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EQUILIBRIUM SOLUTION TO THE INELASTIC BOLTZMANN EQUATION
DRIVEN BY A PARTICLES THERMAL BATH

MARZIA BISI, JOSE A. CARRILLO & BERTRAND LODS

ABSTRACT. We show the existence of smooth stationary solutions feritielastic Boltzmann
equation under the thermalization induced by a host-mediiti a fixed distribution. This is
achieved by controlling thé.”-norms, the moments and the regularity of the solutions Her t
Cauchy problem together with arguments related to a dyremioof for the existence of stationary
states.

1. INTRODUCTION

The dynamics of rapid granular flows is commonly modelled Byitable modification of the
Boltzmann equation for inelastic hard-spheres intergdimough binary collisiond [18, 39]. As
well-known, in absence of energy supply, inelastic harcesghare cooling down and the energy
continuously decreases in time. In particular, the Boltameollision operator for inelastic hard
spheres does not exhibit any non trivial steady state. Bhimimore the case if the spheres are
forced to interact with an external agency (thermostat) ansuch a case, the energy supply may
lead to a non-equilibrium steady state. For such driveregsygin a space homogeneous setting),
the time-evolution of the one-particle distribution fuioet f(v,t), v € R3, ¢t > 0 satisfies the
following

hf=71Q(f, /) +6(f), (1.1)

wherer > 0 is a given constanQ( f, f) is the inelastic Boltzmann collision operator, expressing
the effect of binary collisions of particles, whidg /) models the forcing term.

There exist in the literature several physical possibldog®ofor the forcing terng; in order
to avoid the cooling of the granular gas: stochastic heafiagticles heating or scaled variables
to study the cooling of granular systems and even a nonliieaing term given by the quadratic
elastic Boltzmann operator has been taken into accbuht J2fse options have been studied first
in the case of inelastic Maxwell models [12) 19] 13,14 [3&,21,16]. The most natural one is
the pure diffusion thermal bath for which

9(f) =nAf (1.2)

wherep > 0 is a constant, studied ih_[26,134] for hard-spheres. Suchcipterm corresponds
to the physical situation in which granular beads receiveloan kicking in their velocity, like
air-levitated disks[[10]. Another example is the thermahhaith linear friction

G(f) = nAf + Mdiv(v f), (1.3)
1
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where A and i, are positive constants. We also have to mention the fundamerample of
anti-drift forcing term which is related to the existencesedf-similar solution to the inelastic
Boltzmann equation:

G(f) = —rdiv(vf), k> 0. (1.4)
This problem has been treated inl[81] 32, 33] for hard-sghdter all the forcing terms given by
(@T32), [@3B), [(Ih) it is possible to prove the existence oba-trivial stationary staté” > 0 such
that

TQ(F,F)+ G(F)=0.

Moreover, such a stationary state can be chosen to be smeoth, c¢ C*°(R?). Finally, even if
the uniqueness (in suitable class of functions) of suchtesty state is an open problem, it can
be shown for all these models that, in the weakly elastiomegn which the restitution coefficient
is close to unity, the stationary state is unique. For anestinge survey of the “state of art” on the
mathematical results for the evolution of granular med&[8€].

We are concerned here with a similar question when the foriemm G is given by alinear
scattering operator. This corresponds to a situation in which the system of st&ldard spheres
is immersed into a so callgmrticlesthermal bath, i. e. G is given by a linear Boltzmann collision
operator of the form:
whereF; stands for the distribution function of the host fluid @#d -] is a given collision operator
for (elastic or inelastic) hard-spheres. The precise d&fimof G is given in Subsection 2.1.

This kinetic model has already been tackled for instancegjif] in order to derive closed
macroscopic equations for granular powders in a host medighus also mention the workl[5]
that investigates the case of a particles thermal bath nfaglastichard-spheres at thermodynam-
ical equilibrium (i.e. F is a suitable Maxwellian). The deviations of the steadyesfathich is
there assumed to exist) from the Gaussian state are analymeetically. For inelastic Maxwellian
molecules, the existence of a steady state for a particesntil bath has been obtained [inl[21].
To our knowledge, the existence of a stationary solutiofIdl)(for particles bath heating and
inelastic hard-sphereis an open problem and it is the main aim of this paper.

Our strategy, inspired by several works in the kinetic thieofr granular gases [26, B2] or
for coagulation-fragmentation problens [4] 24], is basedaaynamic proof of the existence of
stationary states, see |21, Lemma 7.3] for a review. Thetékaed point theorem” used here is
reported in Subsection 2.2. The identification of a suit&deach space and of a convex subset
that remains invariant during the evolution, is achievedcbgtrolling moments and.’—norms
of the solutions. In Section 3, we present regularity priggrof the gain part of both collision
operators@Q andg in (L1). Then, in Section 4 we get at first uniform bounds fe& moments
and the Lebesgue norms; in addition, we prove the strongrzotyt of the semi—group associated
to (I.1), and the existence and uniqueness of a solutioret€&uchy problem. All this material
allows to obtain, in Section 5, existence of non—triviatistaary states. Finally, Section 6 contains
the study of regularity of stationary solutions. Many tachhestimates involving the quadratic
dissipative operato@( f, f) are based on results presented.n [17[°32, 33, 37] and inférenees
therein, but their extension to the linear inelastic op®rét f) is not trivial at all for the following
reasons. First, sinag is not quadratic, it induces a lack of symmetry particuladievant in the
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study of propagation of? norms. Second, since the microscopic collision mecharssaffécted
by the mass ratio of the two involved media (thermal bath amahigar material) Povzner-like
estimatedor G are not straightforward consequences of previous resolts [26]. Let us finally
mention that our analysis also applies to linear scattemioglel which corresponds to the case
7 = 0. For such a linear Boltzmann operator, we obtain the existeh an equilibrium solution,
generalizing the results df [30,128,138] to non-necessailzxwellian host distribution.

2. PRELIMINARIES

Let us introduce the notations we shall use in the sequelouirout the paper we shall use
the notation(-) = /1 + | - |2. We denote, for any € R, the Banach space

L, = {f : R? — R measurable 1Al = /Rg |f ()] (v)" dv < +oo}.

More generally we define the weighted Lebesgue sg&¢&3) (p € [1,+o0), n € R) by the
norm

1/p
g = | [ 170 o]

The weighted Sobolev spawﬁ’p(Ri”) (p € [1,4+00), n € Randk € N) is defined by the

norm
1/p

e D
|s|<k
whered? denotes the partial derivative associated with the motteks € NV, In the particular

casep = 2 we denoteFI,’j = W,f’2. Moreover this definition can be extendequ foranys > 0
by using the Fourier transform.

