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VARIATIONAL CHARACTERIZATIONS OF THE EFFECTIVE MULTIPLIC ATION
FACTOR OF A NUCLEAR REACTOR CORE

Bertrand LoDs

Université Blaise Pascal (Clermont II)
Laboratoire de Mathématiques, CNRS UMR 6620
63117 Aubiere, France.
| ods@rat h. uni v- bpcl ernmont . fr

ABSTRACT. We prove some inf—sup and sup—inf formulae for the so-a¢adféective multiplication
factor arising in the study of reactor analysis. We treat #ame formalism the transport equation and
the energy—dependent diffusion equation.

KEYwoRDS: effective multiplication factor, nuclear reactor, neuttransport equation, energy—dependent
diffusion equation, positivity.

AMS SuBJECTCLASSIFICATION: 82D75, 35P15.

1. INTRODUCTION

The aim of this paper is to give some variational characions of theeffective multiplication
factor arising in nuclear reactor theory. This work follows a veecent paper by M. Mokhtar-
Kharroubi 2] devoted to the leading eigenvalue of transport operators.

In practical situations, thpower distributionin a stable nuclear reactor core is determined as the
steady-state solution of a linear transport equation for the neutron flux. Becadiseteractions be-
tween neutrons and fissile isotopes, a fission chain reaaticurs in the reactor core. Precisely, when
an atom undergoes nuclear fission, some neutrons are efemtethe reaction and subsequently shall
interact with the surrounding medium. If more fissile fugbissent, some may be absorbed and cause
more fissions (see for details Ref5, B, 11, 25]). The linear stationary transport equation is there-
fore of non-standard type in the sense that the source teitseisa function of the solution. When
delayed neutrons are neglected, this equation reads

v Vao(z,v) + o(z,v)p(z,v) — / ks(z, 0,0 )p(z,v")du(v') =

1%
k:iﬂf/V’if(x,v,v’)ﬂ:v,v')du(v') (1.1)

with free-surfaceboundary condition (i.e. the incoming flux is null). Hereg tmknowny(z, v) is the

neutron density at point € D and velocityy € V, whereD is an open subset &" (representing

the reactor core) and the velocity spdces a closed subset @, du(-) being a positive Radon

measure supported By. For the usual casedy(-) is either the Lebesgue measure®N (contin-

uous model) or on spheres (multigroup model). The transfessesections:(-,-,) ands(-,-,-)

describe respectively thamure scatteringand thefissionprocess. Th@onnegativebounded function
1
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o(-,-) is theabsorption cross—sectidl, 11, 25]. The positive ratidk.g is called thecriticality eigen-
value (or theeffective multiplication factqr It represents the average number of neutrons that go on
to cause another fission reaction. The remaining neutrdhsrefil to induce fission, or never get
absorbed and exit the system. Consequehtly,measures the balance between the number of neu-
trons in successive generations (where the birth eventatapg generations is the fission process).
The interpretation of the effective multiplication facteyg is related to the following three cases (see
[5, 11, 25]):

o If kg = 1, there is a perfect balance between production and rembwvautrons. The reactor
is then said to beritical.

e The reactor issub-critical when k. < 1. This means that the removal of neutrons (at the
boundary or due to absorption by the surrounding media)ssesethe fission process and the chain
reaction dies out rapidly.

e Whenk.s > 1, the fission chain reaction grows without bound and the oedstsaid to be
super—critical

Up to now, in practical applications, the effective muitiption factork.g was usually given by
e [(T = Ks)7'Ky] = kesr, where the precise definition of the operatafs K, and K is given
subsequently and,[B] denotes the spectral radius of any generic bounded opeRatot, [B] =
lim,, . ||B"||'/". Because its requires the computation of the resoly&nt- IC,)~!, such a char-
acterization makes the analysis of the effective multgilean factor quite difficult to handle. In
particular, practical estimates hbfy as well as computational approximations are rather ingbawed
merely rely on (direct or inverse) power methd@]. [Our main objective in this paper is to provide
tractable variational characterizationsif; in terms of the different data of the system and suitable
test functions. We hope that such a characterization shaif interest for practical computations or
for the homogenization of the above criticality transparti@ion in periodic medial] 4, 21]. We
also believe that our characterization can be useful in ¢fieate optimization problem of the assem-
bly distribution in a nuclear reactor (see the recent cbation [28] based upon the homogenization
method and where the criticality eigenvalkig: plays a crucial role).

To be precise, we provide hevariational characterization®f the effective multiplication factor
of the type

—_

v Vgl v) + o(z,0)p(,v) — / Sa(z, 0,0 (2, v )dpu(v')

= min+ ess sup v
peW, (z,0)eDxV /‘/Ef(x,v,v')go(%?)')d”(?)')

NA
@
=N

(1.2)

v Vap(z,v) + o, 0)p(x, v) — / 54 (2, 0,0 ) (@, o)A ()
= max essinf v

@EW; (z,v)EDXV AZf(%,U,U,)W(xyv/)du(vl)

)
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whereW " is a suitable class giositive test—functions L?(D x V, dzdu(v)) (1 < p < o). This
result (Theorend.3) holds true under compactness assumption offiutheollision operator

K wb—>/ (z,0,0") + Zf(2,0,0")) ¥(x,0") du(v”)

and underpositivity assumptions on the fission cross—seciigf, -, -). The main strategy to derive
(1.2) is adapted fromZ2] where M. Mokhtar-Kharroubi proved similar variationalashcterizations
for the leading eigenvalue glerturbedtransport operators. Note that the above characterizatithn
holds true for transport equations with general boundanditions modeled by some nonnegative
albedo operator (see Remdal6).

At this point, one recalls that, besides the critical eigéme k., it is also possible to investigate
the reactivity of the nuclear reactor core through anothessigal parameter, namely, the leading
eigenvalues(A) of the operatord = T+ K,+Ky, also associated to positive eigenfunctions. The two
parameterg.¢ ands(.A) are related by the following: i(.A) < 0 then the reactor is subcritical (i.e.
ke < 1), while it is super-critical wheneves(.A) > 0. The reactor is critical whes(A) = 0. The
paper R2] provides a variational characterization of the leadirgpaivalue of the transport operator
A. However, for practical calculations in nuclear enginegrithe critical eigenvalué.g is a more
effective parameter. Actually, the existence of the legdilgenvalues(7 + K + KCy) is not always
ensured but is related to the size of the domRiand the possibility of small velocities (for more
details on this disappearance phenomenon, see &%.Chapter 5]). Since the existence of the
effective multiplication factor is not restricted by sudhygical constraints, it appears more efficient
to measure the reactivity of nuclear reactor coregdgy This is what motivated us to generalize the
result of R2] and provide variational characterization/gf;.

