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ABSTRACT. We prove some inf–sup and sup–inf formulae for the so–called effective multiplication
factor arising in the study of reactor analysis. We treat in asame formalism the transport equation and
the energy–dependent diffusion equation.
KEYWORDS: effective multiplication factor, nuclear reactor, neutron transport equation, energy–dependent
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1. INTRODUCTION

The aim of this paper is to give some variational characterizations of theeffective multiplication
factor arising in nuclear reactor theory. This work follows a very recent paper by M. Mokhtar-
Kharroubi [22] devoted to the leading eigenvalue of transport operators.

In practical situations, thepower distributionin a stable nuclear reactor core is determined as the
steady-state solutionφ of a linear transport equation for the neutron flux. Because of interactions be-
tween neutrons and fissile isotopes, a fission chain reactionoccurs in the reactor core. Precisely, when
an atom undergoes nuclear fission, some neutrons are ejectedfrom the reaction and subsequently shall
interact with the surrounding medium. If more fissile fuel ispresent, some may be absorbed and cause
more fissions (see for details Refs. [5, 6, 11, 25]). The linear stationary transport equation is there-
fore of non-standard type in the sense that the source term isitself a function of the solution. When
delayed neutrons are neglected, this equation reads

v · ∇xφ(x, v) + σ(x, v)φ(x, v) −

∫

V
κs(x, v, v

′)φ(x, v′)dµ(v′) =

1

keff

∫

V
κf (x, v, v

′)φ(x, v′)dµ(v′) (1.1)

with free-surfaceboundary condition (i.e. the incoming flux is null). Here, the unknownφ(x, v) is the
neutron density at pointx ∈ D and velocityv ∈ V, whereD is an open subset ofRN (representing
the reactor core) and the velocity spaceV is a closed subset ofRN , dµ(·) being a positive Radon
measure supported byV . For the usual cases,dµ(·) is either the Lebesgue measure onR

N (contin-
uous model) or on spheres (multigroup model). The transfer cross-sectionsκs(·, ·, ·) andκf (·, ·, ·)
describe respectively thepure scatteringand thefissionprocess. Thenonnegativebounded function
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σ(·, ·) is theabsorption cross–section[5, 11, 25]. The positive ratiokeff is called thecriticality eigen-
value(or theeffective multiplication factor). It represents the average number of neutrons that go on
to cause another fission reaction. The remaining neutrons either fail to induce fission, or never get
absorbed and exit the system. Consequently,keff measures the balance between the number of neu-
trons in successive generations (where the birth event separating generations is the fission process).
The interpretation of the effective multiplication factorkeff is related to the following three cases (see
[5, 11, 25]):

• If keff = 1, there is a perfect balance between production and removal of neutrons. The reactor
is then said to becritical.

• The reactor issub-critical whenkeff < 1. This means that the removal of neutrons (at the
boundary or due to absorption by the surrounding media) excesses the fission process and the chain
reaction dies out rapidly.

• Whenkeff > 1, the fission chain reaction grows without bound and the reactor is said to be
super–critical.

Up to now, in practical applications, the effective multiplication factorkeff was usually given by
rσ

[
(T − Ks)

−1Kf

]
= keff , where the precise definition of the operatorsT , Ks andKf is given

subsequently andrσ[B] denotes the spectral radius of any generic bounded operatorB: rσ[B] =

limn→∞ ‖Bn‖1/n. Because its requires the computation of the resolvent(T − Ks)
−1, such a char-

acterization makes the analysis of the effective multiplication factor quite difficult to handle. In
particular, practical estimates ofkeff as well as computational approximations are rather involved and
merely rely on (direct or inverse) power method [2]. Our main objective in this paper is to provide
tractable variational characterizations ofkeff in terms of the different data of the system and suitable
test functions. We hope that such a characterization shall be of interest for practical computations or
for the homogenization of the above criticality transport equation in periodic media [1, 4, 21]. We
also believe that our characterization can be useful in the delicate optimization problem of the assem-
bly distribution in a nuclear reactor (see the recent contribution [28] based upon the homogenization
method and where the criticality eigenvaluekeff plays a crucial role).

To be precise, we provide herevariational characterizationsof the effective multiplication factor
of the type

1

keff
= min

ϕ∈W+
p

ess sup
(x,v)∈D×V

v · ∇xϕ(x, v) + σ(x, v)ϕ(x, v) −

∫

V
Σs(x, v, v

′)ϕ(x, v′)dµ(v′)
∫

V
Σf (x, v, v

′)ϕ(x, v′)dµ(v′)

= max
ϕ∈W+

p

ess inf
(x,v)∈D×V

v · ∇xϕ(x, v) + σ(x, v)ϕ(x, v) −

∫

V
Σs(x, v, v

′)ϕ(x, v′)dµ(v′)
∫

V
Σf (x, v, v

′)ϕ(x, v′)dµ(v′)

,

(1.2)
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whereW+
p is a suitable class ofpositive test–functionsin Lp(D × V, dxdµ(v)) (1 6 p < ∞). This

result (Theorem3.3) holds true under compactness assumption on thefull collision operator

K : ψ 7−→

∫

V

(
Σs(x, v, v

′) + Σf (x, v, v
′)
)
ψ(x, v′) dµ(v′)

and underpositivity assumptions on the fission cross–sectionκf (·, ·, ·). The main strategy to derive
(1.2) is adapted from [22] where M. Mokhtar-Kharroubi proved similar variational characterizations
for the leading eigenvalue ofperturbedtransport operators. Note that the above characterizationstill
holds true for transport equations with general boundary conditions modeled by some nonnegative
albedo operator (see Remark3.6).

At this point, one recalls that, besides the critical eigenvaluekeff , it is also possible to investigate
the reactivity of the nuclear reactor core through another physical parameter, namely, the leading
eigenvalues(A) of the operatorA = T +Ks+Kf , also associated to positive eigenfunctions. The two
parameterskeff ands(A) are related by the following: ifs(A) < 0 then the reactor is subcritical (i.e.
keff < 1), while it is super-critical whenevers(A) > 0. The reactor is critical whens(A) = 0. The
paper [22] provides a variational characterization of the leading eigenvalue of the transport operator
A. However, for practical calculations in nuclear engineering, the critical eigenvaluekeff is a more
effective parameter. Actually, the existence of the leading eigenvalues(T + Ks + Kf ) is not always
ensured but is related to the size of the domainD and the possibility of small velocities (for more
details on this disappearance phenomenon, see e.g. [19, Chapter 5]). Since the existence of the
effective multiplication factor is not restricted by such physical constraints, it appears more efficient
to measure the reactivity of nuclear reactor cores bykeff . This is what motivated us to generalize the
result of [22] and provide variational characterization ofkeff .

In this paper, we also give a characterization of the criticality eigenvalue associated to theenergy-
dependent diffusionmodel used in nuclear reactor theory [5, 24, 25]. For this description, the critical
problem reads

− divx(D(x, ξ)∇x̺(x, ξ)) + σ(x, ξ)̺(x, ξ) −

∫

E
Σs(x, ξ, ξ

′) ̺(x, ξ′) dξ′

=
1

keff

∫

E
Σf (x, ξ, ξ

′) ̺(x, ξ′) dξ′, (1.3)

complemented by the Dirichlet boundary conditions̺(·, ξ)|∂D = 0 a.e.ξ ∈ E. HereE is the set of
admissible energiesξ = 1

2mv
2 (m being the neutron mass andv the velocity), i.e.E is a subset of

[0,+∞[. The diffusion coefficientD(·, ·) is a matrix–valued function overD × E and the unknown
̺(·, ·) is nonnegative.

The derivation of diffusion-like models for some macroscopic distribution function̺ (x, ξ) (corre-
sponding to some angular momentum of the solutionφ to (1.1)) is motivated in nuclear engineering
by the necessity to provide simplified models tractable numerically. Such aenergy-dependent diffu-
sion model can be derived directly from a phenomenological analysis of the scattering models or it
can be derived from the above kinetic equation (1.1) through a suitable asymptotic procedure (see
[10] and the references therein for more details on that matter).
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For thisenergy-dependent diffusionmodel, we give a variational characterization ofkeff in terms
of sup-inf and inf-sup criteria in the spirit of (1.2).