2.1. The kinetic model. We assume the granular particles to be perfectly smoothdpdreres of
massm = 1 performing inelastic collisions. Recall that, as usuad, ittelasticity of the collision
mechanism is characterized by a single parameter, namelgaéfficient of normal restitution
0 < e < 1. To define the collision operator we write

where the “loss” tern@~(f, f) is

Q (f. f) = f(f=v]), (2.2)
and the “gain” termQ™ (f, f) is given by

1
—+ - o / /
Quw—m&@LWzWMﬂmww,
where the pre-collisional velocities read as

/v=v+2%(|qlff—qx ’wzw—%(lqla—q), (2.3)
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with { = % Notice that we always hav§< ¢ < 1. Its weak formulation will be the main tool
in the rest and it reads as

/Q+ff / Lo F ) fw)ld] /S)Qib(v/)dadwdv, (2.4)

whereq = v — w is the relative velocity of two particles about to collideyda’ is the velocity
after the collision. The collision transformation that putandw into correspondence with the
post-collisional velocities’ andw’ can be expressed as follows:

V=v+ 2 (\QIU—Q) w'Zw—g(!q\U—q)- (2.5)

Combining [Z2) and{214) and using the symmetry that allos/$o exchange with w in the
integrals we obtain the following symmetrized weak form

/RS A N vy dv =5 / / J(0) F(w) gl A (v, w) dwdv,  (26)
where
Al ) = 1= [ 00 +9w) = 9(0) = w(w) do. @)

The inelastic Boltzmann operat@( f, f) satisfies the basic conservation laws of mass and
momentum, obtained by taking = 1, v in the weak formulatior{216), sincé.[1] = A¢[v] =
On the other hand, in the modelling of dissipative kinetiaagtpns, conservation of energy does
not hold. In fact, we obtaidd[|v|?] = —%]v — w|? from which we deduce

2
/ LD o= == [ [ o= wl r)f(w) dvdu, (28)
R3 R3 JR3
where we observe the dissipation of kinetic energy. In tteeabe of any other source of energy,
the system cools down as— oo following Haff’s law as proved in[32].
As already said in Introduction, the forcing tegharising in the kinetic equatiof(1.1) is chosen
to be a linear scattering operator, corresponding to thekedparticles bath heating,

6(5) = L) =55 [ .

where is the mean free patly,= v — w is the relative velocityy, andw, are the pre-collisional
velocities which result, respectively, tnandw after collision. The collision mechanism related
to the linear scattering operator is characterized by

(v—w) -n=—e(v, —wy) 0, (2.10)

lg - n] [e_zf(v*)Fl(w*) — f(v)F1(w)] dwdn (2.9)

wheren € S? is the unit vector in the direction of impact afick e < 1 is theconstant restitution
coefficient(possibly different from¥). Here, we will consider a similar separation of the operato
into gain and loss term&(f) = LT (f) — £~ (f), with obvious definitions. Here the host fluid is
made of hard-spheres of mass (possibly different from the traced particles mass= 1) and
the distribution functior¥'; of the host fluid fulfils the following:
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Assumption 2.1. F; is a nonnegative normalized distribution function withkouélocityu; € R?
and temperatur®; > 0. Moreover,F; is smooth in the following sense,

F, € H{(R®), Vs50>0

and of finite entrop% Fi(v)log Fi(v)dv < oc.
R3

Remark 2.2. Notice that, sincé; € L} is of finite entropy, it is well-know[®, Lemma 4]that
there exists somg > 0 such that

1
V)= s

A particular choice of the distribution functidi;, corresponding to a host fluid at thermodynam-
ical equilibrium, is the following Maxwellian distributio

3/2 _ 2
Fi(v) = My(v) = (277?@1) exp {—”“(ZT‘“)} , v € R?, (2.12)

Notice however that our approach remains valid for more gaingistribution function.

/ (0 —w) - n[Fr(w) dwdn > /T E P VoeRE.  (2.11)
R3 JS2

For particles of mass: = 1 colliding inelastically with particles of mass, the restitu-
tion coefficient being constant, the expressions of thecptisional velocities(v,, w,) are given
by [18,[38]

1-8 1-8

v*:’u—Zal_zﬂ(q-n)n, w*:w+2(1—a)1_25(q'n)n,
whereq is the mass ratio and denotes the inelasticity parameter
my 1—e
0= e, =gt e01/2)
The post-collisional velocities are given by
v =v—2a(l - p)(¢g-n)n, w*=w+2(1 —a)(1-70)(g-n)n. (2.13)

This linear operator can also be represented in a form chos@.8). By making use of the
following identity [11,[22],

[ ptata-myan = [ o (117 a0

for any functiony, with ¢ = ¢/|q|, we can rewrite the operator as

o) =5 [ L1 2R EIR @)~ f0)R )] dude @14)
with 15 -3
ﬁ*:v—al__2ﬁ(q—\q10), w*:w+(1—a)1__2ﬁ(q—\qld)-

For such a description, the post-collisional velocities ar
T =v—al-B)(q—ldo), @ =w+(1-a)l-p5)(qlglo). (2.15)
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We consider Eq[{I]1) in the weak form: for any regula& +)(v), one has

% » f(v,t)p(v)dv = %/W /R3 Fo,t) f(w, ) |qlAc[b] (v, w) dw do

+§/RS /RS lqlf (v, t)F1(w) Te[¢)] (v, w) dvdw  (2.16)

where
1 ~ * 1 ~x
Jeldl(v,w) = o | 1¢-n|(¥(v") =¢(v)) dn=— | ($(0%) = ¢(v)) do.
™ Js2 47 S2
2.2. Proof of stationary states: basic tools and strategy As stated in the Introduction, the final
purpose of this paper is to prove the existence of a noratrieigular stationary solutiof’ > 0

to (L1). Namely, we look foF € L', F > 0 such that
TQ(F,F)+G(F)=0. (2.17)

Remark 2.3. Notice that such a problem is trivial in the elastic case 1 and wheneveF is the
Maxwellian distributionZI2) Indeed, in such a case, the Maxwellian equilibrium distidn
M of £ provided by[30,[28 [38]is a stationary solution td{111) sina@(M*, M*) = 0 (elastic
Botlzmann equation) and(M?) = 0.

The main ingredients are to show the existence of fixed pdantthe flow map at any time,
and thus a continuity in time argument of the semi-group dhatvs to identify this one-parameter
family of fixed points as a stationary point of the flow. Contran estimates were used [0 [6,]21]
while in the hard-sphere case the Tykhonov Fixed Point Tdraawas the tool needeld [26,24] 32,
4].

The exact result that will be used can be summarized as:

Lemma 2.4 (Dynamic proof of stationary states). LetY be a Banach space and;):>o be a
continuous semi-group ori such that
i) there existsZ a nonempty convex and weakly (sequentially) compact sabdétvhich is
invariant under the action of; (that isS;z € Z for anyz € Z andt > 0);
i) S;is weakly (sequentially) continuous anfor anyt > 0.
Then there existsy € Z which is stationary under the action 6§ (that is .S;zy = 2, for any
t > 0).