In this paper, we also give a characterization of the ctiticaigenvalue associated to teaergy-
dependent diffusiomodel used in nuclear reactor theoby 24, 25]. For this description, the critical
problem reads

—div,(D(r, ) Va0, £)) + oz, )l €) — [E Sa(2.6.6') ol &) de’

1

- keﬁ/EEf(%&fl) o(z,&)de', (1.3)

complemented by the Dirichlet boundary conditiaris ) sp = 0 a.e.{ € E. Here £ is the set of
admissible energie$ = va (m being the neutron mass amdhe velocity), i.e.E is a subset of
[0, 4+00]. The diffusion coefficienD(-, -) is a matrix—valued function ovéP x E and the unknown
o(+,-) is nonnegative

The derivation of diffusion-like models for some macroscagistribution functiono(z, &) (corre-
sponding to some angular momentum of the solutidn (1.1)) is motivated in nuclear engineering
by the necessity to provide simplified models tractable mioally. Such aenergy-dependent diffu-
sionmodel can be derived directly from a phenomenological amlgf the scattering models or it
can be derived from the above kinetic equatidnl) through a suitable asymptotic procedure (see
[10] and the references therein for more details on that matter)
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For thisenergy-dependent diffusianodel, we give a variational characterizationkgf in terms
of sup-inf and inf-sup criteria in the spirit o1 (2).

Actually, to treat the two above problents {) and (.3) it is possible to adopt a unified mathemat-
ical formalism. Precisely, let us denote Ky the integral operator with kernel(-, -,-) and denote
by K the integral operator with kerngls (-, -, -). Then, problemsl(1) and (L.3) may be written in a
unified abstract way

1
T¢eff + Ks¢eff + H’qubeff =0, ¢eff = 07

where the unbounded operat@rrefers to, according to the model we adopt:
e the transport operator:

Tgb(:ﬂ, v) = U vm¢(x> U) - U(:C, v)qb(ac, U)>

associated to the absorbing boundary conditipps = 0.
e the energy—dependent diffusion operator:

Tep(z,€) = divy (D(z,)Varh(z,§)) — oz, Y(z,§)
with Dirichlet boundary conditiong op(-,§) = 0 (a.e.§ € E).

The abstract treatment of the above problem is performedétic@?2 and relies mainly on positiv-
ity and compactness arguments. The nabstractresult of this paper (Theore&15 characterizes
the criticality eigenvalue of a large class of (abstractjaumded operators ih?-spaces. Besides this
main analytical result, we also prove abstract results Wigir own interest. In particular, we pro-
vide in Theoren2.12an approximation resolution for the criticality eigenfuimn ¢.¢ which shall
be hopefully useful for practical numerical approximagon

The outline of the paper is as follows. In Section 2, we désdie unified and abstract framework
which allows us to treat in a same formalism Problethd)(and (.3) with the aim of establishing
general inf-sup and sup-inf formulae for the criticalitgezivalue of a class of unbounded operator.
In Section 3, we are concerned with the characterizatiorhefeffective multiplication factok.g
associated to the transport probleinlj. In Section 4, we investigate the effective multiplicatio
factor associated to the energy-dependent diffusion m@ddsl

2. ABSTRACT VARIATIONAL CHARACTERIZATION

This section is devoted to several abstract variationalaciterizations of the criticality eigenvalue.
It is this abstract material that shall allow us to treat ia $ame formalism Problems.() and (.3).

2.1. Setting of the problem and existence resultLet us introduce the functional framework we
shall use in the sequel. Given a measure spfe) and a fixedl < p < oo, define
X, =LP(Q,dv)

and denote byX, its dual space, i.eX, = LY(Q,dv) (1/p + 1/q = 1). We first recall several
definitions and facts abougiositive operatorsThough the various concepts we shall deal with could
be defined in general complex Banach lattices, we restrisebtes to operators i, (1 < p < 00):
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Definition 2.1. A bounded operatof3 in X, is said to beirreducible if, for every nonnegative <
X, \ {0} and nonnegative) € X, \ {0}, there exists: € N such that

(B"¢, %) >0,
where(-, -) is the duality pairing betweeX,, and the dual spacé,.
Let us denote the set guasi-interiorselements ofX,, by Xp+, ie.
XS ={feXy; flw)>0dv—aeweN}
Notice that, iff € X, then(f,) > 0 for any nonnegative) ¢ X, \ {0}.
Definition 2.2. A bounded operato3 in X,, will be said to bepositivity improvingif its maps
nonnegativef € X, \ {0} into X/, i.e.
feX,\{0},f>0= BfeX,.

Remark 2.3. Notice that, given a bounded operatBrin X, if some power of3 is positivity im-
proving, thenB is irreducible. This provides a practical criterion of irdeicibility.

Recall also several fact about power-compact operators.

Definition 2.4. A bounded operato3 in a Banach spaceX is said to bepower-compacif there
existsn € N such thatB™ is a compact operator iX .

The following fundamental result is due to B. De Pag8r [

Theorem 2.5. Let B be a bounded operator in a Banach spake If B is irreducible and power-
compact them,(B) > 0 wherer,(B) denotes the spectral radius &f.

Let 7 be a given densely defined unbounded operator
T:9(7T)CcX, — X,

such that
s(7) <0 and  (0-7)"'(X;}) c X, (2.1)
Let s andK; be twononnegative boundeaperators inX,,. We are interested in the abstract critical

problem:

(T+ K:s + ilcf)(ﬁeﬁ - 07 (beff € @(7)7 (beff Z 07 (beff 7é 0. (2'2)

Sinces(7) < 0, Problem 2.2) is equivalent to

1
kHKf)¢eﬁ:¢eﬁ7 (beff 207 ¢eff7é0-

Let us introduce the family of operators indexed by the pasparametety:

0—7T)""(Ks +

1
lC(’y):le—i—;le v > 0.

Therefore, solving4.2) is equivalent to prove the existence (and uniquenesk)qof> 0 such thatl
is an eigenvalue of0 — 7))~ 'K (k.z) associated to aonnegative eigenfunctiorSuch an existence
and uniqueness result can be foundlig,[Theorem 5.30] (see als@§]). We setlC = K, + Ky
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Theorem 2.6. Assume that0 — 7))~ 'K is power-compact and thgd — 7")~'K; is irreducible.
Then, the spectral problerf2.2) admits a unique solutiot.z > 0 associated with a nonnegative
eigenfunctionp.g if and only if

lim 74 [(0 — T 'K(y)]>1 and r,[(0-7T)'K,] < 1. (2.3)
b

Remark 2.7. Notice that our assumptions differs slightly from thafd8]. Actually, in[19], it is
assumed that0 — 7)1 () is power-compact and irreducible for any > 0. Our assumption

implies those of19]. Indeed, in this case, there is an integsr € N such that[(0 — T)*llC]N is
compact. Since, for any > 0, £(v) < max{l,1/v}/, one gets by a domination argument that
[(0— T)‘llC(y)]N is compact for anyy > 0. This means that the power at whith— 7)1 K(v)
becomes compact is independent of 0. In the same way, sind® — 7 ) 1K(y) > %(0 —T)7 'Ky

for any~ > 0, our assumption implies the irreducibility ¢ — 7)~1C(v) for any~ > 0. Notice
also that the result still holds ifo — 7) K, is irreducible.

Remark 2.8. Under the assumptions of the previous Theorem, we pointhatithe mappingy >
0 — 7,[(0 — T)~'K(v)] is continuous (segl5 Remark 3.3, p. 208] By analyticity arguments
(Gohberg-Shmulyan theorem), it is also strictly decregsifhus k. is characterizedoy

ro[(0 = T) " K (k)] = 1.