Actually, to treat the two above problems (1.1) and (1.3) it is possible to adopt a unified mathemat-
ical formalism. Precisely, let us denote byKs the integral operator with kernelκs(·, ·, ·) and denote
by Kf the integral operator with kernelκf (·, ·, ·). Then, problems (1.1) and (1.3) may be written in a
unified abstract way:

T φeff + Ksφeff +
1

keff
Kfφeff = 0, φeff > 0,

where the unbounded operatorT refers to, according to the model we adopt:
• the transport operator:

T φ(x, v) = −v · ∇xφ(x, v) − σ(x, v)φ(x, v),

associated to the absorbing boundary conditionsφ|Γ
−

= 0.
• the energy–dependent diffusion operator:

T ψ(x, ξ) = divx (D(x, ξ)∇xψ(x, ξ)) − σ(x, ξ)ψ(x, ξ)

with Dirichlet boundary conditionsψ| ∂D(·, ξ) = 0 (a.e.ξ ∈ E).

The abstract treatment of the above problem is performed in Section2 and relies mainly on positiv-
ity and compactness arguments. The mainabstractresult of this paper (Theorem2.15) characterizes
the criticality eigenvalue of a large class of (abstract) unbounded operators inLp-spaces. Besides this
main analytical result, we also prove abstract results withtheir own interest. In particular, we pro-
vide in Theorem2.12an approximation resolution for the criticality eigenfunction φeff which shall
be hopefully useful for practical numerical approximations.

The outline of the paper is as follows. In Section 2, we describe the unified and abstract framework
which allows us to treat in a same formalism Problems (1.1) and (1.3) with the aim of establishing
general inf–sup and sup–inf formulae for the criticality eigenvalue of a class of unbounded operator.
In Section 3, we are concerned with the characterization of the effective multiplication factorkeff

associated to the transport problem (1.1). In Section 4, we investigate the effective multiplication
factor associated to the energy-dependent diffusion model(1.3).

2. ABSTRACT VARIATIONAL CHARACTERIZATION

This section is devoted to several abstract variational characterizations of the criticality eigenvalue.
It is this abstract material that shall allow us to treat in the same formalism Problems (1.1) and (1.3).

2.1. Setting of the problem and existence result.Let us introduce the functional framework we
shall use in the sequel. Given a measure space(Ω, ν) and a fixed1 6 p <∞, define

Xp = Lp(Ω, dν)

and denote byXq its dual space, i.e.Xq = Lq(Ω, dν) (1/p + 1/q = 1). We first recall several
definitions and facts aboutpositive operators. Though the various concepts we shall deal with could
be defined in general complex Banach lattices, we restrict ourselves to operators inXp (1 6 p <∞):



VARIATIONAL CHARACTERIZATIONS OF THE EFFECTIVE MULTIPLICATION FACTOR 5

Definition 2.1. A bounded operatorB in Xp is said to beirreducible if, for every nonnegativeϕ ∈
Xp \ {0} and nonnegativeψ ∈ Xq \ {0}, there existsn ∈ N such that

〈Bnϕ,ψ〉 > 0,

where〈·, ·〉 is the duality pairing betweenXp and the dual spaceXq.

Let us denote the set ofquasi-interiorselements ofXp byX+
p , i.e.

X+
p = {f ∈ Xp ; f(ω) > 0 dν − a.e.ω ∈ Ω}.

Notice that, iff ∈ X+
p , then〈f, ψ〉 > 0 for any nonnegativeψ ∈ Xq \ {0}.

Definition 2.2. A bounded operatorB in Xp will be said to bepositivity improving if its maps
nonnegativef ∈ Xp \ {0} intoX+

p , i.e.

f ∈ Xp \ {0}, f > 0 =⇒ Bf ∈ X+
p .

Remark 2.3. Notice that, given a bounded operatorB in Xp, if some power ofB is positivity im-
proving, thenB is irreducible. This provides a practical criterion of irreducibility.

Recall also several fact about power-compact operators.

Definition 2.4. A bounded operatorB in a Banach spaceX is said to bepower-compactif there
existsn ∈ N such thatBn is a compact operator inX.

The following fundamental result is due to B. De Pagter [8].

Theorem 2.5. LetB be a bounded operator in a Banach spaceX. If B is irreducible and power-
compact thenrσ(B) > 0 whererσ(B) denotes the spectral radius ofB.

Let T be a given densely defined unbounded operator

T : D(T ) ⊂ Xp −→ Xp

such that
s(T ) < 0 and (0 − T )−1(X+

p ) ⊂ X+
p . (2.1)

LetKs andKf be twononnegative boundedoperators inXp. We are interested in the abstract critical
problem:

(T + Ks +
1

keff
Kf )φeff = 0, φeff ∈ D(T ) , φeff > 0, φeff 6= 0. (2.2)

Sinces(T ) < 0, Problem (2.2) is equivalent to

(0 − T )−1(Ks +
1

keff
Kf )φeff = φeff , φeff > 0, φeff 6= 0.

Let us introduce the family of operators indexed by the positive parameterγ:

K(γ) = Ks +
1

γ
Kf γ > 0.

Therefore, solving (2.2) is equivalent to prove the existence (and uniqueness) ofkeff > 0 such that1
is an eigenvalue of(0 − T )−1K(keff ) associated to anonnegative eigenfunction. Such an existence
and uniqueness result can be found in [19, Theorem 5.30] (see also [18]). We setK = Ks + Kf
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Theorem 2.6. Assume that(0 − T )−1K is power-compact and that(0 − T )−1Kf is irreducible.
Then, the spectral problem(2.2) admits a unique solutionkeff > 0 associated with a nonnegative
eigenfunctionφeff if and only if

lim
γ→0

rσ[(0 − T )−1K(γ)] > 1 and rσ[(0 − T )−1Ks] < 1. (2.3)

Remark 2.7. Notice that our assumptions differs slightly from that of[19]. Actually, in [19], it is
assumed that(0 − T )−1K(γ) is power-compact and irreducible for anyγ > 0. Our assumption

implies those of[19]. Indeed, in this case, there is an integerN ∈ N such that
[
(0 − T )−1K

]N
is

compact. Since, for anyγ > 0, K(γ) 6 max{1, 1/γ}K, one gets by a domination argument that[
(0 − T )−1K(γ)

]N
is compact for anyγ > 0. This means that the power at which(0 − T )−1K(γ)

becomes compact is independent ofγ > 0. In the same way, since(0−T )−1K(γ) > 1
γ (0−T )−1Kf

for any γ > 0, our assumption implies the irreducibility of(0 − T )−1K(γ) for anyγ > 0. Notice
also that the result still holds if(0 − T )−1Ks is irreducible.

Remark 2.8. Under the assumptions of the previous Theorem, we point out that the mappingγ >
0 7→ rσ[(0 − T )−1K(γ)] is continuous (see[15, Remark 3.3, p. 208]). By analyticity arguments
(Gohberg-Shmulyan theorem), it is also strictly decreasing. Thus,keff is characterizedby

rσ[(0 − T )−1K(keff )] = 1.

Let us now give some variational characterizations of the criticality eigenvaluekeff appearing in
Theorem2.6.

2.2. Abstract variational characterization of keff . From now on, Assumption (2.3) is assumed to
be fulfilled. Let

W+
p := D(T ) ∩X+

p . (2.4)

We start with the following characterization ofkeff in terms ofsuper-solutionto the spectral problem
(2.2).

Proposition 2.9. Assume that(0 − T )−1K(γ) is power-compact and irreducible for anyγ > 0. For
anyϕ ∈W+

p , let

τ+(ϕ) := sup{γ > 0 such that(T + K(γ))ϕ is nonnegative}

with the conventionsup ∅ = 0. Then

keff = sup
ϕ∈W+

p

τ+(ϕ).

Proof. Letϕ ∈ Xp be a nonnegative eigenfunction of(0 − T )−1K(keff ) associated with the spectral
radiusrσ[(0 − T )−1K(keff )] = 1, i.e.

(0 − T )−1K(keff )ϕ = ϕ.

Clearly,ϕ ∈ D(T ). Moreover, since(0 − T )−1K(keff ) is power-compact and irreducible, a well-
known consequence of Krein-Rutman Theorem is that

ϕ(ω) > 0 a.e.ω ∈ Ω
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i.e. ϕ ∈W+
p . Now

(T + K(keff ))ϕ = 0

is nonnegative so thatτ+(ϕ) > keff and consequently

keff 6 sup
ϕ∈W+

p

τ+(ϕ).

Assume now thatkeff < sup
ϕ∈W+

p

τ+(ϕ) et let ψ ∈ W+
p be such thatτ+(ψ) > keff . Denoteγ =

τ+(ψ). By definition (T + K(γ))ψ > 0, i.e. (0 − T )−1K(γ)ψ > ψ. Thus, for anyn ∈ N,
[(0 − T )−1K(γ)]n ψ > ψ so

rσ[(0 − T )−1K(γ)] > 1.