The strategy is therefore to identify a Banach specend a convex subset C Y in order to
apply the above result. To do so, one shall prove that

e forany fy € Y, there is a solutiorf € C ([0,00),Y") to Eq. [T1) withf (¢t = 0) = fo;

e the solutionf is unique inY and if fy € Z thenf(t) € Z for anyt > 0;

e the set” is (weakly sequentially) compactly embedded ititp

e solutions to[(LI1) have to be (weakly sequentially) staide, for any sequencegf,,),, C
C ([0,0),Y) of solutions to[[TI1) withf,,(t) € Z for anyt > 0, then, there is a subse-
quence f,, ) Which converges weakly to sonfec C ([0, 00), Y") such thatf is a solution

to (T.0).
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If all the above points are satisfied by the evolution prob{@d), then one can apply Lemma
[Z4 to the semi-grougS;);>o which to anyf, € Y associates the unique solutigitt) = S, fo
to (T.1). Moreover, the regularity properties of the gairt pathe operators[32] shall provide us
the needed regularity to show the existence of smooth statjcstates.

3. REGULARITY OF GAIN OPERATORS

We recall the following result, taken from_ 82, Theorem 2P5oposition 2.6] and based on
[17,129], on the regularity properties of the gain part opmr@* (g, f) that we state here only for
hard-spheres interactions in space dimengioga: 3.

Proposition 3.1(Regularity of thegain term Q™). For all s, > 0, we have

1949, Dl gz < CCm€) [lgllias, 1z, + Nollzs 10,

where the constant'(s,n,€) > 0 only depends on the restitution coefficient (0, 1], s and.
Moreover, for anyp € [1,00) andd > 0, there existd € (0,1) and a constanCs > 0, only
depending om, ¢ andd, such that

— —0
/R QTN T < G NP1 AT + Sy ANy -

On the other hand, the linear operatitf) is quite similar to the quadratic Boltzmann operator
associated to hard-spheres interactions and constaittitiest coefficiente by fixing one of the
distributions. In fact, it is possible to obtain the followi similar result:

Proposition 3.2(Regularity of thegain term £T). For all s, > 0, we have

125 () s < Csm€) (1Bl Wz, + IFly I ] @)

where the constar®'(s,n,e) > 0 only depends on the restitution coefficient (0, 1], s andn.
Moreover, for any € (1,00) andé > 0, there exisyy < p and a constanf{; > 0, only depending
onp, e andd, such that

[ 240 77 o < K IR WA 1+ (allag U1

FIE g, 1A 11 ). @)

Proof. The proof of these two estimates relies on the same stepsSections 2.2, 2.3 and 2.4
of [32], see alsa137]. We need just to have the same basioa&ss as in their case. We start with
the proof of [3]L). An expression of the Fourier transforndfcan be obtained as:

L) (© = [ ew(ig-0L (v = o [ Gen)do

T T e
with G(v, w) = |v — wl|f(v)F1(w), G its Fourier transform with respect o, w) and

e =0 -a=0)5+al=p)lo, & =a(l=pF)E—al =P
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With this expression at hand, it is immediate to general@&t the regularity result in[132,
Theorem 2.5, Proposition 2.6] giving_(B.1).

Now, let us prove the second result. We first notice that, §3]jnhe gain operato£™* admits
an integral representation. Actually, even if it is assulind3] that F'; is given by the Maxwellian
distribution [ZIR), a careful reading of the calculatiof§3] yields

L) = [ Fk.w)dw, (33

where

(w — U)> dVs

2y

k(v,w) = ! | 0F1 <v+V2+

2e292 v — w| Va-(w—v)=

with v = a% andy = (1 — )1 55 Arguing as in[[32], we define the operatdrrelated to
the Radon transform:

T : ge LYR3, dv) — Tg(v) ’/ glpv + 2)d
dlov

wherep = 1 — <522, For anyh € R3, let 7, denote the translation operatoyf (v) = f(v — h),
for anyv € R3. Then for anyg € L'(R3, dv), one sees that

(7w © T)(g)(v

—w) +z)dz
|U_w| J_(Uw ) )

1—-25
g<v—w—|—z—|— 5 7(w—v)> dz, Vo, w € R3.

|U - w| zl(v—w) Y

Choosingg = 7—,,F; leads to the following expression of the keréb, w):
1
k(v,w) = 32,2 |:Tw o7 o T_w:| (F1)(v), v,w e R3,

This previous computation is at the heart of the argumen{82)fTheorem 2.2], from which
one gets a version of Lions’ Theorem [27] for a suitable ragaéd cut-off kernel with collision
frequency of the fornB,, ,,(|¢|,¢ - o) = ®s,(|q]) bs,, (¢ - a) with ®g, smooth and with compact
support[2,n], andbg,, smooth and supported {r-1 + 2,1 — Z]. More precisely, defining the

smoothed-out operator in angular and radial varlab‘,lggn as in [32, Section 2.4]:

1 .
£8,,(0 = g [, [ Breallal: 4 ) f0)F s (w) dw do 34

then, for anyp € R* and anyp > 1, there isC(p,n, m,n) > 0 depending only o,  and
(m,n), such that

125, .. (Dllzy < Clp,n,m,n)l[F g £y (3.5)

2|n|
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for someq < p given byq = ?j—gp if p € (1,6] while g = £ if p € [6,+00) (see [32, Corol-
lary 2.4]). In particular, Holder's inequality leads to

p—1

Lt omias ([ ra) " 1es, (e < Conml o1

for some explicit constar@ (m, n) > 0.
Similarly, one can define the remainder partZof which splits as
with
1
+ — q .
Chsnnlh) = 1oyez L, [, P b, (G- o) f(w)Fa(wn) dudo

Cd, () = 1oz [, [, #0000 b (- 0) ()P ) dw

1
L) = gz [, [, Bralla b (000 P ) du

wheredp, (¢|) = lg| — ®s,(gl) andbg,, (4 - 0) = 1 — b, (G- 0), ¢ € R 0 € S% Holder's
inequality provides

/ ok (A< AR ICh (Pl
R3 ’ ’ 1/p

1/p

with p’ such that; + -, = 1, hence we have to estimaié; norms of L5, L\ Lhp
forn=—-1/p'.
One can easily usé [B2, Theorem 2.1] to prove that, forraayR,

L3R, . (F) + L, (Dllp < &(m) <HF1HL1 1fllze,, + 1Al 1F1llzp

[14+n]+In] 147 [1+n]+[n] 1+n>

for some explicit constant(m) that, since the angular part of the collision kernel is suwt t
limy,—c0 [[bRm || L1 (s2) = 0, converges t® asm goes to infinity.

