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REMARKS ON THE BLOW-UP OF SOLUTIONS TO A TOY MODEL FOR THE NAVIER-STOKES EQUATIONS

, which is arbitrarily large but yet generates a global solution to the Navier-Stokes equations in three space dimensions, actually causes blow up for the toy model -meaning that the precise structure of the nonlinear term is crucial to understand the dynamics of large solutions to the Navier-Stokes equations.

where u = (u 1 , . . . , u d ) is the velocity of an incompressible, viscous, homogeneous fluid evolving in R d , and p is its pressure. Note that the divergence free condition allows to recover p from u through the formula -∆p = div (u • ∇u). A formally equivalent formulation for (NS) can be obtained by applying the projector onto divergence free vector fields P def = Id -∇∆ -1 div to (NS):

∂ t u -∆u + P(u • ∇u) = 0 u |t=0 = u 0 = P u 0 .
This system has three important features:

(E) (the energy inequality): the L 2 (R d ) norm of u is formally bounded for all times by that of the initial data;

(I) (the incompressibility condition): the solution satisfies for all times the constraint divu = 0;

(S) (the scaling conservation): if u is a solution associated with the data u 0 , then for any positive λ, the rescaled u λ (t, x) def = λu(λ 2 t, λx) is a solution associated with u 0,λ (x) def = λu 0 (λx).
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Of course the two first properties are related, as (I) is the ingredient enabling one to obtain (E), due to the special structure of the nonlinear term.

Taking (E) into account, one can prove the existence of global, possibly non unique, finite energy solutions (see the fundamental work of J. Leray [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]). On the other hand the use of (S) and a fixed point argument enables one to prove the existence of a unique, global solution if the initial data is small in scale-invariant spaces (we will call "scale-invariant space" any Banach space X satisfying λf (λ•) X = f X for all λ > 0): for instance the homogenenous

Sobolev space Ḣ d 2 -1 , Besov spaces Ḃ-1+ d p p,∞
for p < ∞ or the space BM O -1 . We recall that

f Ḃs p,q def = t -s 2 e t∆ f L p (R d ) L q (R + ; dt t )
, and

f BM O -1 def = sup t>0 t 1 2 e t∆ f L ∞ + sup x∈R d R>0 R -d 2 P (x,R) |e t∆ f (t, y)| 2 dy 1 2
, where P (x, R) = [0, R 2 ]×B(x, R) and B(x, R) denotes the ball of R d of center x and radius R.

We refer respectively to [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF], [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes[END_REF] and [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] for proofs of the wellposedness of (NS) for small data in those spaces. When d = 2, the smallness condition may be removed: that has been known since the work of J. Leray ([12]) in the energy space L 2 (which is scale invariant in two space dimensions), and was proved in [START_REF] Gallagher | On global infinite energy solutions to the Navier-Stokes equations in two dimensions[END_REF], [START_REF] Germain | Équations de Navier-Stokes en deux dimensions : existence et comportement asymptotique de solutions d'énergie infinie[END_REF] for larger spaces, provided they are completions of the Schwartz class for the corresponding norm (Besov or BM O -1 norms).

It is well known and rather easy to see that the largest scale invariant Banach space embedded in the space of tempered distributions is Ḃ-1 ∞,∞ . In three or more space dimensions, it is not known that global solutions exist for smooth data, arbitrarily large in Ḃ-1 ∞,∞ . We will not review here all the progress made in that direction in the past years, but merely recall a few of the main recent achievements concerning the possibility of blow up of large solutions. Recently, D. Li and Ya. Sinai were able in [START_REF] Li | Blow ups of complex solutions of the 3d-Navier-Stokes system and Renormalization group method[END_REF] to prove the blow up in finite time of solutions to the Navier-Stokes equations for complex initial data. We note that, as for the system that we construct in the present paper, the complex Navier-Stokes system does not satisfy any energy inequality. Before that, some numerical evidence was suggested to support the idea of finite time blow up of (NS) (see for instance [START_REF] Nagayama | On the blow-up of some similarity solutions of the Navier-Stokes equations[END_REF] or [START_REF] Grundy | Three-dimensional blow-up solutions of the Navier-Stokes equations[END_REF]). On the other hand in [START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3[END_REF] a class of large initial data was constructed, giving rise to a global, unique solution; this family will be presented below. Another type of example was provided in [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF]. It should be noted that in both those examples, the special structure of the equation is crucial to obtain the global wellposedness. In [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF], S. Montgomery-Smith suggested a model for (NS), with the same scale invariance and for which the same global wellposedness results hold for small data. The interesting feature of the model is that it is possible (see [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF]) to prove the blow up in finite time of some solutions. The model is the following:

(TNS 1 ) ∂ t u -∆u = √ -∆ (u 2 ) in R + × R .
The main ingredient of the proof of the existence of blowing-up solutions consists in noticing that if the initial data has a positive Fourier transform, then that positivity is preserved for the solution at all further times. One can then use the Duhamel formulation of the solution and deduce a lower bound for the Fourier transform that blows up in finite time. We will not write more details here as we will be reproducing that computation in Section 2.