Let us now give some variational characterizations of thigcality eigenvaluek.; appearing in
Theorem2.6.

2.2. Abstract variational characterization of k.g. From now on, Assumptior2(3) is assumed to
be fulfilled. Let

W, i=2(T)n X, . (2.4)
We start with the following characterization kf; in terms ofsuper-solutiorto the spectral problem
(2.2.

Proposition 2.9. Assume that0 — 7)) ~1X(v) is power-compact and irreducible for any> 0. For
anyp € W, let

T+ (p) := sup{y > 0 such that(7 + K(v)) ¢ is nonnegative
with the conventiosup @ = 0. Then

keg = sup 74(p).
peW,

Proof. Let p € X, be a nonnegative eigenfunction f — 7)) ~1C(k.) associated with the spectral
radiusr,[(0 — 7)1 K(keg)] = 1, i.e.

(0—T)"'K(kewr) ¢ = .

Clearly, o € 2(T). Moreover, sincé0 — 7)~'K(kegz) is power-compact and irreducible, a well-
known consequence of Krein-Rutman Theorem is that

plw) >0 aewe
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i.e.o € W, . Now
(T + ,C(keff)) =0
is nonnegative so that, (p) > k.g and consequently

ke < sup T+(§0)-
peW,

Assume now thak.qs < sup 7,(p) et lety € W, be such thatry () > kes. Denotey =
peW,
7 (¢). By definition (7 + K(v))w > 0, i.e. (0 — T)"'K(y)y > <. Thus, for anyn € N,
[(0=T) KM = so
re[(0—T)7'K(7)] > 1.
Since,r,[(0 — T) 'K (keg)] = 1, Remark2.8 ensures thay < k., which contradicts the choice of
T+ (1Y) > ket O

The following illustrates the fact that the extremal valoghe above variational result is reached
only by the nonnegative solution to the spectral problard)(

Corollary 2.10. Assume thaf0 — 7)1 K(v) is power-compact and irreducible for any> 0. Then,
for any nonnegativeo € 2(7) \ {0}

T+ (@) = ke if and only if (T + K(kesr)) ¢ = 0.
Proof. Lety € 2(7) \ {0}, ¢ > 0, be such that (¢) = keg. Then(7 + K(keg)) ¢ = 0i.€.
(0=T) ' Klket) ¢ > . (2.5)
Suppose that
o # (0= T) " Kkest) ¢, (2.6)

and lety* € X, be anonnegativeeigenfunction of the dual operatti0 — 7) 'K (keg))* associated
107, [((0 — T) " K(ket))*] = 75[(0 — T) "1 K(keg)] = 1. Then, by @.5) and @.6)

(0, 9") < (0= T) " Klkesr) 0, 4*)
= (¢, (0= T) 7 Klherr)* ") = 75 [((0 = T) " Klker)) ] {9, ")
= (o, 9",
which leads to a contradiction. Henge= (0 — 7) 'K (keg) 0, i-€.
(T + K(ket))p = 0.

Conversely, ifp is a nonnegative eigenfunction 8+ K (kg ) associated to theull eigenvaluethen
T+ (p) = keg and the identityr; (¢) = keg follows from Propositior?.9. O

Remark 2.11. A careful reading of the proof here above shows that, i€ X, is such that(0 —
T) 'K(ket) ¢ = ¢ > 0, thenp € 2(T) and(T + K(kes)) ¢ = 0.
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Let us denote by.q the unique critical eigenfunction with unit norm, ig.g € W," satisfies

(T + K(keft)) Pt = Petts (| Pest|] = 1.

Then one can prove the following approximation resolution the criticality eigenfunctionp.g
whose proof is inspired by2p, Theorem 7]. Such a result shall be hopefully useful for ficat
numerical approximation of the critical modeg of the reactor.

Theore_m 2.12.Let (px)r € D(T) N X;f be such thaty, := 7, (pr) — keg. We assumey, to be
normalized by

— N

1[O0=T)'"K(w)] ¢l =1  (keN) (2.7)

where N is the integer given by Remagk7. Let us assume thdtis a simple eigenvalue df) —
T)~'K(ke). Moreover, in the casg = 1, let us assume that the dual operafdd — 7)1 K (kegr)] ™
admits an eigenfunction associated to its spectral radib&lvis bounded away from zero. Then,

dim oy — e[| = 0
wheregeq € D(T) N X, is the unique positive eigenfunction ©f — 7) 'K (k.s) associated to 1
and with unit norm .
Proof. According to the definition of := 74 (¢x), (7 + K(vk)) ¢k is nonnegative. Therefore,

ok < (0=T)" ' Klw)ex (2.8)
and, iterating up tav
or <[0-T)'Kew)] Y or (keN). (2.9)

This shows, according t@(7), that||¢x|| < 1. Now, if 1 < p < oo there exists a subsequeneg; )
which converges weakly to some € X,. If p = 1, the fact thaty, — k.g combined with the

compactness of(0 — 7) 'K ()] " lead to the relative compactness of

{[0-T)" k)] " er},

in X7. In particular, this sequence is equi—integrable and byidation 2.9), (¢x)x is also equi—
integrable. We can extract a subsequefizg);, converging weakly to some € X;. In both cases,
the compactness ¢f0 — 7) ' K(v)] N together withy, — ke yield to the strong convergence

[(0=T) " C(w)] ™ ok = [(0 = T) " Klker)] ™ ¥
so that N
1[0 =T)"'K(ket)]” @[ = 1.

In particulary # 0, and, taking the weak limit in(8), b < (0 — 7)) "' K(keg )1p. Now, according to
Remark2.1], this last inequality is actually an equality, i. e.

¥ =(0—T)" Klkett)¥.
Iterating again, one gets

_ N
loll = (1 [(0 = T) " K(kesr)] ™ 9] = 1.
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Now, sincel is a simple eigenvalue ¢6—7) 1K (k.g), the set of eigenfunctions ¢0—7") 1 IC (k)
with unit norm reduces to a singleton. This shows that the (unique) weak limit of any subsequence
of (yr)r So that the whole sequentey, ), converges weaklip i) € X,,. The remainder of the proof
consists in showing that the convergence actually holdsastrong sense

Let us consider first the cade< p < oo. To show now that/¢, — ¢|| — 0, it suffices to prove
that||¢x || — ||¥||. A consequence of the weak convergence leads to

1= [[¢|| <liminf [jp]|.
k—o0

Since||¢k|| < 1foranyk € N, this proves the Theorem far< p < co.
Let us now assumg = 1. Theny, — v strongly inX; if and only if the convergence holds in
measure, i. e., for any C Q with finite dv—measure and every> 0

klim dviw € Z; [Yp(w) — Y(w)| > €} =0.
Arguing by contradiction, assume there exa&stc 2 with finite dv—measure, a subsequence still
denoted(v; ), and some > 0 and some, > 0 such that
dviw € Z; [Yp(w) — Y(w)| > e} =0 for all m € N. (2.10)
Setting
— _ N
U= [0=T)"'K(w)]" ¢r
one has B
lim [ — ) =0
sincey = [(0 — T)—llC(yk)]N 1. Consequently,
Jim dviw € Z; [ (w) — Y(w)| > €/2} =0
and, one deduces immediately frothX0 that
dv{w € Z; [ (w) — Y(w)| > €/2} = 6/2 for largek. (2.11)
Now, lety* € L>(€2) be a positive eigenfunction d¢f0 — 7)~*K(ker)]” associated to the eigen-
valuel, with ¢* bounded away from zero. One has

(Tr — b 0" > / ) (D) — $1(w)) ¥* () dv(w)
{weE; |, —vr|>e0/2}
> irul)fw*(w) X €/2x0/2=n>0

or else N

([0 =T)" K)o 0*) = (0, 0*) =0 for largek.
Equivalently

(W {10 = T) 'K M) = (n9*) = for largek.