It remains to estimate the norm m‘gsm n(f). We follow now the lines of{[36, Chapter 9,
p. 395] (which differs slightly from[[32, Prbposition 2.6hd is more adapted to the linear case).
Precisely, we splif asf = f, + fre = f(v)X{jo|<r} + f(V)X{j0|>r) fOr SOMEr > 0. Then, as in
[B6, p. 395], there is some positive constaht- 0 such that

+ r
1£ks,.., (Pl < OBl If s,
while
A
+ . m-
1ehs, Gy < C==Iflns,,. . IFallg,,

with A > 0.
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Gathering all the above estimates we get/fer —1/p/,

A
+ p—1 p—1 (T m
Lr, ()P do < CHfHLz;/p <nHF1HL;HfHLI;/p + HfHL;HFlllLf;/p)

RS

p p—1
+ o) (IFaliy 11+ IEl, 170 11" )

A
r p m p—1
< (0 +etm) IRy 1Ay + (€7 + e(m)) [Fullag, 151y 171

The proof follows then by choosing first large enough then large enough and subsequently
big enough.
O

4. REGULARITY ESTIMATES FOR THECAUCHY PROBLEM

4.1. Evolution of mean velocity and temperature. Let f (v, t) be a nonnegative solution fo{IL.1).
Define the mass density, the bulk velocity

o(t) = » f(v,t)do, u(t) = ﬁ /}R3 vf(v,t)dv

and the temperature

O(t) t Vi > 0.
= 5o L[ - R o 0
Note that Eq.[[Z16) for) = 1 leads to the mass conservation identity) = 0 i.e.
olt) = 0(0) = 1.
Now, Eq. [ZIB) for)(v) = v yields

u(t):—M/RS . v —w|(v—w)f(v,t)F1(w) dv dw, vVt >0

which illustrates the fact that the bulk velocity is not cenged. To estimate the second order
moment off, let us introduce the auxiliary function:

:/ / lv — w|?f (v, t)F1(w) dv dw.
R3 JR3

3 3
:/ v — w2 f(v,t)dv 4+ —0; =30(t) + |[u(t) —uy|* + —O,. (4.2)
R3 mi my

Notice that

In particular, to obtain uniform in time bounds of the meafoegy and the temperature, it is
enough to provide uniform in time estimatesoft). With the special choice (v) = |[v — u;|?
one has

_ _ 2
Adlte,w) = EZ [ (g~ faao = ~¢1 - Qo = 2
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while

Tel$)(v,w) = 20%(1 = B)%|qf” = 2a(1 = B){g,v — w)
= —2k(1 — K)|q|* — 26{q,w — uy), v,w € R3

withk = a(1-f) = %(1 +e) € (0,1) and(-, -) denoting the scalar product. Itis easy to see that

. 2y,
F(t):—%/RS/Rgf(v,t)f(w7t)’q‘3dvdw
_M v—wPf(v w) dv dw
A /R o[0T wl 0 F (w)dvd

+27'{/R3 /Rg lq/(g, a1 — w) f (v, t)F1(w) dvdw. (4.2)

Now, since [ f(v,t)dv = 1 for anyt > 0, Jensen’s inequality yields
R3

3
= |v—u(t)]’

/ £ w, )lf* duw >
R3

and consequently

R3 JR3 9
3/2
> ([ - urrena) = (se0)”

where we used again Jensen’s inequality. In the same way,

v—/RSwf(w,t)dw

3/2
/ \q]?’f(v,t)Fl(w) dvdw > (/ / v — w\zf(v,t)Fl(w) dv dw) = F(t)?’/z.
R3 JR3 R3 JR3

Finally, the third integral in[{4]2) is estimated as
[t = wp s opi ) dodw < [ [ aPun w08 (w) dodu
R3 R3 R3 ]R3

<2/ |v—u1|2f(v,t)dv/ |w—u1|F1(w)dw+2/ w — w PRy (w) duw
R3 R3 R3

where
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In conclusion, we obtain

. — 2 —_—

F(t) < -2 o) 2 - 2L iy 2V ) <y b0 008 (1) (83)
wherevy; = &)\_H) > 0andy, = 2C0~ > 0. A simple use of the maximum principle shows
that )

F(t) < max { <ﬁ> ,F(O)} . V>0
!

Because of[{4]1), this leads to explicit upper bounds of #meperatured(¢) and the velocity
|u(t) — uy|, namely

sup <3(9(t) +u(t) - uly2> < max { %)2 ,F(O)} < . (4.4)

>0

4.2. Propagation of moments. To extend the previous basic estimates, in the the spirlLsf, [
we deduce from Povzner-like estimates some useful indgpsatin the moments

Y, (1) :/ F D d, 30 r>1
R3
wheref(t) is a solution to[(T]1) with unit mass. One sees frbml(1.1) that
d
EYr(lt) =T7Q(t) + L, (1),
where
Q)= [ QN s L= [ Lol .

The calculations provided in [26,115] allow to estimate, iredmost optimal way, the quantity,..
One has to do the same fbr.(¢) given by

Lo(t) = %/R; /Rfif(v,t)Fl(w)w Wl L[] - [27] (v, w) dv duw.

To do so, let us deriv®ovzner-like estimatefor £ in the spirit of [26]. The application of
the result of [25] is not straightforward since, obviousfyjs not quadratic and because of the
influence of the mass ratio = mT;nl in the collision mechanism. Here, we will write the mass
of particlesm even if taken as unity for the sake of the reader. To be preaisare looking for
estimates of

1
L|2r - 5. *|2r 2r > 1.
Tl Pww) = 5 [ 1a-nl (0 = oP) dn, >
To do so, it shall be convenient to write
1
. 2r — - *2) 2
Tl 0 w) = g [ nl {0 (mfo?2) = ¥ (mlof?)} dn (4.5)

whereV(z) = 2", r > 1. We adopt the strategy used In[26] and write
U (m|v*?) = ¥ (mfv]*) = qe(¥) (v, w) + ¥(mwl?) — U (mq|w*]?) (4.6)
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where
0e (V) (v, w) = U (m|v* ) + ¥ (my|w*?) — ¥ (m[v]*) — ¥ (mq|w]?).
Now,
qe (V) (v, w) = pe(¥) (v, w) — ne(¥)(v, w)
with

{pe(\I/)(v,w) = U (mlo* + mi|w|?) = ¥ (m[v]?) — ¥ (m]w|?)
ne(¥)(v,w) = ¥ (mfo* + mi|w|?) = ¥ (m|v*]?) — ¥ (mq|w*]?).

Applying [28, Lemma 3.1] to the functiod with 2 = m|v|? andy = m;|w|?, we see that there
existsA > 0 such that

pe(0) (v, w) < A(m|v|2\1" (ma[w]?) + ma [w] >0’ (m|v|2)) 4.7)

while, sinceV is nondecreasing ang|v|? + m1|w|? > m[v*|? + mq|w*|?, there existd > 0

such that

ne(0)(v,w) = bmmy[v*? [w* P (m|v* ] + mq|w*]?) .
One can then write
n(U) (v, w) = bAW*,w*) (m|v*]* + m1|w*|2)2 T (mfo** 4+ ma |w*[?)

where

m|v*|2 m1|w*|2

(mlo*[2 + myuw]2)*

To estimate better the above tefhfv*, w*), it will be convenient to parametrize the post-collisional
velocities in thecenter of mass—relative velocigriables, which, with respect to the usual trans-

formation (see e.gl 126, Eq. (3.10)]) depend on the massarsdm. Namely, let us set

A(v*,w*) =

2 + mql|q|lw o 2T ml|q|w

m+my m + mq

wherez = mv+miw, ¢ = v—w andw is a parameter vector on the sph§fe The parametef is
positive and such that" — w* = ¢|v — w|w. In particular, one sees from the representation {2.13)
that0 < ¢ < 1. In this representation, one has

1
07 = oy (1P 4 2l + 28l cosi )
and
1
0 = oy (16 4 22l — 2ml cosi ),

wherey is the angle betweenandw. One has then

1
m|v*|2 + m1|w*|2 -— g <|z|2 + Ezmm1|q|2>. (4.8)
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One can check that

(mlo*?) (ma [w*[?) =

mm 2 2
m{ |:‘Z’2 +€2mm1’q‘2] _ []2\2 _ €2mm1]q\2] cos? i

2
+ [ttmy = m)ellgl + (12 — P [gf?) cos ] 4€2mm1\212\QI20082u},

i.e.
mmq 2
o) om0 ) > = [P+ G| (1 = cos? ).
Therefore
mimy .
A('U*,w*) > m Sln2,u.