Since,rσ[(0 − T )−1K(keff )] = 1, Remark2.8ensures thatγ 6 keff , which contradicts the choice of
τ+(ψ) > keff . �

The following illustrates the fact that the extremal value to the above variational result is reached
only by the nonnegative solution to the spectral problem (2.2).

Corollary 2.10. Assume that(0−T )−1K(γ) is power-compact and irreducible for anyγ > 0. Then,
for any nonnegativeϕ ∈ D(T ) \ {0}

τ+(ϕ) = keff if and only if (T + K(keff ))ϕ = 0.

Proof. Letϕ ∈ D(T ) \ {0}, ϕ > 0, be such thatτ+(ϕ) = keff . Then(T + K(keff ))ϕ > 0 i.e.

(0 − T )−1K(keff )ϕ > ϕ. (2.5)

Suppose that

ϕ 6= (0 − T )−1K(keff )ϕ, (2.6)

and letψ⋆ ∈ Xq be anonnegativeeigenfunction of the dual operator((0−T )−1K(keff ))⋆ associated
to rσ[((0 − T )−1K(keff ))⋆] = rσ[(0 − T )−1K(keff )] = 1. Then, by (2.5) and (2.6)

〈ϕ,ψ⋆〉 <
〈
(0 − T )−1K(keff )ϕ,ψ⋆

〉

=
〈
ϕ, ((0 − T )−1K(keff ))⋆ ψ⋆

〉
= rσ[((0 − T )−1K(keff ))⋆] 〈ϕ,ψ⋆〉

= 〈ϕ,ψ⋆〉 ,

which leads to a contradiction. Hence,ϕ = (0 − T )−1K(keff )ϕ, i.e.

(T + K(keff ))ϕ = 0.

Conversely, ifϕ is a nonnegative eigenfunction ofT +K(keff ) associated to thenull eigenvalue, then
τ+(ϕ) > keff and the identityτ+(ϕ) = keff follows from Proposition2.9. �

Remark 2.11. A careful reading of the proof here above shows that, ifϕ ∈ Xp is such that(0 −
T )−1K(keff )ϕ > ϕ > 0, thenϕ ∈ D(T ) and(T + K(keff ))ϕ = 0.
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Let us denote byφeff the unique critical eigenfunction with unit norm, i.e.φeff ∈W+
p satisfies

(T + K(keff ))φeff = φeff , ‖φeff‖ = 1.

Then one can prove the following approximation resolution for the criticality eigenfunctionφeff

whose proof is inspired by [20, Theorem 7]. Such a result shall be hopefully useful for practical
numerical approximation of the critical modeφeff of the reactor.

Theorem 2.12. Let (ϕk)k ∈ D(T ) ∩ X+
p be such thatγk := τ+(ϕk) → keff . We assumeϕk to be

normalized by

‖
[
(0 − T )−1K(γk)

]N
ϕk‖ = 1 (k ∈ N) (2.7)

whereN is the integer given by Remark2.7. Let us assume that1 is a simple eigenvalue of(0 −
T )−1K(keff ). Moreover, in the casep = 1, let us assume that the dual operator

[
(0 − T )−1K(keff )

]⋆
admits an eigenfunction associated to its spectral radius which is bounded away from zero. Then,

lim
k→∞

‖ϕk − φeff‖ = 0

whereφeff ∈ D(T ) ∩X+
p is the unique positive eigenfunction of(0 − T )−1K(keff ) associated to 1

and with unit norm .

Proof. According to the definition ofγk := τ+(ϕk), (T + K(γk))ϕk is nonnegative. Therefore,

ϕk 6 (0 − T )−1K(γk)ϕk (2.8)

and, iterating up toN

ϕk 6
[
(0 − T )−1K(γk)

]N
ϕk (k ∈ N). (2.9)

This shows, according to (2.7), that‖ϕk‖ 6 1. Now, if 1 < p < ∞ there exists a subsequence(ψk)k
which converges weakly to someψ ∈ Xp. If p = 1, the fact thatγk → keff combined with the

compactness of
[
(0 − T )−1K(γk)

]N
lead to the relative compactness of

{[
(0 − T )−1K(γk)

]N
ϕk

}
k

in X1. In particular, this sequence is equi–integrable and by domination (2.9), (ϕk)k is also equi–
integrable. We can extract a subsequence(ψk)k converging weakly to someψ ∈ X1. In both cases,

the compactness of
[
(0 − T )−1K(γk)

]N
together withγk → keff yield to the strong convergence

[
(0 − T )−1K(γk)

]N
ψk →

[
(0 − T )−1K(keff )

]N
ψ

so that
‖
[
(0 − T )−1K(keff )

]N
ψ‖ = 1.

In particularψ 6= 0, and, taking the weak limit in (2.8), ψ 6 (0 − T )−1K(keff )ψ. Now, according to
Remark2.11, this last inequality is actually an equality, i. e.

ψ = (0 − T )−1K(keff )ψ.

Iterating again, one gets

‖ψ‖ = ‖
[
(0 − T )−1K(keff )

]N
ψ‖ = 1.



VARIATIONAL CHARACTERIZATIONS OF THE EFFECTIVE MULTIPLICATION FACTOR 9

Now, since1 is a simple eigenvalue of(0−T )−1K(keff ), the set of eigenfunctions of(0−T )−1K(keff )
with unit norm reduces to a singleton. This shows thatψ is the (unique) weak limit of any subsequence
of (ϕk)k so that the whole sequence(ϕk)k converges weaklyto ψ ∈ Xp. The remainder of the proof
consists in showing that the convergence actually holds in thestrong sense.

Let us consider first the case1 < p < ∞. To show now that‖ϕk − ψ‖ → 0, it suffices to prove
that‖ϕk‖ → ‖ψ‖. A consequence of the weak convergence leads to

1 = ‖ψ‖ 6 lim inf
k→∞

‖ϕk‖.

Since‖ϕk‖ 6 1 for anyk ∈ N, this proves the Theorem for1 < p <∞.
Let us now assumep = 1. Thenϕk → ψ strongly inX1 if and only if the convergence holds in

measure, i. e., for anyΞ ⊂ Ω with finite dν–measure and everyǫ > 0

lim
k→∞

dν{ω ∈ Ξ ; |ψk(ω) − ψ(ω)| > ǫ} = 0.

Arguing by contradiction, assume there existΞ ⊂ Ω with finite dν–measure, a subsequence still
denoted(ψk)k and someδ > 0 and someǫ0 > 0 such that

dν{ω ∈ Ξ ; |ψk(ω) − ψ(ω)| > ǫ0} > δ for all m ∈ N. (2.10)

Setting

ψk =
[
(0 − T )−1K(γk)

]N
ψk

one has
lim
k→∞

‖ψk − ψ‖ = 0

sinceψ =
[
(0 − T )−1K(γk)

]N
ψ. Consequently,

lim
k→∞

dν{ω ∈ Ξ ; |ψk(ω) − ψ(ω)| > ǫ0/2} = 0

and, one deduces immediately from (2.10) that

dν{ω ∈ Ξ ; |ψk(ω) − ψ(ω)| > ǫ0/2} > δ/2 for largek. (2.11)

Now, letψ⋆ ∈ L∞(Ω) be a positive eigenfunction of
[
(0 − T )−1K(keff )

]⋆
associated to the eigen-

value1, with ψ⋆ bounded away from zero. One has
〈
ψk − ψk, ψ

⋆
〉

>

∫

{ω∈Ξ ; |ψk−ψk |>ǫ0/2}

(
ψk(ω) − ψk(ω)

)
ψ⋆(ω) dν(ω)

> inf
w
ψ⋆(ω) × ǫ0/2 × δ/2 = η > 0

or else 〈[
(0 − T )−1K(γk)

]N
ψk, ψ

⋆
〉
− 〈ψk, ψ

⋆〉 > η for largek.

Equivalently
〈
ψk, {[(0 − T )−1K(γk)]

⋆}Nψ⋆
〉
− 〈ψk, ψ

⋆〉 > η for largek.