But, {[(0 — 7))~ C(v)]* }V* converges strongly t[(0 — 7))~ K (kegr)]* }V1b* in L°(€2), which,
combined with the weak convergengg — ), implies

(Wi {10 = T) K ()" %) — (9. {10 = T) 7 K ket) "} 0%) = (4, 97) -
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Now, the contradiction follows from the fact thaby, ©*) — (1, ¥*) . O
The following characterizek.g in terms ofsub-solutiorto the spectral problen2(2).

Proposition 2.13. Assume that0 — 7) 'K () is power-compact and irreducible for any> 0. For
anyp € W', define

7-(p) == inf{y > 0; (T + K(7))p € X,/ }
with the conventiofinf @ = +oc. Then

keg = inf 7_(y).
peW,

Proof. Let o € W, be such that_(¢) < +oc, and lety > 7_(y). Then

—(T+K(0)pe X, (2.12)
Since(0 — 7)~}(X ) - XJr (see Eq. 2.1)), one gets that
—(0-T)'K()p W, (2.13)

Now, lety* € X, be a nonnegative eigenfunction of the dual operéor 7)~1k(v))* associated
with the spectral radius, [((0—7)~*K(7))*] = r,[(0—T)~K(v)]. Note that~, [(0—T )~ K(y)] >
0 according to Theorer2.5. From Krein-Rutman theorem)*(w) > 0 dv - a.e.w € 2. Thus, by
(2.13
(¢ =(0=T)7'K() p,9*) > 0
ie.
(0, 0*) > (0= T)7'K() ¢, 9*)
= (@, (0 =T)7'K()* ¥*) = 16[(0 = T) )] {9, ") -
Since(p, ¥*) # 0, we getr,[(0 — T)~1K(y)] < 1. By Remark2.8, this means that > k.. Since
v > 7_(ip) is arbitrary, we obtain

ke < inf 7_(¢).
pEW,F

Conversely, lety > k.g. Then,r,[(0 — T)~'K(y )] <1,and
- (0-7T)" Z (m]*

k=0
>[(0-T)7 K" YneN

Giveny € X7, set) = (0 — T)~' 4. Then,i) € W+ Define
p=[I-(0-T) 'K . (2.14)
Clearly,p € D(7) and

>[0-T)'KM]"d (neN).
Lety* € X, \ {0} be nonnegatlveSmce(O T)~'K(v) isirreducible, there exists: € N such that
(7)

<s0,s0>><[( T) ' K()]™ >>0
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Hence, (¢, ¢*) > 0 for any nonnegative* € X, \ {0}, so thaty € X,. Moreover, by 2.14),
—(T+KM)e=0-T)Pp =y € X,

Hence,y > 7_(y) which proves thak.gq > inf 7_(y). O
PEW,F

The following result shows that only the solution of theicatity problem @.2) realizes the above
variational characterization.

Corollary 2.14. Assume thaf0 — 7 )~ KC(v) is power-compact and irreducible for any> 0. Then,
foranyp € W,F
T_(p) = keg ifandonlyif (7 + K(keg))p = 0.

Proof. Let o € W, be such that_(¢) = keg. Then,—(T + K(keg)) ¢ > 050

¢ < (0= T) ' K(kett)p-
Arguing as in the proof of Corollar.10, one can prove that = (0 — 7)~'K(7) ¢, which means
that
(7 + K(ket)) ¢ = 0.
The sufficient condition follows directly from Propositi@il3 O

We are now able to characterize the effective multiplicafiactor k. by means of Inf-Sup and
Sup-Inf criteria, where we recall that = IC, + ;.

Theorem 2.15. Under the assumptions of Theor@, if (X,1') C X, then the criticality eigen-
valuek.g is characterized by the following:

L (T4 K)ew) e~ +Ke(w)
= Imin esssup = Imnax eSs1in .
Kefr pEW,  weQ ’Cfsp(w) pEW, wes ICng(w)

Proof. Lety € W, be given,
1 1
T () = sup{y > 0; (7T + Ks) ¢ + ;’Cfso >0} =sup{y>0; (7 +Ks) ¢ < ;/Cfso}

1
=sup{y>0; —(7 + Ks) p(w) < ;le o(w) dv —a.e.w € Q}.

. 1 —(T + Ks) p(w)
Sincek (X ) c X, one gets—— = esssup
) e X N 5 B L )
1 —(T
= inf esssup (7 +Ks) plw)
ket pewy weq Kfew)

. By Proposition2.9,

and the infimum is attained for the criticality eigenfunaticGimilarly, lety € WI;L
1 1
T_(p) =inf{y > 0; —(T + Ks) o — ;/Cfso 20} =inf{y >0; —(T +Ks)p > ;’Cf o}

=inf{y > 0; —(7 + Ks) p(w) > lICf p(w) dv —ae.w e Q}.
Y
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So
—T K)o S 1 aeweq),
Kro(w) v

r(p) = inf{y > 0;

! = ess inf_(T +Ks) ()

7—(p) we K¢ o(w)
Using Propositior2.13 one proves that

(T 5
= sup = sup essinf (7 +K) p(w)
ket pewt T-(9)  pewt €@ Kpo(w)

which ends the proof. O

2.3. The class of regular collision operators.We end this section by recalling the class of regular
collision operators introduced in kinetic theory by M. Mae&hKharroubi L9]. This class of operators
will also be useful to study diffusion problems of typge3). We assume here that the measure space
(€2, dv) writes as follows:

Q=DxV, dv(w) = dx ® dp(v), w=(z,v) €N
wheredy is a suitable Radon measure oVéerLet C € Z(LP(€2,dv)) be given by

K :or— Ko(z,v) = /\/k(x,v,v')ap(x,v/)du(v’) € LP(Q,dv) (2.15)

where the kernet (-, -, -) is measurable. For almost everye D, define
K(z) : ¢ e LP(V,dp) — / k(z,v,v" ) (v)du(v") € LP(V,du)
4

and assume that the mappiRg : = € D — K(z) € B(LP(V,dy)) is strongly measurable and
bounded, i.e.

ess sup le(x)H%(LP(V,dH)) < 0.
xz€D

The class of regular operators It spaces withl < p < oo is given by the following (seelP,
Definition 4.1]).

