pseudo-
disjunctive rule, on the one hand if ξ+

t+1(a, λ) < 0, then a is assigned to

Ĉt+1, but on the other hand if there exist p central reference actions such that
ξ+
t+s+1(a, λ) ≥ 0, s = 0, . . . , (p − 1), then a is assigned to Ĉt+p+1.
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2) Assume that the (q + 1) boundary actions were defined.

a) According to the Electre Tri-B pseudo-conjunctive rule (Definition 6), an

action a is assigned to Ĉh if, for the highest h, ξ+
h−1(a, λ) ≥ 0. Furthermore,

ξ+
h (a, λ) < 0. Thus, from the Electre Tri-C descending rule (Definition 4),

if ξ+
h−1(a, λ) ≤ |ξ+

h (a, λ)|, then a is assigned to category Ch−1. Otherwise, a is
assigned to Ch.

b) According to the Electre Tri-B pseudo-disjunctive rule (Definition 7), an

action a is assigned to Ĉt if, for the lowest t, ξ−t (a, λ) ≥ 0 and ξ+
t (a, λ) < 0.

Thus, if ξ−t−1(a, λ) < 0, then, according to the Electre Tri-C ascending rule
(Definition 5), if ξ−t (a, λ) ≤ |ξ−t−1(a, λ)|, then a is assigned to category Ct, or to
Ct−1, otherwise. When there exist p boundary actions such that ξ−t−s−1(a, λ) ≥ 0
and ξ+

t−s−1(a, λ) ≥ 0, s = 0, . . . , (p − 1), according to the Electre Tri-C

ascending rule, if ξ−t−s−1(a, λ) ≤ |ξ−t−s−2(a, λ)|, then a is assigned to category
Ct−s−1. Otherwise, a is assigned to Ct−s−2. 2

6 A numerical example

This section presents the assignment results provided by the Electre Tri-C and Elec-

tre Tri-B methods. This numerical example is based on a Case Study which concen-
trates on France’s Lorraine region, where iron has been mined for more than a century.
The underground mining tunnels have caused land subsidence, which led buildings to
collapse. The object of this study was to make a partition of a piece of land into zones
and assign such zones to pre-defined risk categories for decision concerning permanent
surveillance (Merad et al., 2004).

Four categories have been defined to apply Electre Tri-B according to a surveillance
system that should be applied to the zones assigned to each category. The zones assigned
to category Ĉ4 will be subject to a permanent monitoring system, the zones assigned to
Ĉ3 will require a deeply investigation, the zones assigned to Ĉ2 will be subject to annually
topographic surveys, and the zones assigned to Ĉ1 will need only topographic surveys.
These risk categories are ordered and separated by three boundary actions: b̂1, b̂2, and
b̂3. Since Ĉ4 is the highest risk category, b̂3 “displays a risk at least as high as” b̂2 for all
criteria. Similarly, b̂2 “displays a risk at least as high as” b̂1 for all criteria.

The data for the numerical example are composed of 10 homogeneous zones (actions),
a1, . . . , a10, which are evaluated on 10 criteria, g1, . . . , g10, and 3 boundary actions which
allow to define the 4 categories (see Tables 1, 2, and 3).
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Table 1: Definition of the criteria

Description and preference direction Parameters

Criteria Short description Direction qj pj wj

g1 Corrected mean stress applied on pillars increasing 0.05 0.1 5
g2 Existence of fault increasing 0 0 1
g3 Superimposition of pillars increasing 0 0 1
g4 Size and regularity of pillars increasing 0 0 1
g5 Sensitivity of rock to flooding increasing 0 0 5
g6 Depth of the top mined layer decreasing 10 20 1
g7 Maximum expected subsidence increasing 0.10 0.20 1
g8 Expected surface deformation increasing 0.05 0.09 20
g9 Zone extent increasing 0.5 1.0 1
g10 Vulnerability of building increasing 0 0 10

Source: Adapted from Merad et al., 2004.

Table 2: Performance matrix (potential actions)

Actions g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

a1 5.8 10 0 20 0 35 2.37 6.80 3.6 20
a2 4.8 0 40 0 0 70 1.28 1.83 0.2 10
a3 9.7 10 10 0 30 200 1.67 0.84 7.4 30
a4 10.4 10 10 10 30 203 1.68 0.83 9.0 20
a5 9.7 0 10 0 10 222 1.20 0.54 1.8 20
a6 9.8 10 0 20 0 50 1.27 2.54 6.7 20
a7 12.3 0 0 0 30 155 0.96 0.61 14.1 10
a8 11.2 10 0 0 30 180 0.71 0.39 6.4 20
a9 11.3 0 40 20 0 115 2.18 1.89 2.5 10
a10 11.0 10 0 10 30 170 0.31 0.18 2.6 20

Source: Adapted from Merad et al., 2004.