In this paper we adapt the construction of [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF] to higher space dimensions. In order to have a proper model in higher dimensions it is important to preserve as many features of the Navier-Stokes equations as possible. Here we will seek to preserve scaling (S) as well as the divergence free condition (I) (as we will see, condition (E) cannot be preserved in our model). This amounts to transforming the nonlinear term proposed in [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF] (see Equation (TNS 1 ) above) in such a way as to preserve both the positivity conservation property in Fourier space and the incompressibility condition. This is in fact a technicality which may be handled by explicit computations in Fourier space; actually the more interesting aspect of the result we obtain is that the initial data constructed in [START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3[END_REF] to show the possibility of global solutions associated with arbitrarily large initial data actually generates a blow-up solution for (TNS 3 ). This, joint to the fact that we are also able to obtain blowing-up solutions in the two dimensional case, indicates that proving a global existence result for arbitrarily large data for (NS) requires using the energy estimate, or the specific structure of the nonlinear term -two properties which are discarded in our model.

Let us state the result proved in this paper.

Theorem 1. Let the dimension d be equal to 2 or 3. There is a bilinear operator Q, which is a d-dimensional matrix of Fourier multipliers of order one, such as the equation

(TNS d )    ∂ t u -∆u = Q(u, u) in R + × R d div u = 0 u |t=0 = u 0
satisfies properties (I) and (S), and such that there is a global, unique solution if the data is small enough in BM O -1 . Moreover there is a family of smooth initial data u 0 , which may be chosen arbitrarily large in Ḃ-1 ∞,∞ , such that the associate solution of (TNS d ) blows up in all Besov norms, whereas the associate solution of (NS) exists globally in time.

The proof of the theorem is given in the sections below. In Section 2 we deal with the two dimensional case, while the three dimensional case is treated in Section 3: in both cases we present an alternative to the bilinear term of (NS), which preserves scaling and the divergence free property, while giving rise to solutions blowing up in finite time, for some classes of initial data. The fact that some of those initial data in fact generate a global solution for the three dimensional Navier-Stokes equations is addressed in Section 4.

Remark 1.1. We note that the method of the proof allows to construct blowing up solutions for the hyper-viscous case, meaning for equations of the form

   ∂ t u -∆ α u = Q(u, u) in R + × R d div u = 0 u |t=0 = u 0 where α ≥ 1 and ∆ α f = F -1 (|ξ| 2α f (ξ))
. Indeed, the only important feature in order to construct blowing-up solutions by the method of [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF] is that the system written in the Fourier variable, preserves the positivity of the symbol, and so, the positivity of ûj (t, ξ) if ûj 0 (ξ) > 0, for any j ∈ {1, . . . , d}.

Remark 1.2. In the two dimensional case, it might seem more natural to work on the vorticity formulation of the equation: in 2D it is well known that the vorticity satisfies a transportdiffusion equation, which provides easily the existence of global solutions for any sufficiently smooth initial data. An example where the vorticity equation is modified (rather than (NS)) is provided at the end of Section 2 below.

Proof of the theorem in the two-dimensional case

In this section we shall construct the quadratic form Q, as given in the statement of Theorem 1, which allows to construct blowing up solutions for the (TNS 2 ) system.

Let us consider a system of the following form:

∂ t u -∆u = Q(u, u) -∇p div u = 0.
Taking the Leray projection of this equation, we obtain

∂ t u -∆u = P Q(u, u).
We wish to follow the idea of the proof of [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF], thus to construct Q = P Q as a matrix of Fourier multipliers of order 1, such that the product P Q preserves the positivity of the Fourier transform. We define Q(u, u) as the vector whose j-component is, for j ∈ {1, 2},

(Q(u, u)) j = i q i,j (D)(u i u j ), (2.1) 
and we impose that q i,j (D) are Fourier multipliers of order 1. For example, let us simply choose

Q(ξ) = |ξ|1 ξ 1 ξ 2 <0 1 1 1 1 .
Recalling that

P(ξ) =   1 - ξ 2 1 |ξ| 2 -ξ 1 ξ 2 |ξ| 2 -ξ 1 ξ 2 |ξ| 2 1 - ξ 2 2 |ξ| 2   ,
we easily obtain

P Q(ξ) = 1 ξ 1 ξ 2 <0 1 |ξ| ξ 2 2 -ξ 1 ξ 2 ξ 2 2 -ξ 1 ξ 2 ξ 2 1 -ξ 1 ξ 2 ξ 2 1 -ξ 2 ξ 1
, so all the elements of this matrix are positive.