Definition 2.16 (Regular operator). Let1l < p < co. The operatorC defined by2.15) is said to be
regular if :

(1) Foralmost every: € D, /E(x) € B(LP(V,du)) is a compact operator,

(2) {K(x); xz € D} is relatively compact inZ(LP(V, du)).

In L'-spaces, the definition differs a bit. We have the followihd] [

Definition 2.17. Let K be defined by2.15. Then,K is said to be a regular operator whenever
{|k(z,-,v")|, (z,v") € D x V} is arelatively weakly compact subsetiof(V, dpu).

The main interest of that classes of operators relies todlfmifing (see Ref. 19 for 1 < p < oo
and Ref. [L7] for a similar result wheneves = 1):
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Proposition 2.18 (Approximation of regular operators). Letl < p < oo and letX defined by
(2.15 be a regular operator in.?(D x V,dz ® du(v)). Then,K can be approximated in the norm
operator by operators of the form:

or— S 0u(w)Bi(v) /V 0,0/ ), a0
1€l
wherel is finite,o; € L>°(D), 5; € LP(V,du) andb; € LI(V,du), 1/p+1/q = 1.

3. THE CRITICAL TRANSPORT PROBLEM

3.1. Variational characterization. This section is devoted to the determination of the effeatiul-
tiplication factor associated to the transport operatoe. atfopt the notations of Secti@i3 namely
Q =D x Vanddv(z,v) = dr ® du(v). Throughout this section, we assurfeto be aconvex
and boundedopen subset aR™Y while . is the Lebesgue measure ot or on spheres. In par-
ticular, our results coverontinuous or multi-group neutron transport problemisut do not apply to
transport problems with discrete velocities. Let

r_ = {(x,v) €D x V;v-n(z) <o}

wheren(z) denotes the outward unit normalat 0 D. Let 7 be the unbounded absorption operator
{T L YT)C X, — X,
or— Tp(x,v) :=—v-Vyp(r,v) —o(x,v)e(z,v),
with domain
2(T) = {weXp; vV € Xp and Yyp_ :0}.

Here, thenonnegativdunctiono (-, -) € L>°(D x V) is thecollision frequency|t is assumed to admit
apositive lower bound

o(z,v) 2ec>0 ae.(r,v) eDxW (3.1)
Define the (full) collision operatok as theboundedinear (partial) integral operator

K :¢eX,— Kip(z,v) := /‘/E(x,v,v')w(:v,v')d,u(v') € X,.

The collision kernelx(+, -, -) is assumed to be nonnegative. In nuclear reactor theory,fissite
material, this collision kernel splits as
Y(z,v,0") = Zg(x,v,0") + Zf(z,0,0)

where X (z,v,v") describes the pure scattering phenomena Bpd:, v,v") describes the fission
processes. Define the corresponding linear operators

Ks : e X, — Ksp(z,v) = /‘/Zs(x,v,v')w(m,v')d,u(v') X,

and
Ki o peXy,— Kpyp(z,v) = /‘/Ef(m,v,v')i/}(x,v')d,u(v') € X,.
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As we told it in Introduction, we are interested here in th&eal problem:

v Vap(o,0) + ol 0)pla) = [ Eaav ol o )dn(o)
14
1
= [ St )dut), 62)
keff 1%
where the eigenfunctiop is nonnegativeand satisfies the boundary conditipiy:_ = 0. We recall
that the spectral bound @f is given by R9]

t—00 (z,0)eDXV
t<7(z,v)

with 7(x,v) := inf{s > 0; = — sv ¢ D}. Therefore, by3.1), we haves(7) < 0. Moreover,

7(z,0) t
0—T)o(z,v) = / exp {—/ o(x — s, v)ds} o(x — vt,v)dt,
0 0

so that(0 — 7')~! fulfills (2.1). Let us now recall the irreducibility properties @f— 7)~' K for the
continuous and multigroup models. The following result bayfound in Ref. 19], Theorem 5.15,
Theorem 5.16, (see als2q)).
Theorem 3.1. LetD be convex. Therf) — 7)~'K; is irreducible in the two following cases:

(1) V is a closed subset &" equipped with the Lebesgue measdpeand there exisb < ¢; <

ca < oo, such thatly = {v € RV ¢ < Jv| < e} C V with
Sp(z,0,0") >0 ae(z,v,0)e(DxVxVy)U(DxVyxV). (3.3)
(2) V is the union oft disjoint spheregk > 1),

t
s(7T)=—lim inf tl/ o(x + sv,v)ds,
0

k
V:UVu Vi = {veRY;|v| =i}, (ri>0,1=1,....k)
i=1

and, on each spheréy. is the surface Lebesgue measure. Moreover, foriang {1,...,k},
there existd € {1,...,m} such that
Si(z,v,0) >0 ae.(z,0,0) € (DxVix V) U(D x V, x Vj). (3.4)

Remark 3.2. In the above case (1), correspondingdontinuous modelsit is possible to provide
different criteria ensuring the irreducibility of0 — 7)~'K; (see for instance Ref[13]). In the
second case (2), which correspondsmaltigroup transport equation, several different criteria also
exist[23)].

Using the notations of Sectidl) we have the following characterization of the effectiveltipli-
cation factor of the transport operator.

Theorem 3.3. Let us assume thdt is a regular collision operator and that one of the hypotkeas
TheorenB.1holds. The critical problenf3.2) admits a unique solutiok.g if and only if

%ig%ra[(o — ) K] > 1 and  7,[(0-7)7K, < 1.
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Moreover,

v-Vep(z,v) + o(z,v)p(x,v) — /‘/Es(:v,v,v')@(:v,v') du(v'")

—_

= min+ €ess sup
peW, (z0)eDXV /‘/Ef(:t:,v,v/)go(x’vl) d,u(vl)

?;\4
@
=

(3.5)
v Vep(z,v) + o(z,v)p(x,v) — / Yo(x,v,0)p(x, ") du(v’)

= max+ essinf v
s (@0)eDxV | S0 )eta ! dute)

Proof. Since K is a regular collision operator, one deduces frd, [Theorems 4.1 & 4.4] when

1 < p < oo (respectively 17] if p = 1) that (0 — 7)~'K is a power-compact operator iK,

(1 < p < o0) under our assumptions on the measurdvioreover, in the continuous case, thanks to
(3.9, foranyy € X,

Krota) = [ £5a0,0) (oo )dulo)
1%
> / Y, v,0") p(z,v")dp(v") >0 a.e.(z,v) eDxV,
Vo

i.e. Kr(X,7) € X,5. Similarly, in the multigroup case, Eq3.6) impliesK;(X,") C X,/ Now, the
existence ot follows from Theoren.6 while (3.5) follows from Theoren2.15 O

Remark 3.4. Denote by¢.s the nonnegative solution df3.2), one can check thapes € W, .
Therefore, in(3.5), the supremum and the infimum are reachedfet ¢ef:.

Remark 3.5. Note that it is possible to provide practical criteria thakssatisfied in nuclear reactor
theory and that ensure the existencé:gf [4, 28]. Such criteria usually rely on dissipative properties
of the pure scattering operator.