Table 3: Boundary actions

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

b̂1 8.0 0 10 10 10 190 1.00 0.63 6.0 20

b̂2 10.0 10 10 10 10 150 1.40 0.82 20.0 20

b̂3 14.0 10 40 20 20 110 1.80 1.00 35.0 30

Source: Adapted from Merad et al., 2004.

In order to illustrate the two Electre Tri-C assignment rules, assume that it is
possible to obtain four central reference actions, bh, one for each category, Ch, h = 1, . . . , 4.
This is an alternative way to define the categories. Table 4 presents the proposed central
reference actions. These actions were defined taking into account their position between
two consecutive boundary actions as well as the scale associated with each criterion as
in Merad et al., 2004.
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Table 4: Central reference actions

Actions g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

b1 7.0 0 10 10 10 210 0.80 0.53 3.0 20
b2 9.0 10 10 10 10 170 1.20 0.725 13.0 20
b3 12.0 10 40 20 20 130 1.60 0.91 27.5 30
b4 16.0 10 40 20 30 90 2.00 1.10 37.5 40

Source: Adapted from Merad et al., 2004.

The credibility indices of the comprehensive outranking of the potential actions over
the central reference actions, and vice-versa, are presented in Table 5. These indices and
the chosen majority level are used to compute both assignment results of Electre Tri-C

and Electre Tri-B methods.

Table 5: Outranking credibility (potential actions)

σ(a, bh) σ(bh, a)

Actions b1 b2 b3 b4 b1 b2 b3 b4

a1 0.7609 0.7391 0.5217 0.5217 0.4739 0.5000 0.5217 0.5217
a2 0.5217 0.5000 0.4783 0.4783 0.5000 0.5217 0.5435 0.5435
a3 0.9783 0.9348 0.5870 0.1304 0.0652 0.1087 0.8913 1.0000
a4 1.0000 0.9565 0.2609 0.1304 0.2826 0.3261 0.8913 1.0000
a5 0.9522 0.4783 0.0000 0.0000 0.8696 0.8913 1.0000 1.0000
a6 0.8696 0.8478 0.5000 0.5000 0.3478 0.4130 0.5435 0.5435
a7 0.7391 0.2609 0.2174 0.1087 0.4000 0.7500 0.7826 1.0000
a8 0.5217 0.4783 0.1304 0.1304 0.7174 0.7826 0.8913 1.0000
a9 0.6739 0.6304 0.5217 0.5000 0.3696 0.3696 0.5326 0.5478
a10 0.5217 0.5000 0.1304 0.1304 0.7391 0.7826 0.8913 1.0000

The set of central reference actions (Table 4) does not fulfil the strict separability
condition, but the weak separability condition is fulfilled since, for instance, Ωj(b2, b1) = 0,
for all j ∈ {3, 4, 5, 10}. Moreover, there are some criteria in which the difference in the
performances between two consecutive central reference actions is at least as good as the
preference thresholds. The outranking credibility indices of the central reference actions
over the same reference actions are presented in Table 6.

Table 6: Outranking credibility (central reference actions)
σ(bh, bt) b1 b2 b3 b4

b1 1.0000 0.3696 0.0000 0.0000
b2 1.0000 1.0000 0.0217 0.0217
b3 1.0000 1.0000 1.0000 0.0652
b4 1.0000 1.0000 1.0000 1.0000
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According to Theorem 2, the compatible majority level, λc, is computed from the
credibility indices of the central reference actions (Table 6). For this numerical example,
λc = 0.69. Consequently, we must choose a majority level within the range [0.69, 1] in
order to obtain a consistent assignment model. Let λ = 0.70 be the chosen majority level
for this numerical example.

When using the four central reference actions presented in Table 4 as boundary actions
defining five categories according to Theorem 3, the Electre Tri-C and Electre Tri-

B assignment results are the ones presented in Table 7. On the one hand the descending
assignment results must be compared with the pseudo-conjunctive assignment results,
and on the other hand the ascending assignment results must be compared with the
pseudo-disjunctive assignment results.