The Duhamel formulation of (TNS 2 ) reads

u j (t, ξ) = e -t|ξ| 2 u j 0 (ξ) + i t 0 e -(t-s)|ξ| 2 q i,j (ξ)( u i (s) * u j (s)) ds,
where we have denoted by q i,j (ξ) the matrix elements of P Q(ξ).

It is not difficult to see that all the usual results on the Cauchy problem for the Navier-Stokes equations hold for this system (namely results of [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF], [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes[END_REF] and [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] as recalled in the introduction). Moreover it is clear that if the Fourier transform of u 0 is positive, then that positivity property holds for all times.

Now let us construct a data generating a solution blowing up in finite time. We will be following closely the argument of [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF], and we refer to that article for all the computational details. We start by choosing the initial data u 0 = (u 1 0 , u 2 0 ) such that u 1 0 ≥ 0, and the support of u 1 0 lies in the second and fourth sector of the complex plane, that is the zone where ξ 1 ξ 2 < 0; we also suppose this spectrum is symmetric with respect to zero (and to fix notation, that the support of u 1 0 intersects the set |ξ j | ≥ 1/2, for j ∈ {1, 2}). Taking into account the divergence free condition which states that u 2 (ξ) = -ξ 1 ξ 2 ξ 2 2 u 1 (ξ), we deduce that u 2 is supported in the same region as u 1 and is also nonnegative.

Let us denote by A the L 1 norm of u 0 (which will be assumed to be large enough at the end), and let us write u 0 = Aw 0 . The idea, as in [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF], is to prove that for any k ∈ N and j ∈ {1, 2}, (2.2)

u j (t, ξ) ≥ A 2 k e -2 k t 2 k-4(2 k -1) 1 t≥t k w k,j 0 (ξ)
where we have written, w k,j 0 = (w 0,j 0 ) 2 k and w 0 0 is the restriction of w 0 1 |ξ j |≥1/2 to the second sector of the plane. Finally the time t k is chosen so that t 0 = 0 and t k -t k-1 ≥ 2 -2k log 2. Notice that lim k→∞ t k = log 2 1/3 . The result (2.2) is proved by induction. Suppose that (2.2) is true for k -1 (it is clearly true for k = 0). Due to the positivity of u 0 , we can write

u j (t, ξ) ≥ i t 0 e -(t-s)|ξ| 2 q i,j (ξ)( u i (s, ξ) * u j (s, ξ)) ds ≥ t 0
e -(t-s)|ξ| 2 q j,j (ξ)( u j (s, ξ) * u j (s, ξ)) ds and using the induction assumption, along with the support restriction of w k-1,j 0 , we find that

u j (t, ξ) ≥ t 0 e -(t-s)|ξ| 2 q j,j (ξ)(A 2 k -1 α k-1 (s)) 2 ds w k-1,j 0 * w k-1,j 0 (ξ) ≥ t 0 e -(t-s)2 2k q j,j (ξ)(A 2 k -1 α k-1 (s)) 2 ds w k-1,j 0 * w k-1,j 0 (ξ), where α k (t) = 2 k-4(2 k -1) 1 t≥t k . But w k-1,j 0 * w k-1,j 0 = w k,j
0 , and on the support of w k,j 0 we have q j,j (ξ) ≥ C2 k . The induction then follows exactly as in [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF].

Once (2.2) is obtained, the blow up of all Ḃs

∞,∞ norms follows directly, noticing that u j (t ∞ ) can be bounded from below in Ḃs ∞,∞ by C(Ae -t∞ 2 -4 ) 2 k 2 (s+1)k , which goes to infinity with k as soon as Ae -t∞ 2 -4 > 1. That lower bound is simply due to the fact that (calling ∆ k the usual Littlewood-Paley truncation operator entering in the definition of Besov norms)

u(t ∞ ) Ḃs ∞,∞ = sup k 2 ks ∆ k u(t ∞ ) L ∞ ≥ sup k 2 ks |∆ k u(t ∞ , 0)| = sup k 2 ks ∆ k u(t ∞ ) L 1 since ∆ k u(t ∞ ) is nonnegative.
Remark 2.1. One can notice that as soon as the matrix Q has been defined, the computation turns out to be identical to the case studied in [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF]. In particular the important fact is that u 0 is nonnegative (and that its support intersects, say, the set |ξ j | ≥ 1/2). Remark 2.2. As explained in the introduction, it seems natural to try to improve the previous example by perturbing the vorticity equation, since that equation is special in two space dimensions. Let us therefore consider the vorticity ω = ∂ 1 u 2 -∂ 2 u 1 . As is well known, the two dimensional Navier-Stokes equations can simply be written as a transport-diffusion equation on ω:

∂ t ω + u • ∇ω -∆ω = 0,
which can also be written, since u is divergence free,

∂ t ω + ∂ 1 (u 1 ω) + ∂ 2 (u 2 ω) -∆ω = 0.
Changing the place of the derivatives, and noticing that a derivative of u has the same scaling as ω, a model equation for the vorticity equation is simply

∂ t ω + ω 2 -∆ω = 0.
This simplified model is a semilinear heat equation for which the blow-up of the solution is well known (see [START_REF] Friedman | Remarks on nonlinear parabolic equations[END_REF], [START_REF] Fujita | On the blowing up of solutions of the Cauchy problem for ut = ∆u + u 1+α[END_REF]). It is also easy to see that the argument of [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF] is true for this system, which therefore blows up in finite time for large enough initial data with negative Fourier transform. One can note that the equation on u becomes

∂ t u + ∇ ⊥ ∆ -1 (curl u) 2 -∆u = -∇p , div u = 0,
which blows up but does not preserve the sign of the Fourier transform.

Proof of the theorem in the three-dimensional case

The three-dimensional situation follows the lines of the two-dimensional case studied above, though it is slightly more technical. The main step, as in the previous section, consists in finding a three-dimensional matrix Q such that the Fourier transform of the product P Q has positive coefficients (we recall that P denotes the L 2 projection onto divergence free vector fields). Let us define, similarly to the previous section, the matrix

Q(ξ) = |ξ|1 ξ∈E   1 1 1 1 1 1 1 1 1   ,
where

E def = ξ ∈ R 3 , ξ 1 ξ 2 < 0, ξ 1 ξ 3 < 0, |ξ 2 | < min(|ξ 1 |, |ξ 3 |) .
We compute easily that

P Q(ξ) = 1 ξ∈E |ξ| -1   ξ 2 2 + ξ 2 3 -ξ 1 ξ 2 -ξ 1 ξ 3 ξ 2 2 + ξ 2 3 -ξ 1 ξ 2 -ξ 1 ξ 3 ξ 2 2 + ξ 2 3 -ξ 1 ξ 2 -ξ 1 ξ 3 ξ 2 1 + ξ 2 3 -ξ 1 ξ 2 -ξ 2 ξ 3 ξ 2 1 + ξ 2 3 -ξ 1 ξ 2 -ξ 2 ξ 3 ξ 2 1 + ξ 2 3 -ξ 1 ξ 2 -ξ 2 ξ 3 ξ 2 1 + ξ 2 2 -ξ 1 ξ 3 -ξ 2 ξ 3 ξ 2 1 + ξ 2 2 -ξ 1 ξ 3 -ξ 2 ξ 3 ξ 2 1 + ξ 2 2 -ξ 1 ξ 3 -ξ 2 ξ 3   .
Let us consider the sign of the matrix elements of P Q(ξ). The first line of the above matrix is clearly made of positive scalars, due to the sign condition imposed on the components of ξ.

The components of the second line may be written

ξ 2 1 + ξ 2 3 -ξ 1 ξ 2 -ξ 2 ξ 3 = ξ 2 1 -ξ 1 ξ 2 + ξ 3 (ξ 3 -ξ 2 )
, which is also positive since either ξ 2 and ξ 3 are both positive, in which case ξ 3 > ξ 2 , or they are both negative in which case ξ 3 < ξ 2 . Similarly one has

ξ 2 1 + ξ 2 2 -ξ 1 ξ 3 -ξ 2 ξ 3 = ξ 2 1 + ξ 2 2 -ξ 3 (ξ 1 + ξ 2 )
, and either ξ 1 > 0, ξ 2 < 0, ξ 3 < 0 and ξ 1 + ξ 2 > 0, or ξ 1 < 0, ξ 2 > 0, ξ 3 > 0 and ξ 1 + ξ 2 < 0. So the third line is also made of positive real numbers. Now that it has been checked that all coefficients are positive, we just have to follow again the proof of the two dimensional case to obtain the expected result, showing the blow up of solutions to ∂ t u -∆u = Q(u, u), u |t=0 = u 0 , where Q(u, u) = P Q(u, u) is the vector defined as in (2.1). We will not write all the details, which are identical to the two-dimensional case, but simply give the form of the initial data, which is summarized in the next proposition. Proposition 3.1. Let u 0 be a smooth, divergence free vector field such that the components of u 0 are even, nonnegative functions, such that the support of u 0 intersects the set |ξ j | ≥ 1/2, for j ∈ {1, 2, 3}. Then the unique solution to (TNS 3 ) associated with u 0 blows up in finite time, in all Besov spaces.