Remark 3.6. It is important to point out that the above characterizatismot restricted to the case
of absorbing conditions but also holds for general boundeoyditions modeled by some suitable
nonnegative albedo operatorActually, if one considers a transport operatdy; associated to gen-
eral nonnegative albedo boundary operatdrwhich relates the incoming and outgoing fluxe€in
[16], then the above theorem holds true providéd- 7;;)~ 'K is a power-compact operator iX,,

(1 < p < o0) whenkC, and K are regular operators. This is always the case whenéverp < oo

by virtue of the velocity averaging lemrfis6]. The problem is more delicate in&t-setting and is
related to the geometry of the domdn[27].

3.2. Necessary conditions of super-criticality and sub-critiality. We shall use the result of the
previous section to derive necessary conditions ensunmgeactor to be super-critical or sub-critical.
Note that, for practical implications, a nuclear reactar ba operative and create energy only when
slightly super-critical (i.el < k.g < 1 + d with 6 > 0 small enough), in this case, the whole chain
fission being controlled by rods of absorbing matter. Thhmug this section, we shall assurg; to
exist.
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We shall provide lower and upper bounds on the effectiveiplidative factork.g¢ only when the
velocity spacé’ is bounded away from zerdRecall that, sinc&” is assumed to be closed, this means
that0 ¢ V (see also Remark.14).

For almost every: € D, defineKX™ (x) as the following operator oh?(V, dpu):

K™(x) : o € IP(V,dps) / S )du(') € LP(V, dp)

where we recall thafl(z, v,v") = Xs(x,v,v") + X¢(z,v,v") andr(z, v) is the stay time irD. Then,
one defines as irkp], the following

(z,v,0")7(x,0")
1+ o(z,v)r(z,v)

0= inf ess sup M
YeL (Vidp) (z,0)eDxV TP(U)

wh_ereLﬁ(V, du) = {¢ € LP(V,du); ¥(v) > 0du — a.e.v € V}. Then, one has the following
estimate:

Proposition 3.7. Under the assumptions of Theor@m, if ¥ < 1, thenk.g < 0.
Proof. Assumed < 1. Givend € (9, 1), letyyg € L% (V, dp) be such that
esssup L BWl®)
@v)epxv  Yo(v)

Let us consider then the following test-functigR(z,v) = 7(x,v)o(v). Sinced ¢ V, 7(-,-) is
bounded and such an applicatipg belongs toVV];L since

7(z + tv,v) = 7(x,v) + ¢ a.e.(z,v) eDxV, t>0
impliesv - Voo (z,v) = 1o(v). Then, for anyy > 0, one sees that

T+ K0))go(esv) = 0 (1 + oz, 0)r(x,0)) (197/)0( )~ (K7 (2)o] v)
+(1_19)/ Ys(z,v,0" )1 (2, 0") o(v ')d,u(v')+

1+ o(z,v)7(z, )

7_19/ Ef(.’IJ,’U,U/)T(I',U/)
Y \%4 1+O’(1’,U)T(.YJ,’U)

i ()l @9

SinceX; > 0 andl — ¢ > 0, one sees that

T+ K0)go(e.0) > 0 (1 + oz, v)r(z,v)) (mmv) KT (@)l (v)

y=19 [ Zg(z,v,0)7(x,0) , ,
T ety 0 )
In particular, from the positivity oE ¢, one sees that, provided> ¥, —(7 + K(7))po(x,v) > 0 for

almost everyz,v) € D x V. Then, from Propositio2.13 this means that_ () < ¢ andk.g < ¥.
Sinced > ¥ is arbitrary, one gets the result. O

_l’_
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Remark 3.8. From the above result, one sees that the reactor is suteatitvhenever) < 1. Note
that the fact that? < 1 impliesk.g < 1 is already contained ifi22, Theorem 7]

The above result provides an upper boundgf leading to the sub-criticality of the reactor core.
To get a lower bound of.¢, one defines a similar quantity

U= sup ess inf M
 yeLl (V,dp) (@v)EDXV ¥(v)

Proposition 3.9. Under the assumptions of Theor&, if ¢ > 1, thenk.g > ¢. In particular, for a
reactor core to be sub-critical, it is necessary tha 1.

Proof. The proof is very similar to that of Pro@.7. Namely, assumé > 1. For anyd € (1,9), let
Yo € LA (V, dp) be such thalC™ (z) 1] (v) > Yig(v) for almost every(z,v) € D x V. Then, the
function pg(z,v) = 7(x,v)Yy(v) belongs toVVZ;L and, arguing as in Prof8.7, thanks to Eq. .6),
one sees that7 + K())yp is nonnegative for any < . Consequentlyr, (¢) > ¢ and Prop.2.9
implies thatk.g > o foranyd € (1, 9). O

Remark 3.10. To the author’'s knowledge, the identify= ¥ is an open question. Notice however
that, according to |I. Marek’s result, RdfL8], Theorem 3.2, for any € D, one has the identity

sup  essinf K @)viw) = inf  esssup K @)viw) =r.[K7(z)],
veL? (Vidy) V€V ¥(v) Yelk (Vdp) vev Y(v)

where we recall thak’™ (x) is an operator inLP(V, du).
In the same spirit, for almost everye D, definelC}(x) as the following operator of?(V, dp):

Kjta) v (Vi) [ fﬁ’fj@ijﬁjZ))W)du(v/) & 17(V,dp)

and let us define, as i), the setl; of all 3 > 0 for which there existg) € L% (V,du) \ {0} such
that

(K} (2)¢](v) = By(v), foralmostevery (z,v) €D x V.
According to P2, Lemma 4] the sef is closed so that, if one defines
By =sup{B,0 € I}
then, there existg; € L{;(V, du)\{o} such thatK% (z)v¢|(v) > ﬁfzpf(u) for almost everyz, v) €
D x V. When the velocity space is bounded away frothen, 3, provides a lower bound fdt.q:
Proposition 3.11. Under the assumptions of Theor@3, one hasi.s > 3.

Proof. Setys(z,v) = 7(x,v)is(v) whereyy € LY (V, dp) is defined here above. Arguing as in the
proof of PropositiorB8.7, one sees that, sine¢ V', ¢ € Wp+. Therefore, Theorer.3 ensures that

1 v Vapr(x,v) +o(z,v)pp(x,v) — / Ye(x, v, v’)gpf(x,v') du(v")
< esssup v

Ketr (z,0)eDXV /Ef(w,v,vl)tﬂf(wvvl) dﬂ(v’)
|4
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As in the proof of Prop3.7 and sincex; andy, are nonnegative, one gets
Yy(v) 1

< esssup ——————~ < —
Keft (m,v)EDXV[’Cf(x)wf](v) ﬂf

which ends the proof. O

Remark 3.12. The above Proposition provides a lower bound of the critigaéigenvaluek.¢ that
depend®nly on the fission collision operatokC;. In particular, a sufficient condition for the reactor
to be super-critical i3, > 1.

Proposition 3.13. Letvy := inf{|v| ;v € V'} and letd be the diameter . Define
1
Af:=  sup essinf —/ iz, v,0") 7 (2, 0" ) (V) dp(v').
f ¢€L1(V7dﬂ) (z,0)EDXV ('U) Vv !