But, {[(0− T )−1K(γk)]
⋆}Nψ⋆ converges strongly to{[(0−T )−1K(keff )]⋆}Nψ⋆ in L∞(Ω), which,

combined with the weak convergenceψk ⇀ ψ, implies
〈
ψk, {[(0 − T )−1K(γk)]

⋆}Nψ⋆
〉
→

〈
ψ, {[(0 − T )−1K(keff )]⋆}Nψ⋆

〉
= 〈ψ,ψ⋆〉 .
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Now, the contradiction follows from the fact that〈ψk, ψ⋆〉 → 〈ψ,ψ⋆〉 . �

The following characterizeskeff in terms ofsub-solutionto the spectral problem (2.2).

Proposition 2.13. Assume that(0−T )−1K(γ) is power-compact and irreducible for anyγ > 0. For
anyϕ ∈W+

p , define
τ−(ϕ) := inf{γ > 0 ; −(T + K(γ))ϕ ∈ X+

p }

with the conventioninf ∅ = +∞. Then

keff = inf
ϕ∈W+

p

τ−(ϕ).

Proof. Letϕ ∈W+
p be such thatτ−(ϕ) < +∞, and letγ > τ−(ϕ). Then

−(T + K(γ))ϕ ∈ X+
p . (2.12)

Since(0 − T )−1(X+
p ) ⊂ X+

p (see Eq. (2.1)), one gets that

ϕ− (0 − T )−1K(γ)ϕ ∈W+
p . (2.13)

Now, letψ⋆ ∈ Xq be a nonnegative eigenfunction of the dual operator((0 − T )−1K(γ))⋆ associated
with the spectral radiusrσ[((0−T )−1K(γ))⋆] = rσ[(0−T )−1K(γ)]. Note thatrσ[(0−T )−1K(γ)] >
0 according to Theorem2.5. From Krein-Rutman theorem,ψ⋆(ω) > 0 dν - a.e. ω ∈ Ω. Thus, by
(2.13) 〈

ϕ− (0 − T )−1K(γ)ϕ,ψ⋆
〉
> 0

i.e.

〈ϕ,ψ⋆〉 >
〈
(0 − T )−1K(γ)ϕ,ψ⋆

〉

=
〈
ϕ, ((0 − T )−1K(γ))⋆ ψ⋆

〉
= rσ[(0 − T )−1K(γ)] 〈ϕ,ψ⋆〉 .

Since〈ϕ,ψ⋆〉 6= 0, we getrσ[(0 − T )−1K(γ)] < 1. By Remark2.8, this means thatγ > keff . Since
γ > τ−(ϕ) is arbitrary, we obtain

keff 6 inf
ϕ∈W+

p

τ−(ϕ).

Conversely, letγ > keff . Then,rσ[(0 − T )−1K(γ)] < 1, and

[I − (0 − T )−1K(γ)]−1 =

∞∑

k=0

[(0 − T )−1K(γ)]k

> [(0 − T )−1K(γ)]n ∀n ∈ N.

Givenψ ∈ X+
p , setψ̃ = (0 − T )−1 ψ. Then,ψ̃ ∈W+

p . Define

ϕ = [I − (0 − T )−1K(γ)]−1 ψ̃. (2.14)

Clearly,ϕ ∈ D(T ) and
ϕ > [(0 − T )−1K(γ)]n ψ̃ (n ∈ N).

Letϕ⋆ ∈ Xq \ {0} benonnegative. Since(0−T )−1K(γ) is irreducible, there existsn ∈ N such that

〈ϕ,ϕ⋆〉 >

〈
[(0 − T )−1K(γ)]n ψ̃, ϕ⋆

〉
> 0
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Hence,〈ϕ,ϕ⋆〉 > 0 for any nonnegativeϕ⋆ ∈ Xq \ {0}, so thatϕ ∈ X+
p . Moreover, by (2.14),

−(T + K(γ))ϕ = (0 − T ) ψ̃ = ψ ∈ X+
p .

Hence,γ > τ−(ϕ) which proves thatkeff > inf
ϕ∈W+

p

τ−(ϕ). �

The following result shows that only the solution of the criticality problem (2.2) realizes the above
variational characterization.

Corollary 2.14. Assume that(0−T )−1K(γ) is power-compact and irreducible for anyγ > 0. Then,
for anyϕ ∈W+

p

τ−(ϕ) = keff if and only if (T + K(keff ))ϕ = 0.

Proof. Letϕ ∈W+
p be such thatτ−(ϕ) = keff . Then,−(T + K(keff ))ϕ > 0 so

ϕ 6 (0 − T )−1K(keff )ϕ.

Arguing as in the proof of Corollary2.10, one can prove thatϕ = (0 − T )−1K(γ)ϕ, which means
that

(T + K(keff ))ϕ = 0.

The sufficient condition follows directly from Proposition2.13. �

We are now able to characterize the effective multiplication factorkeff by means of Inf-Sup and
Sup-Inf criteria, where we recall thatK = Ks + Kf .

Theorem 2.15.Under the assumptions of Theorem2.6, if Kf (X
+
p ) ⊂ X+

p then the criticality eigen-
valuekeff is characterized by the following:

1

keff
= min

ϕ∈W+
p

ess sup
ω∈Ω

−(T + Ks)ϕ(ω)

Kfϕ(ω)
= max

ϕ∈W+
p

ess inf
ω∈Ω

−(T + Ks)ϕ(ω)

Kfϕ(ω)
.

Proof. Letϕ ∈W+
p be given,

τ+(ϕ) = sup{γ > 0 ; (T + Ks)ϕ+
1

γ
Kf ϕ > 0} = sup{γ > 0 ; −(T + Ks)ϕ 6

1

γ
Kf ϕ}

= sup{γ > 0 ; −(T + Ks)ϕ(ω) 6
1

γ
Kf ϕ(ω) dν − a.e.ω ∈ Ω}.

SinceKf (X
+
p ) ⊂ X+

p , one gets
1

τ+(ϕ)
= ess sup

ω∈Ω

−(T + Ks)ϕ(ω)

Kf ϕ(ω)
. By Proposition2.9,

1

keff
= inf

ϕ∈W+
p

ess sup
ω∈Ω

−(T + Ks)ϕ(ω)

Kf ϕ(ω)

and the infimum is attained for the criticality eigenfunction. Similarly, letϕ ∈W+
p

τ−(ϕ) = inf{γ > 0 ; −(T + Ks)ϕ−
1

γ
Kf ϕ > 0} = inf{γ > 0 ; −(T + Ks)ϕ >

1

γ
Kf ϕ}

= inf{γ > 0 ; −(T + Ks)ϕ(ω) >
1

γ
Kf ϕ(ω) dν − a.e.ω ∈ Ω}.
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So

τ−(ϕ) = inf{γ > 0 ;
−(T + Ks)ϕ(ω)

Kf ϕ(ω)
>

1

γ
dν − a.e.ω ∈ Ω},

i.e.
1

τ−(ϕ)
= ess inf

ω∈Ω

−(T + Ks)ϕ(ω)

Kf ϕ(ω)
.

Using Proposition2.13, one proves that

1

keff
= sup

ϕ∈W+
p

1

τ−(ϕ)
= sup

ϕ∈W+
p

ess inf
ω∈Ω

−(T + Ks)ϕ(ω)

Kf ϕ(ω)
,

which ends the proof. �

2.3. The class of regular collision operators.We end this section by recalling the class of regular
collision operators introduced in kinetic theory by M. Mokhtar-Kharroubi [19]. This class of operators
will also be useful to study diffusion problems of type (1.3). We assume here that the measure space
(Ω, dν) writes as follows:

Ω = D × V, dν(ω) = dx⊗ dµ(v), ω = (x, v) ∈ Ω

wheredµ is a suitable Radon measure overV . LetK ∈ B(Lp(Ω, dν)) be given by

K : ϕ 7−→ Kϕ(x, v) =

∫

V
k(x, v, v′)ϕ(x, v′)dµ(v′) ∈ Lp(Ω, dν) (2.15)

where the kernelk(·, ·, ·) is measurable. For almost everyx ∈ D, define

K̃(x) : ψ ∈ Lp(V, dµ) 7−→

∫

V
k(x, v, v′)ψ(v′)dµ(v′) ∈ Lp(V, dµ)

and assume that the mapping̃K : x ∈ D 7→ K̃(x) ∈ B(Lp(V, dµ)) is strongly measurable and
bounded, i.e.

ess sup
x∈D

‖K̃(x)‖B(Lp(V,dµ)) <∞.

The class of regular operators inLp spaces with1 < p < ∞ is given by the following (see [19,
Definition 4.1]).