Table 7: Comparing the assignment results

Electre Tri-C Electre Tri-B

Actions Descending Ascending Pseudo-conjunctive Pseudo-disjunctive

a1 C2 C4 Ĉ3 Ĉ5

a2 C1 C4 Ĉ1 Ĉ5

a3 C3 C3 Ĉ3 Ĉ3

a4 C2 C3 Ĉ3 Ĉ3

a5 C2 C1 Ĉ2 Ĉ2

a6 C2 C4 Ĉ3 Ĉ5

a7 C1 C2 Ĉ2 Ĉ2

a8 C1 C2 Ĉ1 Ĉ1

a9 C1 C4 Ĉ1 Ĉ5

a10 C1 C1 Ĉ1 Ĉ1

Note: λ = 0.70

Observe that when b2 plays the role of a central reference action. The Electre Tri-

C descending rule leads to the assignment of actions a1, a4, a5, and a6 to category C2, i.e.
C2 = {a1, a4, a5, a6}. If we now decide that b2 plays the role of the upper boundary action

of category Ĉ2 in Electre Tri-B, b̂2 = b2, then the pseudo-conjunctive rule assigns the
same four actions to two different but consecutive categories, i.e. a5 is assigned to Ĉ2 and
a1, a4, and a6 are assigned to Ĉ3. The actions initially assigned to C2 are now shared
between Ĉ2 and Ĉ3, which clearly shows that b2 plays the role of a central reference action
in Electre Tri-C.
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7 Additional results

This section presents a comparison between the two Electre Tri-C assignment rules
and some particular results. Both results are based on the following definition.

Definition 8 (λ-binary relations)
Let λ be the chosen majority level and consider two actions a and a′.

1) λ-outranking: aSλa′ ⇔ σ(a, a′) − λ ≥ 0

2) λ-indifference: aIλa′ ⇔ σ(a, a′) − λ ≥ 0 ∧ σ(a′, a) − λ ≥ 0

3) λ-incomparability: aRλa′ ⇔ σ(a, a′) − λ < 0 ∧ σ(a′, a) − λ < 0

4) λ-preference: a ≻ a′ ⇔ σ(a, a′) − λ ≥ 0 ∧ σ(a′, a) − λ < 0

The credibility indices obtained when comparing an action a to the reference actions bh

are then compared to the chosen majority level as in the Electre Tri-B method. There-
fore, the result provided for Electre Tri-B (Roy and Bouyssou, 1993, Rés. 6.3.1, p. 392)
is still valid for Electre Tri-C. According to this result, the comparison of an action a

to the reference actions bh provides one and only one of the three following cases:

1) There is no bt such that aRλbt and there is a bh such that aIλbh. If bh is not unique,
then the reference actions which are λ-indifferent to the action a are consecutive.

2) There is no bt such that aIλbt and there is a bh such that aRλbh. If bh is not unique,
then the reference actions which are λ-incomparable to the action a are consecutive.

3) There is no bh such that aIλbh or aRλbh.

Theorem 4 establishes a comparison between the two Electre Tri-C assignment
rules.

Theorem 4

a) If an action a is λ-indifferent to at least one reference action, then a is assigned by the
descending rule to a category at least as good as the one a is assigned to when using
the ascending rule.

b) If an action a is λ-incomparable to at least one reference action, then a is assigned
by the descending rule to a category at most as good as the one a is assigned to when
using the ascending rule.

c) Otherwise, both rules assign the action a to the same category or to two different but
consecutive categories.
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Proof

a) If an action a is λ-indifferent to at least one reference action, then the following case
occurs: a ≻ b0, a ≻ b1, . . ., a ≻ bt, aIλbt+1, . . ., aIλbs, bs+1 ≻ a, . . ., bq+1 ≻ a, with
0 ≤ t ≤ (q−1) and (t+1) ≤ s ≤ q. According to the descending rule (Definition 4), the
highest index h such that an action a is λ-indifferent to bh is h = s. Thus, if ξ+

s (a, λ) ≤
|ξ+

s+1(a, λ)|, then the action a is assigned to category Cs. Otherwise, a is assigned to
Cs+1. According to the ascending rule (Definition 5), the lowest index h, such that an
action a is λ-indifferent to bh is h = (t + 1). Thus, if ξ−t+1(a, λ) ≤ |ξ−t (a, λ)|, then the
action a is assigned to category Ct+1. Otherwise, a is assigned to Ct. Consequently,
the descending rule provides always a category at least as good as the one provided by
the ascending rule because t < (t + 1) ≤ s < (s + 1).