Then, under the assumptions of Theo®B)

1 1+54
< v 3.7
whereg := esssup o(z,v). In particular, if V bounded then
(z,0)eEDXV
1
keff = essinf iz, v,0") 7 (x, v )dp(v). 3.8
03T (S [, e e i) 38)

Proof. Let us consider again test-functions of the fapa:, v) = 7(x, v)¥(v) wherey € LE (V, dy).
Then, as above, according ®.9)

1+ (e, o)1) = o | S0 ) )du(o)
1 v() Jv
k fT < (es)ss’;lpv 1 / / / /
¢ V) ELX Ye(x,v,0") (2, 0") (V) dp(v
5 [ B o ()
1+ esssup o(x,v)7(z,v)
< (z,0)eDXV

Lossinf s | 55,0 0)r(e ) dute)
Since such an inequality holds for arbitrapyv) > 0 and sincer(z,v) < d/|v| < d/uvo for almost
every(z,v) € D x V,one gets3.7). To prove B.9), it suffices to consider the test-functiorfv) = 1
(v € V), which belongs td”} (V, dp) providedV is bounded. O

Remark 3.14. We dealt in this section with the case of velocities boundedyafrom zero. For
practical use in nuclear engineering, this is no major region. However, it should also be possible
to derive explicit bounds df.¢ when0 € V. In such a case, the exit timéx, v) is not bounded
anymore but behave s% for small|v|. Therefore, test-functions of the forpiz, v) = 7(x, v)Y(v)

belong to," if and only if L) ¢ LE (V,dp).

El
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4. THE CRITICAL PROBLEM FOR THE ENERGYDEPENDENT DIFFUSION MODEL

4.1. Variational characterization. In this section, we are concerned with the following

—div, (D(x, £)Vaolx. ) + o(z.O)o(z.€) - /E Sa(2. 6, ol &) de’

_ / S0, 6,6) ol ) de', (A1)
E

keff

where the unknowm(-, -) is assumed to beonnegativeand to satisfy the Dirichlet boundary condi-
tions

9op(,§) =0 aef ek,

whereD is C? openbounded and connectesiibset ofRY and E is an interval of|0, oo[. We will
assume throughout this section that there exist some ceassta> 0 (i = 1, 2) such that

0<o; <o(x,§) <oy <00, a.e(z,§) eDxE. 4.2)

Moreover, we assume the measurable matrix—valued apphcal-, -) satisfies the following (uni-
form) ellipticity property
N
ess inf dij(z, E)ming = daln|? (n € RY) (4.3)

and regularity assumptiod; (-, £) € W,>%(D) for almost eveng € E. We will study Problem4.1)

loc

in aHilbert space settindgor simplicity. Namely, set
X, = L*(D x E, dzd§).
Let us assume the kernels (-, -, -) andX (-, -, -) to benonnegativeand define thecattering operator
Ko s b€ Xor Ko, = [ Bl 660000, €)d¢ € Xa
E

and thefission operator

Kp ot € Xo o Kytb(a, €) = /E 5 (2,6, €)b(a,€)dE € X

We will assumelC, and K to beboundedoperators inX,. Define then the full collision operator

Kt € Xo s Kip(a,€) = /E S(a, &, €)(e, €)dE € Xo,

where
B(2,6,¢) = E5(2,6,€) +2p(2,£,¢) (2,§,¢) eDXxEXE.
Let us introduce theiffusion operator
7 .@(T) C X9 — Xy
0 — To(z,§) = dive(D(z, §)Veo(x,€)) — o(z,§)o(x,§),
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with domain
D(T) ={y € Xa; ¢(-,€) € H(D)NH*(D) a.e.é € EandT+ € X»}

where H} (D) and H?(D) are the usual Sobolev spaces. With these notations, theéapgoblem
(4.1 reads

1
E’Cf)geff =0, Ocft € D(T) , vt = 0, et # 0.

According to the strong maximum principle, it is clear thé@) < 0 and(0 — 7)~1(Xy) C X .

In order to apply Theorer.15 one has to make sure th@ — 7))~ 'K is power-compact and that
(0 — T)—llcf is irreducible. Let us begin with the following compactnessult which is similar to
the usualelocity averagindemma (seel4] and [19, Chapter 2]) for transport equations and is based
on some consequence of the Sobolev embedding Theaflem [

(T +Ks +

Theorem 4.1.If K € %(X>) is regular thenkC(0 — 7) ! is a compact operator iX.
Proof. By Proposition2.18 it suffices to prove the result for a collision operatosuch that
K s g€ Xor— Kolw.§) = alah(e) [ f(€)ola.€)de’ € Xy
where
a € L™®(D), heL*(E,d¢) andf € L*(E,d¢).

Moreover, by a density argument, one can also assfimad h to be continuous functions with
compact support itt. Let us splitlC(0 — 7))~ as:

KOo-T)'=em@O-7)"
where
© : g€ L*(D,dz) — [O0)(z,€) = a(x)h(€)o(x) € Xa,
and M is theaveraging operator

M )€ Xy — Mip(x /f U(z,€)de" € L*(D).

It is enough to prove thatt(0 — 7)~! : X, — L?(D) is compact. Lef3 be a bounded subset of
X5. One has to show thdtMg; g € (0 T)~1(B)} is a relatively compact subset &f (D). For

anyy € B, set
g(x7§) = (0 - T)_lgp(x7§)
For almost every € E, g(-,£) € H} (D). One extendg to the whole spac&” by

(2, ) = {g(x,{) if v eD

0 else

Clearly, for almost every € E, j(-,£) € H'(RY). Consequently, according t@,[Proposition 1X.3],
fora. e.¢ € E and anyh ¢ RV

1709(,€) = 9(, )2y < [RIIV2g (-, )l r2(),
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wherer,, f(z) = f(x + h) (x € D, h € RY), i.e.

/D G+ hy€) — 3, ©)Pde < | /D Vg, ) Pde. 4.4)
Now, recall that

—div,(D(z,§)Vey(z,8)) + o(z,8)g(2,§) = p(x,8)  (2,§) €D x E.

Multiplying this identity by g(z, ) and integrating by parts yield, thanks to the ellipticitpperty
4.3,

n / Vag(e, &) Pdude < / 9@, )|, €)|dede.
DxFE DxE

In particular, sincéds is bounded, by Cauchy-Schwarz inequality, there existsO such that

swp [ (Vg )P < c. (4.5)
9e(0-T)~1(B) JDxE

Then, @.5) together with 4.4) yield
| late+1,6) = gl O dode < clhf.
DxE

By Holder’s inequality, sincg is continuous with compact support

2
/ M+ h) — M§(a)2de = / da / e + 7€) — (. ) F(€)de
D D E

<C G(z + h, &) — gz, &) dwde
< |hPC,

whereC' > 0 does not depend an In particular,

lim sup / |Mg(z + h) — Mj(z)|*dz = 0.
h—=0 ge(0-7)-1(B) JD

Now, using thatd g = Mg one deduces the conclusion from Riesz-Fréchet-Kolmag®@teorem

[7]. O

We are now in position to prove the main result of this sectidrere the notations of Sectidh
are adopted :