We obtain then an estimate similar to the one obtained’in [@6}eover, itis easy to see froln_(#.8)
that

m|v* | + ma|w*|? = €2 (mlv]* + mi|w|?)
and, arguing as in_[26], there exists some consgant0 such that
. 2
ne[W) (v, w) = psin® u (mof? + mafw]?)* O (mv]? + m jw]?). (4.9)
This allows to prove the following:

Lemma 4.1 (Povzner-like estimates for £). Let ¥(x) = =", » > 1. Then, there exist positive
constantst, and A,. such that

mT’
o=l e 0) < A (JolloP + ol ) + 2o~ wllw — & (o 4 o),

for anyv,w € R3.

Proof. Bearing in mind that7.[| - |*"](v,w) is provided by [ZF) and{4.6), first of all, since
¥ (mq|w*?) = 0, we note that

U(mfo*|?) = ¥ (mfv]*) < qe[¥](v,w) + ¥ (my|w]?) = qe[¥](v,w) +mflw]*".

Then, integrating{417) anf{3.9) with respect to the amgte S, one obtains, as i 26, Lemma
3.3.] and[26, Lemma 3.4], that there ate andk, > 0 such that, for any, w € R3:

[ a0, wli-nln < AT(|v||w|2’“ ; |v|2’“|w|> - kr(wr“ i |w|2f+1),
SQ

and this concludes the proof. O

v = w|27rmr

The above Lemma (restoring = 1) together with the known estimates fQx.(t¢) allow to
formulate the following

Proposition 4.2 (Propagation of moments). Let f(¢) be a solution tofld) with unit mass. For
anyr > 1, let

Yr(t):/RSf(v,t)|v|2"dv, £>0.
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Then, there are positive constams., K, and C,. that depend only on, «, 3, 7, A and the mo-
ments off"; such that

d
dt

As a consequence, ¥, (0) < oo, thensup,( Y,.(t) < co.

Y, (t) < Cp + ALY, (1) — K, YV (1), vt > 0.

Proof. Recall that$ Y, (t) = 7Q,(t) + L, (t), where
Q0= [ QU HEbf e, L) = [ LD
R3 R3

According to [26, Lemma 3.4], there exidt. > 0 andk, > 0 such that
Qr(t) S ALY 1o)X (t) — kY, p10(t),  t>0.
Now, from LemmdZlL
AL (t) < Ar MY j9(t) + Ar My oY (8) + m{/ / lv — wl||w|* f(v,t)Fy(w) dwdv
R3 JR3

— kTYT’—i-l/Q(t) - kTMr—i-l/Z?

where)M, = / lw|**F(w) dw, s > 1. One has
R3

/RS /RS lv — w||w|? f (v, t)F1(w) dw dv < MY (t) + Myyq/0
and, denoting;; /, := sup;>( Y /2(t) < oo, one has

ky

Y, (1) — Y Y,p1/2(t)

AT’MI/2

L?" < T
()< Crt =5

whereC,. = (c; 2 A, M, + ¢y 5mi M, + m{M, 4 ,5) /\is a positive constant depending only on
a, B, A\, r > 1 and the moments df;. Gathering all these estimates leads to

d
EYT(t) <G+ ATYT(t) - KrYr—i—l/Z (t)
whereA, = TAVTCl/Q + %Aer/z > 0andK, = TET + ’“7 > 0. Now, thanks to the mass

conservation and Holder's inequality, one ggts,; /o (t) > Yi+1/2r(t) which leads to the desired
result. 0

Remark 4.3. We see from the definition of the positive constabts C, and K, that the above
Proposition still holds true whenever= 0 (i.e. for the linear problem).
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4.3. Propagation of Lebesgue norms.Let us consider now an initial conditiofy € L3N L for
somel < p < oo. We compute the time derivative of tHé norm of the solutionf (v, ¢) to (T.1):

1d

D — + p—1 _ p—1 —
i L rena=r [ et nptav—r [ prrions

+ [ Lt — | Lo o,
R3

R3

Using the fact that/ PO (f, f)dv = 0 and £~ (f)(v) = v(v)f(v) where the collision
R3

frequencyr(v) is given by

v(v) = |(v —w) - n|Fy(w)dwdn,

271')\ R3 JS§2
we obtain the estimate:

1d

s Lprenwss [ orgnptas [ ernetan= [ e

Using the lower bound{Z.11), we get
Sl <7 [ ot tavs [ ermetao =iy,

PropositioZ311 and the conservation of mass imply thatafiyrd > 0, there isf > 0 and some
Cs such that

/ QF(f, /)P (v, t) dv < Cs]|F (1) B0 +0[lf () Hf(t)lliz;/p-
Moreover, Propositiof3.2 implies that, for afiy> 0,
/R LEEN T < CulFOI + <||f(t)\|izl)/p + 10l Hf(t)nzgjp) ,

for some constant§’;, C; > 0 that depend only op, J, 7, a, e and the norms oF; in the spaces
involved in [3:2). Recall that there is somé, such that

sup £(0)1 = 1+sup [ o (w,)dv < My < .
t=0 0 JR3

=

Now, using Young’s inequality;y? ' < ;np + = 1yp foranyz,y > 0, we have

Lerwn miaos ailsol! + e (15, + )
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for some constant’s > 0. Collecting all the bounds above, we get the estimate

1d _
S IF @, <t CsIF @I + oMl fOI, + il Ol

e <|rf<t>u§p +M§) ~XIFOI,
<GS + (86 M2+ ) = T I,

+C1 | @) + Cs6 ME - §Hf( e,

since|| - ||;» = - ||». Choosing now such that (M, + C3) < x/2, we get the existence of
T,
positive constant§4, C5 andCg such that
1-0) _ -
. dtllf( G < CillF OIS + G5l PO = Coll FOIE, + C3MEs.
Itis not difficult to get then thatup, -, || f(¢) » < oo. This can be summarized in the following

Proposition 4.4 (Propagation of LP-norms). Letp € (1,00) and fy € Li N LP with unit mass.
Then, the solutiorf (¢) to (1) satisfies the following uniform bounds

sup (11£(®)lly + 17 ®)1» ) < oo.
t>0

Remark 4.5. Notice that the fact thaF; is of finite entropy (see Assumptionl2.1) has been used
here above, via the lower bour@.11) in order to control from below.” norms involving the
loss operatorL~. Whenever > 0, it is possible then to replace such estimates involingby
others that involve)~. Notice also that, whenever= 0 (i.e. in the linear case), only the above
constantC, vanishes and we still haveip, || f ()|l » < oc.