We will not detail the proof of that proposition, as it is identical to the two dimensional case (thus in fact to [START_REF] Montgomery-Smith | Finite-time blow up for a Navier-Stokes like equation[END_REF]).

Of course one must check that such initial data exists. The simplest way to construct such an initial data is simply to suppose it only has two nonvanishing components, say u 1 0 and u 2 0 , and that the Fourier transform of u 1 0 is supported in 1 ξ 1 ξ 2 <0 while intersecting the set |ξ j | ≥ 1/2. The divergence free condition ensures that the same properties hold for u 2 0 (and u 3 0 is assumed to vanish identically). An explicit example is provided in the next section.

That ends the proof of the "blowing up" part of the theorem. Remark 3.1. Notice that in that example, the energy inequality (E) cannot be satisfied, as it would require that (Q(u, u)|u) L 2 ≥ 0, which cannot hold in our situation if the Fourier transform of u is nonnegative.

4.

Examples of arbitrarily large initial data providing a blowing up solution to (TNS 3 ) and a global solution to (NS)

In this short section, we check that the initial data provided in [START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3[END_REF] and which allows to obtain large, global solutions for Navier-Stokes equations, gives rise to a solution blowing up in finite time for the modified three dimensional Navier-Stokes equation constructed in the previous section.

More precisely we have the following result.

Proposition 4.1. Let φ be a function in S(R 3 ), such that φ ≥ 0, and such that φ is even and has its support in the region 1 ξ 1 ξ 2 <0 , while intersecting the set |ξ j | ≥ 1/2, for j ∈ {1, 2, 3}.

Let ε and α be given in ]0, 1[, and consider the family of initial data u 0,ε (x) = (∂ 2 ϕ ε (x), -∂ 1 ϕ ε (x), 0) where ϕ ε (x) = (-log ε)

1 5 ε 1-α cos x 3 ε (∂ 1 φ) x 1 ,
x 2 ε α , x 3 . Then for ε > 0 small enough, the unique solution of (NS) associated with u 0,ε is smooth and global in time, whereas the unique solution of (TNS 3 ) associated with u 0,ε blows up in finite time, in all Besov norms. Remark 4.1. It is proved in [START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3[END_REF] that such initial data has a large Ḃ-1 ∞,∞ norm, in the sense that there is a constant C such that C -1 (-log ε)

1 5 ≤ u 0,ε Ḃ-1 ∞,∞ ≤ C(-log ε) 1 5 
.

To prove Proposition 4.1, we notice that the initial data given in the proposition is a particular case of the family of initial data presented in [START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3[END_REF], Theorem 2, which generates a unique, global solution as soon as ε is small enough (in [START_REF] Chemin | Wellposedness and stability results for the Navier-Stokes equations in R 3[END_REF] there is no restriction on the support of the Fourier transform and ∂ 1 φ is simply φ). So we just have to check that the initial data fits with the requirements of Section 3 above, and more precisely that it satisfies the assumptions of Proposition 3.1. Notice that ϕ ε (ξ) = (-log ε)

1 5 2ε 1-2α iξ 1 φ(ξ 1 , ε α ξ 2 , ξ 3 + 1 ε ) + iξ 1 φ(ξ 1 , ε α ξ 2 , ξ 3 - 1 ε )
We need to check that u i 0,ε ≥ 0, for i ∈ {1, 2, 3}, and that the Fourier support intersects the set |ξ j | ≥ 1/2. We have u 0,ε (ξ) = (-log ε)

1 5 2ε 1-2α -ξ 1 ξ 2 φ(ξ 1 , ε α ξ 2 , ξ 3 ± 1 ε ), ξ 2 1 φ(ξ 1 , ε α ξ 2 , ξ 3 ± 1 ε
), 0 , and we have clearly the desired properties.

This ends the proof of the proposition, and of the theorem.
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 1 Introduction Consider the Navier-Stokes equations in R d , for d = 2 or 3, t u -∆u + u • ∇u = -∇p div u = 0 u |t=0 = u 0 ,