Definition 2.16 (Regular operator). Let1 < p <∞. The operatorK defined by(2.15) is said to be
regular if :

(1) For almost everyx ∈ D, K̃(x) ∈ B(Lp(V, dµ)) is a compact operator,
(2) {K̃(x) ; x ∈ D} is relatively compact inB(Lp(V, dµ)).

In L1-spaces, the definition differs a bit. We have the following [17]

Definition 2.17. Let K be defined by(2.15). Then,K is said to be a regular operator whenever
{|k(x, ·, v′)| , (x, v′) ∈ D × V } is a relatively weakly compact subset ofL1(V, dµ).

The main interest of that classes of operators relies to the following (see Ref. [19] for 1 < p <∞
and Ref. [17] for a similar result wheneverp = 1):
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Proposition 2.18 (Approximation of regular operators). Let 1 < p < ∞ and letK defined by
(2.15) be a regular operator inLp(D × V, dx ⊗ dµ(v)). Then,K can be approximated in the norm
operator by operators of the form:

ϕ 7−→
∑

i∈I

αi(x)βi(v)

∫

V
θi(v

′)ϕ(x, v′)dµ(v′)

whereI is finite,αi ∈ L∞(D), βi ∈ Lp(V, dµ) andθi ∈ Lq(V, dµ), 1/p + 1/q = 1.

3. THE CRITICAL TRANSPORT PROBLEM

3.1. Variational characterization. This section is devoted to the determination of the effective mul-
tiplication factor associated to the transport operator. We adopt the notations of Section2.3, namely
Ω = D × V anddν(x, v) = dx ⊗ dµ(v). Throughout this section, we assumeD to be aconvex
and boundedopen subset ofRN while µ is the Lebesgue measure overR

N or on spheres. In par-
ticular, our results covercontinuous or multi-group neutron transport problemsbut do not apply to
transport problems with discrete velocities. Let

Γ− :=

{
(x, v) ∈ ∂D × V ; v · n(x) < 0

}

wheren(x) denotes the outward unit normal atx ∈ ∂D. LetT be the unbounded absorption operator
{
T : D(T ) ⊂ Xp −→ Xp

ϕ 7−→ T ϕ(x, v) := −v · ∇xϕ(x, v) − σ(x, v)ϕ(x, v),

with domain

D(T ) =

{
ψ ∈ Xp ; v · ∇xψ ∈ Xp and ψ|Γ

−

= 0

}
.

Here, thenonnegativefunctionσ(·, ·) ∈ L∞(D×V ) is thecollision frequency. It is assumed to admit
apositive lower bound

σ(x, v) > c > 0 a.e.(x, v) ∈ D × V. (3.1)

Define the (full) collision operatorK as theboundedlinear (partial) integral operator

K : ψ ∈ Xp 7−→ Kψ(x, v) :=

∫

V
Σ(x, v, v′)ψ(x, v′)dµ(v′) ∈ Xp.

The collision kernelΣ(·, ·, ·) is assumed to be nonnegative. In nuclear reactor theory, in afissile
material, this collision kernel splits as

Σ(x, v, v′) = Σs(x, v, v
′) + Σf (x, v, v

′)

whereΣs(x, v, v
′) describes the pure scattering phenomena andΣf (x, v, v

′) describes the fission
processes. Define the corresponding linear operators

Ks : ψ ∈ Xp 7−→ Ksψ(x, v) :=

∫

V
Σs(x, v, v

′)ψ(x, v′)dµ(v′) ∈ Xp

and

Kf : ψ ∈ Xp 7−→ Kfψ(x, v) :=

∫

V
Σf (x, v, v

′)ψ(x, v′)dµ(v′) ∈ Xp.
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As we told it in Introduction, we are interested here in the critical problem:

v · ∇xϕ(x, v) + σ(x, v)ϕ(x, v) −

∫

V
Σs(x, v, v

′)ϕ(x, v′)dµ(v′)

=
1

keff

∫

V
Σf (x, v, v

′)ϕ(x, v′)dµ(v′), (3.2)

where the eigenfunctionϕ is nonnegativeand satisfies the boundary conditionϕ|Γ
−

= 0. We recall
that the spectral bound ofT is given by [29]

s(T ) = − lim
t→∞

inf
(x,v)∈D×V

t<τ(x,v)

t−1

∫ t

0
σ(x+ sv, v)ds,

with τ(x, v) := inf{s > 0 ; x− sv /∈ D}. Therefore, by (3.1), we haves(T ) < 0. Moreover,

(0 − T )−1ϕ(x, v) =

∫ τ(x,v)

0
exp

{
−

∫ t

0
σ(x− vs, v)ds

}
ϕ(x− vt, v)dt,

so that(0−T )−1 fulfills (2.1). Let us now recall the irreducibility properties of(0−T )−1Kf for the
continuous and multigroup models. The following result maybe found in Ref. [19], Theorem 5.15,
Theorem 5.16, (see also [29]).

Theorem 3.1. LetD be convex. Then,(0 − T )−1Kf is irreducible in the two following cases:

(1) V is a closed subset ofRN equipped with the Lebesgue measuredµ and there exist0 < c1 <
c2 <∞, such thatV0 = {v ∈ R

N ; c1 < |v| < c2} ⊂ V with

Σf (x, v, v
′) > 0 a.e.(x, v, v′) ∈

(
D × V × V0

)
∪

(
D × V0 × V

)
. (3.3)

(2) V is the union ofk disjoint spheres(k > 1),

V =
k⋃

i=1

Vi, Vi = {v ∈ R
N ; |v| = ri}, (ri > 0, i = 1, . . . , k)

and, on each sphere,dµ is the surface Lebesgue measure. Moreover, for anyi, j ∈ {1, . . . , k},
there existsℓ ∈ {1, . . . ,m} such that

Σf (x, v, v
′) > 0 a.e.(x, v, v′) ∈

(
D × Vi × Vℓ

)
∪

(
D × Vℓ × Vj

)
. (3.4)

Remark 3.2. In the above case (1), corresponding tocontinuous models, it is possible to provide
different criteria ensuring the irreducibility of(0 − T )−1Kf (see for instance Ref.[13]). In the
second case (2), which corresponds tomultigroup transport equation, several different criteria also
exist[23].

Using the notations of Section2, we have the following characterization of the effective multipli-
cation factor of the transport operator.

Theorem 3.3. Let us assume thatK is a regular collision operator and that one of the hypothesis of
Theorem3.1holds. The critical problem(3.2) admits a unique solutionkeff if and only if

lim
γ→0

rσ[(0 − T )−1K(γ)] > 1 and rσ[(0 − T )−1Ks] < 1.
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Moreover,

1

keff
= min

ϕ∈W+
p

ess sup
(x,v)∈D×V

v · ∇xϕ(x, v) + σ(x, v)ϕ(x, v) −

∫

V
Σs(x, v, v

′)ϕ(x, v′) dµ(v′)
∫

V
Σf (x, v, v

′)ϕ(x, v′) dµ(v′)

= max
ϕ∈W+

p

ess inf
(x,v)∈D×V

v · ∇xϕ(x, v) + σ(x, v)ϕ(x, v) −

∫

V
Σs(x, v, v

′)ϕ(x, v′) dµ(v′)
∫

V
Σf (x, v, v

′)ϕ(x, v′) dµ(v′)

.

(3.5)

Proof. SinceK is a regular collision operator, one deduces from [19, Theorems 4.1 & 4.4] when
1 < p < ∞ (respectively [17] if p = 1) that (0 − T )−1K is a power-compact operator inXp

(1 6 p < ∞) under our assumptions on the measureµ. Moreover, in the continuous case, thanks to
(3.3), for anyϕ ∈ X+

p

Kfϕ(x, v) =

∫

V
Σf (x, v, v

′)ϕ(x, v′)dµ(v′)

>

∫

V0

Σf (x, v, v
′)ϕ(x, v′)dµ(v′) > 0 a.e.(x, v) ∈ D × V,

i.e. Kf (X
+
p ) ⊂ X+

p . Similarly, in the multigroup case, Eq. (3.4) impliesKf (X
+
p ) ⊂ X+

p . Now, the
existence ofkeff follows from Theorem2.6while (3.5) follows from Theorem2.15. �

Remark 3.4. Denote byφeff the nonnegative solution of(3.2), one can check thatφeff ∈ W+
p .

Therefore, in(3.5), the supremum and the infimum are reached forφ = φeff.

Remark 3.5. Note that it is possible to provide practical criteria that are satisfied in nuclear reactor
theory and that ensure the existence ofkeff [4, 28]. Such criteria usually rely on dissipative properties
of the pure scattering operator.