As a corollary, we deduce as in]32, Section 3.4], see hlsp fl2®following non-concentration
result:

Proposition 4.6(Uniform non-concentration). Let fy be given with unit mass. Assume that there
exists some € (1, 00) such thatfy € L1 N LP. Then, there exists some positive constarguch
that

Vo < / lv—ua®))*f(v,t)dv < /vy, YVt =0,
R3

wheref (v, t) is the solution to ) with f(0) = fo andu(t) = / vf(v,t)dv, t > 0.
R3

Proof. Let f(¢) be the solution td{I]1) withf (0) = fo. From the above Proposition, there exists
Cp > 0 such thakup, g || f(t)[|» < Cp, and Holder's inequality implies that, for amy> 0,

p—1

sup/ f(v,t)dv < Cp <47Tr ) .
120 J{|lv—u(t)|<r} 3
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Accordingly, there is some, > 0 such that

1
/ flu,t)dv < =, vt > 0.
{Jv—u(®)|<ro} 2

Then, for anyt > 0, recalling that[ f(v,t)dv =1 for anyt > 0,
R3

/ fo, ) —u(t)*dv > / fo,t)|v —u(t)]*dv > 7“(2]/ f(v,t)do
R3 {lv—u(t)|Zro} {lv—u(t)|Zro}
2 5
>ri|1— flo,t)ydv | > —
{lo—u(t)|<ro} 2
which concludes the proof. O

4.4. L' stability. As in [32], in order to prove the strong continuity of the segnbup (S;):>o
associated td{1l.1), one has to provide an estimatefof) — ¢(¢)|| for two solutionsf(¢) and
g(t) of @) with initial conditionsf(0), g(0) in some subspace df!. This is the object of the
following stability result, inspired by 132, Proposition23 and [31, Proposition 3.4].

Proposition 4.7 (L!-stability). Let fy, go be two nonnegative functions bf and letf(t), g(t) €
C(R*, L) n L>=(R*, L) be the associated solutions @). Then, there is\ > 0 depending
only onsup; > [ f(t) + g(t)|| 3 such that

1£(8) = 9®)llzy < Ifo— gollzy exp(At), Vvt > 0.

Proof. Leth(t) = f(t) — g(t). Then,h satisfies the following equation:

Auh(v,1) = T{Q(f, - Q(g,g>} LY. hO) = fo— o (4.10)

As in [31,[32], the proof consists in multiplyingT{4110) yv,t) = sgn(h(v,t))(v)? and integrat-
ing overR3. We get

% /R;; |h(v,1)|[(v)* dv = I(t) + L(t)

where

I(t) = T/RS {Q(f, f)— Q(g,g)}w(’u,t) dv and L(t) = L(h) (v, t)(v,t) dv.

R3
To estimate the integrdl(¢) we resume the arguments bf [31, Proposition 3.4] that we sball
again later. According td_(2.6)

10 =3 [ [ 00500 = g0090w.0) ldAcb(O](ww) do dv

The change of variablg®, w) — (w,v) implies that

160 =5 [, [ (0.0 = gl0.0) (7w.0) + gl 0) lalAb(O)0.w) du do
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Moreover, it is easily seen from the definition«pfthat
(£(0,8) — g0, ) ALH (0 w) < - 1£(0,8) — g(0,) [ (0 4+ @ = ) + (w)?) do
< 21f(0,1) — g(v,)] w)?
where we used the fact that [(-)2](v, w) = —15|g|? < 0. Therefore,

T f - 1) w + g(w U)2 vaw
T v, dv w + glw w?’dw
< / £ (v, 1) <> /3(f( )+ g(w, 1)) (w)

1) < 7| £6) + 90|y 1 £ = 90) | v >0, (4.11)

On the other hand, recalling théth)(v,t) = £1(h)(v,t) — v(v)h(v,t), from formula [33B) one
has

L(t) = » (v, t)dv . h(w, t)k(v,w)dw — /R3 v(v)|h(v,t)|(v)? dv

2 2
</RS<U> dv/RS|h(w,t)|k‘(v,w)dw—/RS v () |h(v, £)| ()2 dv,

ie. L(t) < L(|h))(v,t)(v)? dv. Now, since [ L(|h|)(v,t) dv = 0 for anyh, one gets that
R3 R3

N < /R LORD(w, 8) o] dv.

Resuming the calculations performed in Secfioh 4.1 (sedZ7)), one gets that

2/<;(1 / / |v—w| |h(v,)|F1(w)dv dw

//lqlq, Yh(v,t)|F1(w) dv dw

—)\/ / lg*|w||h(v, )|F1 (w) dv duw.
R3 ]R3
This leads to

0 < 5 (2 [ 1Pt olaw [ jolRsyaw 2 [ neoldo [ uPFi) o)

. 4
and, setting:;, = “ max {/ |w|F1(w) dw,/ Jw|>Fy(w) dw} , we get
A R3 R3

/£|h| (0,0) [v]? dv < —

0<er [ Il dv =i [£6) - 98]
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Gathering[[4.111) together with the latter estimate and tieg¢thenA = 7sup; || f(t)+9(t)[| 1+
¢+, we get the estimate

d
—1£@® = 9@, <AF®) = 9(8)] 1y £>0
and the proof is achieved. O

4.5. Well-posedness of the Cauchy problemWe are in position to prove that the Boltzmann
equation[[T11) admits a unique regular solution in the foihg sense:

Theorem 4.8(Existence and uniqueness of solution to the Cauchy problem). Take an initial da-
tum fo € L3. Then, for allT > 0, there exists a unique solutighe C([0, T]; L) N L>(0,T; L})
to the Boltzmann equatiof{1.1) such thfdv, 0) = fo(v).

Proof. Let T > 0 be fixed. The uniqueness @{[0, T]; L) N L>(0, T; L}) trivially follows from
Propositio 4J7. The proof of the existence is made in séwteps, following the lines of [31,
Section 3.3], see alsb[35,125].

Step 1. Let us first consider an initial daturfy € L1, and define the “truncated” collision
operators

1
(D)) do =5 [ | Lgg<n lalf(v) f(w) Ac[¥](v, w) dw do,
/Ra 2 /]R-’ /]R.s (4.12)

£aE) v de = [ [ T a0 ()2 00, w) dodu

R3
for any regular test functiog. The operatorg,, and L,, are bounded in anyzé, and they are

Lipschitz in L} on any bounded subset &f. Therefore, followingl[L], we can use the Banach
fixed point theorem to get the existence of a soluticq f,, € C([0, T); L3)NL>(0,T; L}) to the
Boltzmann equatiow; f = 79, (f, f) + L.(f). Thanks to the uniform propagation of moments
in Propositior 4R, there exists a constaht > 0 (that does not depend ar) such that

sujl% anHL}1 < Cr, Vn € N.