b) If an action a is λ-incomparable to at least one reference action, then the following
case occurs: a ≻ b0, a ≻ b1, . . ., a ≻ bt, aRλbt+1, . . ., aRλbs, bs+1 ≻ a, . . ., bq+1 ≻
a, with 0 ≤ t ≤ (q − 1) and (t + 1) ≤ s ≤ q. According to the descending rule
(Definition 4), the lowest index h, such that an action a is λ-incomparable to bh is
h = (t + 1). Thus, if ξ+

t (a, λ) ≤ |ξ+
t+1(a, λ)|, then the action a is assigned to category

Ct. Otherwise, a is assigned to Ct+1. According to the ascending rule (Definition 5),
the highest index h, such that an action a is λ-incomparable to bh is h = s. Thus, if
ξ−s+1(a, λ) ≤ |ξ−s (a, λ)|, then the action a is assigned to category Cs+1. Otherwise, a is
assigned to Cs. Consequently, the descending rule provides always a category at most
as good as the one provided by the ascending rule because t < (t + 1) ≤ s < (s + 1).

c) If there is only λ-preference relations between an action a and all reference actions bh,
then the following case occurs: a ≻ b0, a ≻ b1, . . ., a ≻ bt, bt+1 ≻ a, . . ., bq+1 ≻ a, with
0 ≤ t ≤ q. According to the descending rule (Definition 4), the highest index h, such
that an action a is λ-preferred to bh is h = t. Thus, if ξ+

t (a, λ) ≤ |ξ+
t+1(a, λ)|, then

the action a is assigned to category Ct. Otherwise, a is assigned to Ct+1. According to
the ascending rule (Definition 5), the lowest index h, such that a reference action bh

is λ-preferred to an action a is h = (t + 1). Thus, if ξ−t+1(a, λ) ≤ |ξ−t (a, λ)|, then the
action a is assigned to category Ct+1. Otherwise, a is assigned to Ct. Consequently,
both descending and ascending rules can provide either the same category (Ct or Ct+1)
or the descending rule provides the category Ct and the ascending rule the category
Ct+1 or vice-versa. 2

The results expressed in this theorem are illustrated in Table 8 from the numerical
example studied in Section 6.
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Table 8: Electre Tri-C assignment results

Actions b1 b2 b3 b4 Descending Ascending

a1 ≻ ≻ Rλ Rλ C2 C4

a2 Rλ Rλ Rλ Rλ C1 C4

a3 ≻ ≻ ≺ ≺ C3 C3

a4 ≻ ≻ ≺ ≺ C2 C3

a5 Iλ ≺ ≺ ≺ C2 C1

a6 ≻ ≻ Rλ Rλ C2 C4

a7 ≻ ≺ ≺ ≺ C1 C2

a8 ≻ ≺ ≺ ≺ C1 C1

a9 Rλ Rλ Rλ Rλ C1 C4

a10 ≻ ≺ ≺ ≺ C1 C1

Note: λ = 0.70

Observe that the action a5 is λ-indifferent to b1. In such a case, a5 is assigned to C2

by the descending rule and to C1 by the ascending rule. It clearly shows that it is possible
that an action can be assigned to a better category by the descending rule than by the
ascending rule. We can also observe that there is a strong λ-incomparability between
the actions a2 and a9 with respect to all central reference actions. In such cases, the
descending rule assigns these two actions to C1, while the ascending rule assigns the same
actions to C4.

Consider an action a and a central reference action bh. The following proposition
establishes the links between two λ-binary relations and Electre Tri-C assignment
results according to both the descending and the ascending rules.

Proposition 2

a) If a λ-outranks bh, then a is assigned at least to Ch by the descending rule.

b) If bh λ-outranks a, then a is assigned at most to Ch by the ascending rule.

c) If a is λ-preferred to bh, then a is assigned at least to Ch by both rules.

d) If bh is λ-preferred to a, then a is assigned at most to Ch by both rules.