Theorem 4.2. LetC € #(X») be regular. Assume there exists an open subget E such that
Y2, &) >0 ae(z,¢)eDxE xEy. (4.6)
Then, the problenid.1) admits a effective multiplication factégg > 0 if, and only if,
lim 75{(0 — ) 'K(y)] > 1 and 7, [(0 - 7)1 < 1.
’y—)
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Moreover,k.g is characterized

1 (D, &)V, €)) + (o () — [ 2,6, €1
= min esssup ; E
Ket wEW, (2,0)eDXE /Ef(x,f,é’)ga(:r,é’)df’
E

(4.7)
—div(D(z, ) Vap(z,§)) + o(z,§p(z,§) — /EES(J:, §,&)p(x,§)de’

= max essinf

‘PEW; (z,6)eEDxV /Ef(z,g7v/)w(z,gl)d§/
E

Proof. From @.6), ICf(X;) C X5 . Now, for almost every € F, defineT as the following operator
on L*(D):

Te : 0€ P(Ig) — Teo(x) = divy(D(z,§) Vao(z)) — o(z,§)o(),
where 2(T;) = H{(D) N H*(D) turns out to be independent ¢f SinceD is connected, the
(elliptic) maximum principle implies that0 — 7¢)~! is irreducible (seed, Theorem 3.3.5] org,
Section 11.2]). Actually, sincé&; is the generator of a holomorphic semigroup, this implied th
(0—T¢)~ ! is positivity improving (see43, p. 306]), i.e.(0—T¢) ' o(z) > 0 for almost every: € D
providedo € L?(D), o(x) > 0 for almost everyr € D andg # 0. Now, lety € X, ¥(x, &) = 0
for almost every(z, &) € D x E, 1 # 0. Then,Kyp > 0and (0 — T¢) 'K syp(x, &) > 0 for almost
every(z,§) € D x E. Itis easy to see that this exactly means tttet- 7)1y (x, &) > 0 for
almost every(z, ¢) € D x E and the irreducibility of0 — 7)) =1 K follows. Since(0 — 7)"'Kis a
compact operator by Theorefnl, the conclusion follows from Theoren2s6 and2.15 O

4.2. Explicit bounds. In this section, we derive explicit bounds for the effectivaltiplication factor
kegr. As we did in SectiorB.2, the strategy consists in applying Theoréiiito suitable test-functions.
We assume the hypothesis of Theorér@to be met. Moreover, we assume here that the diffusion
coefficientD(-, -) is degeneratgi.e.

D(x7£) = Do(x)dl(g)v (Sﬂ,f) €DXE,

whereDy(+) is a matrix-valued application satisfying the ellipticitgndition @.3), D(-) € Wé’f(D)
andd; (-) is aboundedreal-valued application with

s inf dy (€) > 0.
essin 1(6)

Let \o be the principal eigenvalue of the following elliptic prebi in L2(D)
div, (Do (2)Ve(x)) + Aoe(z) =0, (z € D)
0m(¥) =0 (v € OD).

It is well-known [9] that \y > 0 and that there exists@ositiveeigenfunctiongy solution to é.8).
Setét = {¢ € L*(E,d¢); ¢¥(€) > 0a.e.£ € E}. In the spirit of Sectior8.2, for almost every
z €D, definelC}0 (z) as the following operator oh?(E, d¢):

Ef(l', 57 §I)
Aod1(§) + o(z,€)

(4.8)

U(€)de' € L*(E, d¢)

Ky (x) ¢ € LX(E, dS) H/E
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and let/ be the set of alB > 0 for which there existg) ¢ E7T such that
K7 (2)¢](€) > By(€), foralmostevery (x,¢) € D x E.

Proposition 4.3. Settingy := sup{3,5 € I}, one haskes > [y. In particular, a necessary
condition to the reactor to be sub-critical i% < 1.

Proof. Asin Sectior3.2, the setl is closed. Therefore, there existsc £ such tha{lC}“ (x)](€) =
Borp(€) for almost every(r, &) € D x E. Now, setpg(z, &) = oo(x)y(€), then,p € W, and

—div,(D(z, §)Vap(z,§)) = —di(§)Y(§)dive (Do(x)Veo(z))
= Aod1(§)¥(€)eo(x) (z,§) € D x E.

Consequently, thanks td.(7/) one has

1 Pods €) + (e, D@ €) ~ en(e) [ Sule & €)(E e
E

< esssup

ket~ (s6)eDxB o0lz) /E S (2, €,€ V(€ ) de
Dods(€) + oz, OJ(E) ()

< esssup = esssup

w008 [ 5 o€ gy =0EIT VIO

which proves thagl < . O

In the same spirit, for almost everyc D, definelC*o () as the operator oh?(E, d¢) given by

X(z,6,¢)
1(§) +o(z,¢)

where we seE(xz,§,{') = 3q(z, £, &) + X¢(x,€,£'). Asin Sectior3.2, set

¥:= inf esssup W and o := sup essinf W

veet weyepxe Y€ peet @OeDxE  P(§)

o) sv e LB~ [ Y& e € IX(B, df)

Then, one has the following bounds/f;, in the spirit of Proposition8.7 & 3.9.

Proposition 4.4. Under the assumptions of Theordn, if ¥ > 1, thenk.g > ¥. On the other hand,
if 9 > 1, thenk.g < 9.

Proof. The proof is very similar to that of Pro@.7 & 3.9. We only prove the first part of the result,
the second part proceeding along the same lines. Assumeéhiaitisg > 1. For anyd € (1,4), let

o € ET be such thatssinf(, eyepx % > 9. Choose then the test-functian(z, &) =

00(z)1bo(€). Such an applicatiorp belongs tolW," and, as in the above proof, for any> 0, one
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sees that

(T +K()p(x, &) =

o0(z)

J

s () + a.)) = 060(6) + [ ()l +
(9 = DIl + T )el(©))

WhereIC}0 (z) has been already defined and the definitiork’df () is similar (&, replacingX ¢).

Then, from the positivity oE, andX ¢, the assumptiot > 1 implies that(7 +/(y))¢ is nonnegative
for anyy < 9. Consequentlyr (¢) > ¢ and Prop.2.9implies thatk.s > ¢. Sincev € (1,9) is
arbitrary, one obtaing.g > 9. O

WheneverE is of finite Lebesgue measure, one has the following prdatitteria, already stated
by C. V. Pao R4, Theorem 5.3] using completely different arguments.

Corollary 4.5. AssumeF to be of finite Lebesgue measure. If

Mo di(€) + o (, €) < /E o, 6,€) + Sy, &, €N (0,0 €D E,  (49)
then, the reactor core is non super-critical, i/eg > 1

Proof. SinceE is of finite Lebesgue measure, the constant functioar 15 such that)(§) = 1 for
any¢ € E belongs tac™. Then, assumption4(9) means exactly thdkC*o (x)1z](¢) > 1x(€) for
almost any(z, ¢) € D x E. Thereforeg > 1 and the conclusion follows from Prog.4. O

Remark 4.6. Notice that, under the above assumption, one has

B2, 6, 8) + By (w, 6,8 dE
Foft > e%;lﬁr)lf Aod1(§) +o(z,§) .
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