)

Step 2.Let us prove that the sequengg, ),, is a Cauchy sequenced|0, T); L3)NL>(0,T; L}).
For anym > n, writing down the equation satisfied by, — f,, and multiplying it by (v, t) =
sen(fm(v,t) — fulv,t)){v)? as in the proof of Propositidn 4.7, we get

% /RS [ (v,8) = fin (0, 0)[(0)? dv = Ly () + Jinn (1)
where
) =7 [ { @t ) = @uthr 1) ity

and

Ina®) = [ {£nlEa0.8) = £alf)w,0) oo, o
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We begin by estimating, ,(¢). Itis easy to see thak, ,,(t) = I}, ,,(t) + I2,,(t) where

Ban® =5 [ ] (508 fl0.0) = Fa0,)(0.6)) B @) A6 ) o o
while
=2 [ [ Bua) = Bala) fulost) a0 DA O)(0110) du o,
R3 JR3
whereB,,(q) = ’qu{\qKn}' Arguing as in the proof of{4.11), we get easily that
Ban®) < 75+ @ I5u® = FnOll . W0
The estimate ofglvn(t) is more involved. One observes first that

Bin(q) — Bu(q) = 4|1 {ngigi<my < lal (Lgjoisn/2y + Lijwisn/2}) -
As in the proof of Propositiof 4.7, one has

A (®) (0, w) < — / ()2 + ()2 + (0)? + ()2) do < 2((0)? + (w)?)
and, sinceq| < (v)(w), one gets

47 §2
Igz,n(t) < T/R3 /R3 fn(v,t) fn(w, t)|q| (1{\1)\9”/2} + 1{‘w|>n/2}) (<v>2 + <w>2) dw dw

<7 /R el 000 (007 + ) (L) + Lwrnyn) durde

It is not difficult to deduce then that

B <t [ £t a0) ([ 000 Lm0 ).
Sincesupyy 7 || fn(t)]| 22 < Cr foranyn € N, the latter integral is estimated as

dv  2C
/ Fa(0,8) (V) 1y 59y dv < / Fu(v, ) (v)? 1{@)%/2}@ <=L

n
and we get
2 2
2 (1) < 4¢< fim (v, 1) (0)3 dv> 20r < 8CTT, vt €[0,T], m>n.
’ R3 n n
Therefore,
SC’%T
Lnn(t) < 2707 fult) — fm(t)HL% = vt € [0,7], m > n. (4.13)

We proceed in the same way with,, ,(t). First, we notice that/,,, ,(¢) splits as.J,, »(t) =
ng7n(t)+J2 (1) with

m" Y /Rg /Rg ) [fm(v,t) = fu(v, )] Fi(w)Te [¢(1)] (v, w) dvdw
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and
1
ant) =5 [ [ 1Bn(a) = Bula)] 0,01 ()7, [0(0) (0. 0) dw s
Arguing as in the proof of Propositidn 4.7, we get

2k
Thn® < [ Ll = Do) do < 55 [ laPlull(h = £ (0, )1Fs ) dodo
R3 R3JR3
and there exists a positive constantsuch that
Thon(t) < el falt) = fn®)l V2 € [0,T).

Let us now estimatd%m(t). As above,

1
Bon®) =5 [ [ il falw 0F1 )7 (0] (0,0) do
R3 JR3

and

1 R . 2 R

T O] 0w) < oo [ 130 (07 + @) dn= T[] + o [ 12-nl0) do.
S2 ™ Js2

Calculations already performed lead then to

T [ ()] (v,w) < —2k{g, w) + 2(v)* < 2 ((v)(w)? + (v)?), Vo,w e R3.
Finally,

2
Bon®) <5 [ [ 15 a0 P2 w0) () 0)? + () dudo

S ; /RS /RS Lijgizny fu (0, )F 1 (w) ((0)* (w) + (0)*(w)?) dw dw,

Now, arguing as we did fof?, ,,(t), there exists some constafii- that depends only OfF || 11
andsup,, supjo 7y || f»(¢)] 1 such that
2 Cr
T (t) < o Vm >=n, tel0,T].

Gathering all these estimates, we obtain the existencersitaotsC, (1) andC»(T") that do not
depend onn, n such that
Co(T)

% /]R3 |fn(’U,t)_fm(U,t)|<’U>2 dv < Cl(T)an(t)—fm(t)HL%—k m— vt € [0,T],m > n.

This ensures thatf,, ), is a Cauchy sequence ([0, 7]; L}). Denoting byf its limit, we
obtain thatf € C([0,7]; LY) N L>(0,T; L}) is a solution to the Boltzmann equatidn{1.1) (with
the actual collision operatoi@ and ).

Step 3. When the initial datumfy € L3, we introduce the sequence of initial datg; :=
folp,<;- Sincefo; € L}, we have the existence of a solutigne C([0,T; Ly) N L>°(0,T; L})
to the Boltzmann equation associated to the initial dafigmn Moreover, there exist€’r such
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thatsupyo 77 ||/l .1 < Cr. We establish again thay;); is a Cauchy sequencedif[0, 7; Li) by
using theL!-stability in Propositiof.Z]7. O

5. EXISTENCE OF NONTRIVIAL STATIONARY STATE
All the material of the previous sections allows us to statieroain result:

Theorem 5.1(Existence of stationary solutions). For any distribution functior¥; (v) satisfying
Assumptioli.Z]1 and any > 0, there exists a nonnegatiié € L1 N LP, p € (1,00) with unit
mass and positive temperature such thé(F, F') + L(F') = 0.

Proof. As already announced, the existence of stationary soltdi¢h.l) relies on the application
of LemmalZH to the evolution semi-grous;):>o governing [LI). Namely, fof, € L', let
f(t) = Sifo denote the unique solution tb—(Jl.1) with initial stgt€)) = f,. The continuity
properties of the semi-group are proved by the study of theeaproblem, recalled in Sectiéh 4.
Let us fixp, € (1,00). On the Banach spage = L}, thanks to the uniform bounds on tii¢ and
LPe norms, the nonempty convex subset

z={o<rey. [ rav=1 and sl +0rl. <]
i .

is stable by the semi-group provided is big enough. This set is weakly compactJhby
Dunford-Pettis Theorem, and the continuitySffor all ¢ > 0 on Z follows from Propositiof417.
Then, Lemmd2]4 shows that there exists a nonnegative reagigolution to[(TI1) i1 N LPe
with unit mass. In fact, the uniform in time? bounds also imply the boundednessFoin LP for
allp € (1, 00). O

As a corollary of Theorerir5.1, choosing= 0 allows us to prove the existence of a steady
state to théinear inelastic scattering operator £ when the distribution function of the background
is not a Maxwellian, generalizing the result bf[30] 28, 38].

Corollary 5.2. Let F; satisfy Assumption2.1. Then, the linear inelastic scateoperator £
defined by@Zd) admits a unique nonnegative steady statec L N LP, p € (1,00), with unit
mass and positive temperature.