Proof

a) Assume that aSλbh. Based on Definition 8.1 and Proposition 1.a, aSλbh ⇒ ξ+
h (a, λ) ≥

0 ⇒ ξ+
k (a, λ) ≥ 0, k ≤ h. Thus, a is assigned to category Ct, such that t ≥ h because

of the two following situations. First, when ξ+
h+1(a, λ) < 0 if ξ+

h (a, λ) ≤ |ξ+
h+1(a, λ)|,

then a is assigned to Ch by the descending rule. Otherwise, a is assigned to Ch+1.
Second, if ξ+

h+1(a, λ) ≥ 0, then a is necessarily assigned to a category at least as good
as Ch+1.
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b) Assume that bhS
λa. Based on Definition 8.1 and Proposition 1.b, bhS

λa ⇒ ξ−h (a, λ) ≥
0 ⇒ ξ−k (a, λ) ≥ 0, k ≥ h. Thus, a is assigned to a category Ct, such that t ≤ h because
of the two following situations. First, when ξ−h−1(a, λ) < 0 if ξ−h (a, λ) ≤ |ξ−h−1(a, λ)|,
then a is assigned to Ch by the ascending rule. Otherwise, a is assigned to Ch−1.
Second, if ξ−h−1(a, λ) ≥ 0, then a is necessarily assigned to a category at most as good
as Ch−1.

c) As for the descending rule, the proof is similar to a) by using Definition 8.4 and Propo-
sition 1.a. As for the ascending rule, the proof is similar to b) by using Definition 8.4
and Proposition 1.b.

d) As for the descending rule, the proof is similar to a) by using Definition 8.4 and Propo-
sition 1.a. As for the ascending rule, the proof is similar to b) by using Definition 8.4
and Proposition 1.b. 2

8 Conclusions

This paper dealt with a new sorting method, called Electre Tri-C, which categories are
defined through central reference actions instead of boundary actions. A comparison with
Electre Tri-B shows the main similarities of the two methods. Defining categories
through central reference actions is, in our opinion, of the uttermost importance for
modelling a wide variety of practical decision aiding situations dealing with the assignment
of actions to pre-defined and ordered categories.

Central reference actions and boundary actions are two alternative ways for defining
ordered categories. These reference actions must be defined a priori to play an appropriate
role. The procedures must preserve this role when assigning the potential actions to the
categories. In several situations, it is more adequate to define the categories through an
interaction process with the decision-maker by using central reference actions. Defining
the categories through boundary actions can be difficult when the frontier between the
criteria used to delimit them is rather fuzzy in the mind of the decision-maker.

The two proposed assignment rules fulfill the structural properties of uniqueness, inde-
pendence, conformity, monotonicity, homogeneity, and stability. When the set of refer-
ence actions does not fulfill the strict separability condition, but only a weak separability
condition, a compatible majority level must be computed in order to obtain a consistent
assignment model.

As for future research avenues, we intend to analyse a possible extension to multiple
typical actions. Such an extension will allow us modelling a larger number of decision
aiding situations in the field of sorting problems. When using the concept of central
reference actions, we intend to study assignment procedures to deal with partially ordered
categories and completely non-ordered categories. Furthermore, it is more difficult to
introduce boundary actions than central reference actions for the definition of partially
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ordered categories. Currently there is no method incorporating the notion of category
size in the assignment procedures to limit the number of actions that can be assigned
to each category. Indeed, we also intend to study this particular issue by introducing
a notion of relative independence for characterizing a new sorting problematic. At the
same time, we should focus our attention on the inference of some parameters through an
aggregation-disaggregation procedure using central reference actions.
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A Appendix

A.1 Generalization of the formulae (2.2), (2.6), (3.8), and (4.9)
to take into account variable thresholds

Let gj be a criterion such that the difference between the best and the worst possible
performances allows the definition of several performance levels. It is often the case when
the performance is defined by a physical or a monetary measure. In such a case, the same
values for the indifference and the preference thresholds can be judged inappropriate. For
instance, a variable threshold defined as a percentage of one of the two performances can
be considered more appropriate. It can also be the case with a verbal scale including
an enough number of levels. The way of defining these verbal levels can produce a clear
distinction between two consecutive levels in certain zones of the scale and an unclear
distinction in other zones. In practice, it is often necessary to take into account variable
thresholds instead of constant ones.