Remark 3.6. It is important to point out that the above characterizationis not restricted to the case
of absorbing conditions but also holds for general boundaryconditions modeled by some suitable
nonnegative albedo operator. Actually, if one considers a transport operatorTH associated to gen-
eral nonnegative albedo boundary operatorH which relates the incoming and outgoing fluxes inD
[16], then the above theorem holds true provided(0 − TH)−1K is a power-compact operator inXp

(1 6 p < ∞) whenKs andKf are regular operators. This is always the case whenever1 < p < ∞
by virtue of the velocity averaging lemma[16]. The problem is more delicate in aL1-setting and is
related to the geometry of the domainD [27].

3.2. Necessary conditions of super-criticality and sub-criticality. We shall use the result of the
previous section to derive necessary conditions ensuring the reactor to be super-critical or sub-critical.
Note that, for practical implications, a nuclear reactor can be operative and create energy only when
slightly super-critical (i.e.1 < keff < 1 + δ with δ > 0 small enough), in this case, the whole chain
fission being controlled by rods of absorbing matter. Throughout this section, we shall assumekeff to
exist.
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We shall provide lower and upper bounds on the effective multiplicative factorkeff only when the
velocity spaceV is bounded away from zero. Recall that, sinceV is assumed to be closed, this means
that0 /∈ V (see also Remark3.14).

For almost everyx ∈ D, defineKτ (x) as the following operator onLp(V, dµ):

Kτ (x) : ψ ∈ Lp(V, dµ) 7→

∫

V

Σ(x, v, v′)τ(x, v′)

1 + σ(x, v)τ(x, v)
ψ(v′)dµ(v′) ∈ Lp(V, dµ)

where we recall thatΣ(x, v, v′) = Σs(x, v, v
′)+ Σf (x, v, v

′) andτ(x, v) is the stay time inD. Then,
one defines as in [22], the following

ϑ := inf
ψ∈Lp

+
(V,dµ)

ess sup
(x,v)∈D×V

[Kτ (x)ψ](v)

ψ(v)

whereLp+(V, dµ) = {ψ ∈ Lp(V, dµ) ; ψ(v) > 0 dµ − a.e.v ∈ V }. Then, one has the following
estimate:

Proposition 3.7. Under the assumptions of Theorem3.3, if ϑ < 1, thenkeff 6 ϑ.

Proof. Assumeϑ < 1. Givenϑ ∈ (ϑ, 1), letψ0 ∈ Lp+(V, dµ) be such that

ess sup
(x,v)∈D×V

[Kτ (x)ψ0](v)

ψ0(v)
6 ϑ.

Let us consider then the following test-functionϕ0(x, v) = τ(x, v)ψ0(v). Since0 /∈ V , τ(·, ·) is
bounded and such an applicationϕ0 belongs toW+

p since

τ(x+ tv, v) = τ(x, v) + t a.e.(x, v) ∈ D × V, t > 0,

impliesv · ∇xϕ0(x, v) = ψ0(v). Then, for anyγ > 0, one sees that

− (T + K(γ))ϕ0(x, v) = ϑ−1 (1 + σ(x, v)τ(x, v))

(
ϑψ0(v) − [Kτ (x)ψ0](v)

+ (1 − ϑ)

∫

V

Σs(x, v, v
′)τ(x, v′)

1 + σ(x, v)τ(x, v)
ψ0(v

′)dµ(v′)+

+
γ − ϑ

γ

∫

V

Σf (x, v, v
′)τ(x, v′)

1 + σ(x, v)τ(x, v)
ψ0(v

′)dµ(v′)

)
. (3.6)

SinceΣs > 0 and1 − ϑ > 0, one sees that

− (T + K(γ))ϕ0(x, v) > ϑ−1 (1 + σ(x, v)τ(x, v))

(
ϑψ0(v) − [Kτ (x)ψ0](v)

+
γ − ϑ

γ

∫

V

Σf (x, v, v
′)τ(x, v′)

1 + σ(x, v)τ(x, v)
ψ0(v

′)dµ(v′)

)
.

In particular, from the positivity ofΣf , one sees that, providedγ > ϑ, −(T +K(γ))ϕ0(x, v) > 0 for
almost every(x, v) ∈ D×V . Then, from Proposition2.13, this means thatτ−(ϕ0) 6 ϑ andkeff 6 ϑ.
Sinceϑ > ϑ is arbitrary, one gets the result. �
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Remark 3.8. From the above result, one sees that the reactor is sub-critical wheneverϑ < 1. Note
that the fact thatϑ < 1 implieskeff 6 1 is already contained in[22, Theorem 7].

The above result provides an upper bound ofkeff leading to the sub-criticality of the reactor core.
To get a lower bound ofkeff , one defines a similar quantity

ϑ = sup
ψ∈Lp

+
(V,dµ)

ess inf
(x,v)∈D×V

[Kτ (x)ψ](v)

ψ(v)
.

Proposition 3.9. Under the assumptions of Theorem3.3, if ϑ > 1, thenkeff > ϑ. In particular, for a
reactor core to be sub-critical, it is necessary thatϑ 6 1.

Proof. The proof is very similar to that of Prop.3.7. Namely, assumeϑ > 1. For anyϑ ∈ (1, ϑ), let
ψ0 ∈ Lp+(V, dµ) be such that[Kτ (x)ψ0](v) > ϑψ0(v) for almost every(x, v) ∈ D × V . Then, the
functionϕ0(x, v) = τ(x, v)ψ0(v) belongs toW+

p and, arguing as in Prop.3.7, thanks to Eq. (3.6),
one sees that,(T + K(γ))ϕ is nonnegative for anyγ 6 ϑ. Consequently,τ+(ϕ) > ϑ and Prop.2.9
implies thatkeff > ϑ for anyϑ ∈ (1, ϑ). �

Remark 3.10. To the author’s knowledge, the identityϑ = ϑ is an open question. Notice however
that, according to I. Marek’s result, Ref.[18], Theorem 3.2, for anyx ∈ D, one has the identity

sup
ψ∈Lp

+
(V,dµ)

ess inf
v∈V

[Kτ (x)ψ](v)

ψ(v)
= inf

ψ∈Lp
+(V,dµ)

ess sup
v∈V

[Kτ (x)ψ](v)

ψ(v)
= rσ[K

τ (x)],

where we recall thatKτ (x) is an operator inLp(V, dµ).

In the same spirit, for almost everyx ∈ D, defineKτ
f (x) as the following operator onLp(V, dµ):

Kτ
f (x) : ψ ∈ Lp(V, dµ) 7→

∫

V

Σf (x, v, v
′)τ(x, v′)

1 + σ(x, v)τ(x, v)
ψ(v′)dµ(v′) ∈ Lp(V, dµ)

and let us define, as in [22], the setIf of all β > 0 for which there existsψ ∈ Lp+(V, dµ) \ {0} such
that

[Kτ
f (x)ψ](v) > βψ(v), for almost every (x, v) ∈ D × V.

According to [22, Lemma 4] the setI is closed so that, if one defines

βf := sup{β, β ∈ I}

then, there existsψf ∈ Lp+(V, dµ)\{0} such that[Kτ
f (x)ψf ](v) > βfψf (v) for almost every(x, v) ∈

D × V. When the velocity space is bounded away from0 then,βf provides a lower bound forkeff :

Proposition 3.11. Under the assumptions of Theorem3.3, one haskeff > βf .

Proof. Setϕf (x, v) = τ(x, v)ψf (v) whereψf ∈ Lp+(V, dµ) is defined here above. Arguing as in the
proof of Proposition3.7, one sees that, since0 /∈ V , ϕf ∈W+

p . Therefore, Theorem3.3ensures that

1

keff
6 ess sup

(x,v)∈D×V

v · ∇xϕf (x, v) + σ(x, v)ϕf (x, v) −

∫

V
Σs(x, v, v

′)ϕf (x, v
′) dµ(v′)

∫

V
Σf (x, v, v

′)ϕf (x, v
′) dµ(v′)

.
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As in the proof of Prop.3.7and sinceΣs andϕs are nonnegative, one gets

1

keff
6 ess sup

(x,v)∈D×V

ψf (v)

[Kτ
f (x)ψf ](v)

6
1

βf

which ends the proof. �

Remark 3.12. The above Proposition provides a lower bound of the criticality eigenvaluekeff that
dependsonly on the fission collision operatorKf . In particular, a sufficient condition for the reactor
to be super-critical isβf > 1.