Proof. The existence of a nonnegative equilibrium solutibne L1 is a direct application of
Theoren 511 with- = 0. A simple application of Krein-Rutman Theorem implies théqueness
of the stationary solutiod” within the range of nonnegative distributions with unit mas [

Remark 5.3 (H-Theorem and trend towards equilibrium). As in[28], it is possible to prove a
linear version of the classical/-Theorem for the linear inelastic Boltzmann equat{@nl) with
7T=0:

af =L(f), ft=0)=foeL" (5.1)
Namely, for any conve®! function® : RT — R, let
_ f(v) 1
Hy(f|F) = RBF(v)<I> (F(v)) dv, felL.
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Arguing as in[28], it is easy to prove that, if the initial statg has uniqgue mass and finite entropy
Hq>(f0|F) < o0, then

SHo(fOIF) <0 (120 52)

wheref(t) stands for the (unique) solution @.1). Moreover, still arguing as ifi28], one proves
that if moreover/ (1+ v? + |log fo()]) fo(v) dv < oo, then
R3

lim /R F(0,8) — F(v)| dv = 0.

t—o0

6. REGULARITY OF THE STEADY STATE

In this final section, our aim is to establish the existenceashe smooth stationary solution
to (I.J). Namely, adopting the strategy 0f[32, Section,4nd prove

Theorem 6.1 (Regularity of stationary solutions). There exists a stationary solutiof to the
Boltzmann equation

TQ(F,F)+ L(F)=0
that belongs t@>>°(R3).
We shall follow the same lines df [37, Theorem 5.5] and [3&;tBa 3.6], from which we de-

duce the exponential decay in time of singularities and thesmoothness of stationary solutions.
This proof needs the following ingredients:

i) The stability result already proved in Propositionl4.7.
i) An estimate on the Duhamel representatipn [32, ProjuwsB.4] of the solution td{111) (see
Propositio&.R).
i) A result of propagation of Sobolev norms (see Proposiit.3).

Let us first extend the regularity estimate bfl[32, PropositB.4] to our situation. For any
felLl let

D) =71+ |+ £) )+ o) =7 [ o= wlf(w) dw+ (o).

It is easy to see that, fofy € L}, the unique solutiorf (¢) to (I) is given by the the following
Duhamel representation:

f(v,t) = fo(v)e™ Jo S(£)(v,5)ds + /t (T Q+(f7 f)+ £+(f))(v,3) e~ [Es()wr)dr ds
0 (6.1)

= fo(v)G(v,0,1) +/0 (T QY (£, )+ LT (f)) (v,8)G (v, 5,t)ds

where we set

G(v,s,t) = exp <— /t X(f)(v,r) dr> 0<s<t, veR3.
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Proposition 6.2. There are some positive constadts,,,,, K such that for anys € Nandn > 0
we have

ICIGE 0.l ggor < Comne ™ol ( sup 17 o+ sup IS ) 62

\T\ \T\

and
t
| [ ctsntorn+crn)eaa 63
HFH
< Cou <sup IFCre  + sup I >||’“+3().
<rst Osr<t

Proof. The proof is quite similar td |37, Proposition 5.2]. Here;, stmplicity we have done it for
naturalk, although it is simple to generalize it ko> 0 by interpolation. Precisely, for anfyc L'
define

L)) = [ | Jo=wlf(w)du

Itis clear that
Y(f)(w) = L(rf +F1)(v), VfelL.

Now, according to[[23, Lemma 4.3], for any givér> 0 and anyd > 3/2, the linear operator
L: HY — Wit
is bounded, i.e. for any > 3/2 and anyk > 0, there existg’}, 5 such that
1L lyyrtroe < Crollgllps, Vo€ Hy.
Let us fix nowk € N ands > 3/2. SinceF; € H} due to Assumptioi 211, one deduces that
IS()llyrsree SCIF +Fullgg,  Vf € HY

where, as in the rest of the proof, we shall denote any pestonstant independent ¢gfand
possibly dependent dfi; by C'. Setting

t
Flos.t) = [ S(Drdn
one sees that
HF(-,sj)HWEILLoo <OVt — </ Hf ” kd?“) +C(t—8) ”F1HH§7 0<s<t.

Now, sinceL(g) > 0 for anyg > 0, according to Assumption 2.1 arld(2.11), we see that there
exists some constant > 0 such that

S(f)(v) = LF)(w) =>x, VfelL', f>0, YoeR3.
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By taking the successive derivatives@fv, s,t) = exp(—F'(v, s,t)), one gets as il [37, Proposi-
tion 5.2]

(k+1)/2

t
IG(-, S’t)”wﬁlv‘x’ < CeX(t=9) [«/t -5 (/ ”f('ﬂ’)”?{[; dr> +(t—s) HF1HH§ +1

< Qe K(t=9) (1 + sup Hf(wr)||lfﬁl> ’
s<r<t °

(6.4)

for some0 < K < x. Then, we shall use the following estimatel[37, Lemma 5.8} tilows to

exchange a time integral and a Sobolev norm:
t t Me—s) ) 1/2

Z(-,s)ds <—</ e I Z (-, 9)]| rd3> , VA >0, V/,reR.
/0 Hy Vi \Jo i

As a consequence we have for a@ng 0,

1

[ ot + £ ) Glosas

k+1
Hy

t 1/2
K(t—s 2 2 9
<c[ e (e @D ey + 127 (DG ) 165D i ds] .
Recall now the so—called Bouchut-Desvillettes-Lu regtylaesult in PropositionE-3l1 afd"3.2:
+ 2 2
194 Dllgs < C[IF e, + 1513 ]
and

15 () lgess <€ (IRl I g, + IF iz 1L

Arguing now as in[[37, Proposition 5.2] and using the este{&i4) with the choicé = n + 3,
we get

<C

[ QG+ £7 ) (9) Gt ds

k+1
HET

: 2 1/2
K(t—s) | £(. \|14 —2K (t—s) kL
ey e (1 s el ) ds]

s<r<t

< Cma (sup 176 s 1PN, )
0<r<t nt3 o0r<t n+3

which proves[(613). The proof df(8.2) is similar. O

A direct consequence of the previous result together withutiiform L2 bounds is the uniform
in time propagation of Sobolev norms. The proof is carrie@gxeactly as inl[3R, Proposition 3.5].
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Proposition 6.3. Let F; satisfy Assumptioiid.1. Ly € L, fo > 0 with unit mass and lef
be the unique solution of the Boltzmann equai@d) in C(R*; L) N L°°(R*; Li) associated
with fy. Then, for alls > 0 andn > 1, there existsv(s) > 0 such that

foeHy,, = sup 1 G )l < +o00.

The previous ingredients allow to proof the following thexor, see[|37, Theorem 5.5] for the
proof.

Theorem 6.4(Exponential decay of singularities). Let fo € L3 N L? with unit mass and lef

be the unique solution of the Boltzmann equai@d) in C(R*; L) N L>°(R*; L1) associated
with fy. LetF; satisfy Assumptiond.1. Let> 0, ¢ > 0 be arbitrarily large. Thenf splits into
the sum of a regular and a singular paft= fz + fs where

sup [frR(O)l|gsnry < +o0,  fr=0
20

IN>0: I £s(®)lly = O(e™™).

Proof. The proof is easily adapted fron ]32, Theorem 3.6] sincelthstability result (Proposi-
tion[41), the Duhamel representation (Proposifioh 6t#) Liniform propagation of Sobolev norms
(Propositior 6.B) allow to adapt directly |37, Theorem 5.5] O

Finally, Theoreni.&} allows to prove the main Theofen 6.1.
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