As noticed in Section 2, the indifference and the preference thresholds have been
introduced to discriminate situations of indifference, weak preference, and strict preference
when comparing two actions a and a′ according to the criterion gj. With the constant
thresholds this discrimination only takes into account the value of the advantage Ωj(a, a′).
In other words, the discrimination is based on the amplitude of the interval [gj(a), gj(a

′)]
independently of the position that this interval occupies along the scale of criterion gj. The
introduction of variable thresholds allows to take into account the position of this interval
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along the scale. This is possible by defining threshold functions, which are non-negative
functions, in the two following ways:

1) The thresholds called direct, denoted qj and pj , conceived to characterize the
borderline of the indifference zone and the borderline of the preference zone, respec-
tively, while progressing in the scale of the criterion gj in the sense of the increasing
preferences. For instance, with a direct preference threshold, a is strictly preferred
to a′ if and only if:

i) Ωj(a, a′) = gj(a)−gj(a
′) ≥ pj [gj(a

′)] if the preferences increase when the perfor-
mances increase too.

ii) Ωj(a, a′) = gj(a
′)−gj(a) ≥ pj[gj(a)] if the preferences increase when the perfor-

mances decrease.

2) The thresholds called inverse, denoted q′j and p′j , conceived to characterize the
borderline of the indifference zone and the borderline of the preference zone, respec-
tively, while progressing in the scale of the criterion gj in the sense of the decreasing
preferences. For instance, with a inverse preference threshold, a is strictly preferred
to a′ if and only if:

i) Ωj(a, a′) = gj(a)−gj(a
′) ≥ p′j[gj(a)] if the preferences increase when the perfor-

mances increase too.

ii) Ωj(a, a′) = gj(a
′)−gj(a) ≥ p′j [gj(a

′)] if the preferences increase when the perfor-
mances decrease.

Let us notice that direct and inverse thresholds are particular functions subject to
certain coherence conditions. Furthermore, if the analyst chose to define only direct
thresholds it is possible to obtain automatically the inverse thresholds, and vice-versa,
because these two types of variable thresholds are functionally linked (for more details on
these questions see, for example, Roy, 1996, § 9.3.2, p. 188).

When taking into account the notation and definitions introduced in this Appendix,
the formula (2.2) is generalized in case of variable thresholds as follows:

1) With direct thresholds qj and pj must be replaced respectively by:

i) qj [gj(a)] and pj [gj(a)] if the preferences increase when the performances increase
too.

ii) qj [gj(a
′)] and pj[gj(a

′)] if the preferences increase when the performances decrease.

2) With inverse thresholds qj and pj must be replaced respectively by:

i) q′j [gj(a
′)] and p′j[gj(a′)] if the preferences increase when the performances increase

too.
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ii) q′j [gj(a)] and p′j[gj(a)] if the preferences increase when the performances decrease.

The reasons that led us to introduce variable indifference and preference thresholds
(rather than constant ones) are the same that led us to introduce variable veto thresholds,
in the case where a veto threshold is associated to criterion gj. The analyst can again
choose between direct veto thresholds, denoted vj , and inverse veto thresholds, denoted
v′

j .
The formula (2.6) is generalized as follows:

1) With direct thresholds, pj and vj must be replaced respectively by:

i) pj[gj(a)] and vj [gj(a)] if the preferences increase when the performances increase
too.

ii) pj[gj(a
′)] and vj[gj(a

′)] if the preferences increase when the performances decrease.

2) With inverse thresholds, pj and vj must be replaced respectively by:

i) p′j[gj(a
′)] and v′

j[gj(a
′)] if the preferences increase when the performances increase

too.

ii) p′j[gj(a)] and v′

j [gj(a)] if the preferences increase when the performances decrease.

When using variable preference thresholds the formulae (3.8) and (4.9) which char-
acterize the strict and the weak separability conditions, respectively, are generalized as
follows:

i) Ωj(bh+1, bh) > pj[gj(bh)] if the preferences increase when the performances increase
too.

ii) Ωj(bh+1, bh) > p′j [gj(bh+1)] if the preferences increase when the performances decrease.

Finally, let us notice that when using variable thresholds in the sorting problematic
it is not necessary to compute the threshold values for each scale levels of criterion gj.
Indeed, all the Electre Tri-C formulae (the same is applied to Electre Tri-B) can be
written by making use of the values that are assigned to the direct and inverse thresholds
only for the performances of the reference actions, gj(bh), h = 0, . . . , (q + 1). It comes
from the fact that in a given formula, concerning the way in which two actions a and
a′ are compared, that makes use of a direct threshold computed for a it is possible to
substitute it by an inverse threshold computed for a′, and vice-versa.
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Production et Techniques Quantitatives Appliquées à la Gestion. Economica, Paris,
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