Proposition 3.13. Letv0 := inf{|v| ; v ∈ V } and letd be the diameter ofD. Define

Λf := sup
ψ∈Lp

+
(V,dµ)

ess inf
(x,v)∈D×V

1

ψ(v)

∫

V
Σf (x, v, v

′)τ(x, v′)ψ(v′)dµ(v′).

Then, under the assumptions of Theorem3.3,

1

keff
6

1 + σ d
v0

Λf
, (3.7)

whereσ := ess sup
(x,v)∈D×V

σ(x, v). In particular, if V bounded then

keff >
1

1 + σ d
v0

ess inf
(x,v)∈D×V

∫

V
Σf (x, v, v

′)τ(x, v′)dµ(v′). (3.8)

Proof. Let us consider again test-functions of the formϕ(x, v) = τ(x, v)ψ(v) whereψ ∈ Lp+(V, dµ).
Then, as above, according to (3.5)

1

keff
6 ess sup

(x,v)∈D×V

1 + σ(x, v)τ(x, v) −
1

ψ(v)

∫

V
Σs(x, v, v

′)τ(x, v′)ψ(v′)dµ(v′)

1

ψ(v)

∫

V
Σf (x, v, v

′)τ(x, v′)ψ(v′)dµ(v′)

6

1 + ess sup
(x,v)∈D×V

σ(x, v)τ(x, v)

ess inf
(x,v)∈D×V

1

ψ(v)

∫

V
Σf (x, v, v

′)τ(x, v′)ψ(v′)dµ(v′)

.

Since such an inequality holds for arbitraryψ(v) > 0 and sinceτ(x, v) 6 d/|v| 6 d/v0 for almost
every(x, v) ∈ D×V, one gets (3.7). To prove (3.8), it suffices to consider the test-functionψ(v) = 1
(v ∈ V ), which belongs toLp+(V, dµ) providedV is bounded. �

Remark 3.14. We dealt in this section with the case of velocities bounded away from zero. For
practical use in nuclear engineering, this is no major restriction. However, it should also be possible
to derive explicit bounds ofkeff when0 ∈ V . In such a case, the exit timeτ(x, v) is not bounded
anymore but behave as1|v| for small |v|. Therefore, test-functions of the formϕ(x, v) = τ(x, v)ψ(v)

belong toW+
p if and only if ψ(v)

|v| ∈ Lp+(V, dµ).
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4. THE CRITICAL PROBLEM FOR THE ENERGY-DEPENDENT DIFFUSION MODEL

4.1. Variational characterization. In this section, we are concerned with the following

− divx (D(x, ξ)∇x̺(x, ξ)) + σ(x, ξ)̺(x, ξ) −

∫

E
Σs(x, ξ, ξ

′) ̺(x, ξ′) dξ′

=
1

keff

∫

E
Σf (x, ξ, ξ

′) ̺(x, ξ′) dξ′, (4.1)

where the unknown̺(·, ·) is assumed to benonnegativeand to satisfy the Dirichlet boundary condi-
tions

̺|∂D(·, ξ) = 0 a.e.ξ ∈ E,

whereD is C2 openbounded and connectedsubset ofRN andE is an interval of]0,∞[. We will
assume throughout this section that there exist some constantsσi > 0 (i = 1, 2) such that

0 < σ1 6 σ(x, ξ) 6 σ2 <∞, a.e.(x, ξ) ∈ D × E. (4.2)

Moreover, we assume the measurable matrix–valued application D(·, ·) satisfies the following (uni-
form) ellipticity property

ess inf
(x,ξ)∈D×E

N∑

i,j=1

dij(x, ξ)ηiηj > d1|η|
2 (η ∈ R

N ) (4.3)

and regularity assumptiondij(·, ξ) ∈ W 1,2
loc (D) for almost everyξ ∈ E. We will study Problem (4.1)

in aHilbert space settingfor simplicity. Namely, set

X2 = L2(D × E, dxdξ).

Let us assume the kernelsΣs(·, ·, ·) andΣf (·, ·, ·) to benonnegativeand define thescattering operator

Ks : ψ ∈ X2 7−→ Ksψ(x, ξ) =

∫

E
Σs(x, ξ, ξ

′)ψ(x, ξ′)dξ′ ∈ X2,

and thefission operator

Kf : ψ ∈ X2 7−→ Kfψ(x, ξ) =

∫

E
Σf (x, ξ, ξ

′)ψ(x, ξ′)dξ′ ∈ X2.

We will assumeKs andKf to beboundedoperators inX2. Define then the full collision operator

K : ψ ∈ X2 7−→ Kψ(x, ξ) =

∫

E
Σ(x, ξ, ξ′)ψ(x, ξ′)dξ′ ∈ X2,

where
Σ(x, ξ, ξ′) = Σs(x, ξ, ξ

′) + Σf (x, ξ, ξ
′) (x, ξ, ξ′) ∈ D × E × E.

Let us introduce thediffusion operator
{
T : D(T ) ⊂ X2 −→ X2

̺ 7−→ T ̺(x, ξ) = divx(D(x, ξ)∇x̺(x, ξ)) − σ(x, ξ)̺(x, ξ),
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with domain

D(T ) = {ψ ∈ X2 ; ψ(·, ξ) ∈ H1
0 (D) ∩H2(D) a.e.ξ ∈ E andT ψ ∈ X2}

whereH1
0 (D) andH2(D) are the usual Sobolev spaces. With these notations, the spectral problem

(4.1) reads

(T + Ks +
1

keff
Kf )̺eff = 0, ̺eff ∈ D(T ) , ̺eff > 0, ̺eff 6= 0.

According to the strong maximum principle, it is clear thats(T ) < 0 and(0 − T )−1(X+
2 ) ⊂ X+

2 .
In order to apply Theorem2.15, one has to make sure that(0 − T )−1K is power-compact and that
(0 − T )−1Kf is irreducible. Let us begin with the following compactnessresult which is similar to
the usualvelocity averaginglemma (see [14] and [19, Chapter 2]) for transport equations and is based
on some consequence of the Sobolev embedding Theorem [7].

Theorem 4.1. If K ∈ B(X2) is regular thenK(0 − T )−1 is a compact operator inX2.

Proof. By Proposition2.18, it suffices to prove the result for a collision operatorK such that

K : ̺ ∈ X2 7−→ K̺(x, ξ) = α(x)h(ξ)

∫

E
f(ξ′)̺(x, ξ′)dξ′ ∈ X2

where
α ∈ L∞(D), h ∈ L2(E, dξ) andf ∈ L2(E, dξ).

Moreover, by a density argument, one can also assumef andh to be continuous functions with
compact support inE. Let us splitK(0 − T )−1 as:

K(0 − T )−1 = ΘM(0 − T )−1

where
Θ : ̺ ∈ L2(D, dx) 7−→ [Θ̺](x, ξ) = α(x)h(ξ)̺(x) ∈ X2,

andM is theaveraging operator

M : ψ ∈ X2 7−→ Mψ(x) =

∫

E
f(ξ′)ψ(x, ξ′)dξ′ ∈ L2(D).

It is enough to prove thatM(0 − T )−1 : X2 → L2(D) is compact. LetB be a bounded subset of
X2. One has to show that{Mg ; g ∈ (0 − T )−1(B)} is a relatively compact subset ofL2(D). For
anyϕ ∈ B, set

g(x, ξ) = (0 − T )−1ϕ(x, ξ).

For almost everyξ ∈ E, g(·, ξ) ∈ H1
0 (D). One extendsg to the whole spaceRN by

g̃(x, ξ) =

{
g(x, ξ) if x ∈ D

0 else.

Clearly, for almost everyξ ∈ E, g̃(·, ξ) ∈ H1(RN ).Consequently, according to [7, Proposition IX.3],
for a. e.ξ ∈ E and anyh ∈ R

N

‖τhg̃(·, ξ) − g̃(·, ξ)‖L2(D) 6 |h|‖∇xg̃(·, ξ)‖L2(D),
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whereτhf(x) = f(x+ h) (x ∈ D, h ∈ R
N ), i.e.

∫

D
|g̃(x+ h, ξ) − g̃(x, ξ)|2dx 6 |h|2

∫

D
|∇xg(x, ξ)|

2dx. (4.4)

Now, recall that

−divx(D(x, ξ)∇xg(x, ξ)) + σ(x, ξ)g(x, ξ) = ϕ(x, ξ) (x, ξ) ∈ D × E.

Multiplying this identity byg(x, ξ) and integrating by parts yield, thanks to the ellipticity property
(4.3),

d1

∫

D×E
|∇xg(x, ξ)|

2dxdξ 6

∫

D×E
|g(x, ξ)||ϕ(x, ξ)|dxdξ.

In particular, sinceB is bounded, by Cauchy-Schwarz inequality, there existsc > 0 such that

sup
g∈(0−T )−1(B)

∫

D×E
|∇xg(x, ξ)|

2dxdξ 6 c. (4.5)

Then, (4.5) together with (4.4) yield
∫

D×E
|g̃(x+ h, ξ) − g̃(x, ξ)|2dxdξ 6 c|h|2.

By Hölder’s inequality, sincef is continuous with compact support
∫

D
|Mg̃(x+ h) −Mg̃(x)|2dx =

∫

D
dx

∣∣∣∣
∫

E
(g̃(x+ h, ξ) − g̃(x, ξ))f(ξ)dξ

∣∣∣∣
2

6 C

∫

D×E
|g̃(x+ h, ξ) − g̃(x, ξ)|2dxdξ

6 |h|2C,

whereC > 0 does not depend ong. In particular,

lim
h→0

sup
g∈(0−T )−1(B)

∫

D
|Mg̃(x+ h) −Mg̃(x)|2dx = 0.

Now, using that̃Mg = Mg̃ one deduces the conclusion from Riesz-Fréchet-Kolmogorov Theorem
[7]. �

We are now in position to prove the main result of this sectionwhere the notations of Section2
are adopted :

Theorem 4.2. LetK ∈ B(X2) be regular. Assume there exists an open subsetE0 ⊂ E such that

Σf (x, ξ, ξ
′) > 0 a.e.(x, ξ, ξ′) ∈ D × E ×E0. (4.6)

Then, the problem(4.1) admits a effective multiplication factorkeff > 0 if, and only if,

lim
γ→0

rσ[(0 − T )−1K(γ)] > 1 and rσ[(0 − T )−1Ks] < 1.
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Moreover,keff is characterized

1

keff
= min

ϕ∈W
+
p

ess sup
(x,v)∈D×E

−div(D(x, ξ)∇xϕ(x, ξ)) + σ(x, ξ)ϕ(x, ξ) −

∫

E

Σs(x, ξ, ξ
′)ϕ(x, ξ′)dξ′

∫

E

Σf (x, ξ, ξ′)ϕ(x, ξ′)dξ′

= max
ϕ∈W

+
p

ess inf
(x,ξ)∈D×V

−div(D(x, ξ)∇xϕ(x, ξ)) + σ(x, ξ)ϕ(x, ξ) −

∫

E

Σs(x, ξ, ξ
′)ϕ(x, ξ′)dξ′

∫

E

Σf (x, ξ, v′)ϕ(x, ξ′)dξ′
.

(4.7)

Proof. From (4.6),Kf (X
+
2 ) ⊂ X+

2 . Now, for almost everyξ ∈ E, defineTξ as the following operator
onL2(D):

Tξ : ̺ ∈ D(Tξ) 7→ Tξ̺(x) = divx(D(x, ξ)∇x̺(x)) − σ(x, ξ)̺(x),

whereD(Tξ) = H1
0 (D) ∩ H2(D) turns out to be independent ofξ. SinceD is connected, the

(elliptic) maximum principle implies that(0 − Tξ)
−1 is irreducible (see [9, Theorem 3.3.5] or [3,

Section 11.2]). Actually, sinceTξ is the generator of a holomorphic semigroup, this implies that
(0−Tξ)

−1 is positivity improving (see [23, p. 306]), i.e.(0−Tξ)−1̺(x) > 0 for almost everyx ∈ D
provided̺ ∈ L2(D), ̺(x) > 0 for almost everyx ∈ D and̺ 6= 0. Now, letψ ∈ X2, ψ(x, ξ) > 0
for almost every(x, ξ) ∈ D × E, ψ 6= 0. Then,Kfψ > 0 and(0 − Tξ)

−1Kfψ(x, ξ) > 0 for almost
every(x, ξ) ∈ D × E. It is easy to see that this exactly means that(0 − T )−1Kfψ(x, ξ) > 0 for
almost every(x, ξ) ∈ D × E and the irreducibility of(0 − T )−1Kf follows. Since(0 − T )−1K is a
compact operator by Theorem4.1, the conclusion follows from Theorems2.6and2.15. �

4.2. Explicit bounds. In this section, we derive explicit bounds for the effectivemultiplication factor
keff . As we did in Section3.2, the strategy consists in applying Theorem4.7to suitable test-functions.
We assume the hypothesis of Theorem4.2 to be met. Moreover, we assume here that the diffusion
coefficientD(·, ·) is degenerate, i.e.

D(x, ξ) = D0(x)d1(ξ), (x, ξ) ∈ D × E,

whereD0(·) is a matrix-valued application satisfying the ellipticitycondition (4.3), D(·) ∈ W 1,2
loc (D)

andd1(·) is aboundedreal-valued application with

ess inf
ξ∈E

d1(ξ) > 0.

Let λ0 be the principal eigenvalue of the following elliptic problem inL2(D)
{

divx(D0(x)∇̺(x)) + λ0̺(x) = 0, (x ∈ D)

̺|∂D(x) = 0 (x ∈ ∂D).
(4.8)

It is well-known [9] thatλ0 > 0 and that there exists apositiveeigenfunction̺ 0 solution to (4.8).
SetE+ = {ψ ∈ L2(E, dξ) ; ψ(ξ) > 0 a.e.ξ ∈ E}. In the spirit of Section3.2, for almost every
x ∈ D, defineKλ0

f (x) as the following operator onL2(E, dξ):

Kλ0

f (x) : ψ ∈ L2(E, dξ) 7→

∫

E

Σf (x, ξ, ξ
′)

λ0d1(ξ) + σ(x, ξ)
ψ(ξ′)dξ′ ∈ L2(E, dξ)
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and letIf be the set of allβ > 0 for which there existsψ ∈ E+ such that

[Kλ0

f (x)ψ](ξ) > βψ(ξ), for almost every (x, ξ) ∈ D × E.

Proposition 4.3. Settingβ0 := sup{β, β ∈ I}, one haskeff > β0. In particular, a necessary
condition to the reactor to be sub-critical isβ0 < 1.

Proof. As in Section3.2, the setI is closed. Therefore, there existsψ ∈ E+ such that[Kλ0

f (x)ψ](ξ) >

β0ψ(ξ) for almost every(x, ξ) ∈ D × E. Now, setϕ0(x, ξ) = ̺0(x)ψ(ξ), then,ϕ ∈W+
2 and

−divx(D(x, ξ)∇xϕ(x, ξ)) = −d1(ξ)ψ(ξ)divx(D0(x)∇̺0(x))

= λ0d1(ξ)ψ(ξ)̺0(x) (x, ξ) ∈ D ×E.

Consequently, thanks to (4.7) one has

1

keff
6 ess sup

(x,ξ)∈D×E

[λ0d1(ξ) + σ(x, ξ)]̺0(x)ψ(ξ) − ̺0(x)

∫

E
Σs(x, ξ, ξ

′)ψ(ξ′)dξ′

̺0(x)

∫

E
Σf (x, ξ, ξ

′)ψ(ξ′)dξ′

6 ess sup
(x,ξ)∈D×E

[λ0d1(ξ) + σ(x, ξ)]ψ(ξ)∫

E
Σf (x, ξ, ξ

′)ψ(ξ′)dξ′
= ess sup

(x,ξ)∈D×E

ψ(ξ)

[Kλ0

f (x)ψ](ξ)

which proves that 1
keff

6 1
β0
. �

In the same spirit, for almost everyx ∈ D, defineKλ0(x) as the operator onL2(E, dξ) given by

Kλ0(x) : ψ ∈ L2(E, dξ) 7→

∫

E

Σ(x, ξ, ξ′)

λ0d1(ξ) + σ(x, ξ)
ψ(ξ′)dξ′ ∈ L2(E, dξ)

where we setΣ(x, ξ, ξ′) = Σs(x, ξ, ξ
′) + Σf (x, ξ, ξ

′). As in Section3.2, set

ϑ := inf
ψ∈E+

ess sup
(x,ξ)∈D×E

[Kλ0(x)ψ](ξ)

ψ(ξ)
, and ϑ := sup

ψ∈E+

ess inf
(x,ξ)∈D×E

[Kλ0(x)ψ](ξ)

ψ(ξ)
.

Then, one has the following bounds ofkeff , in the spirit of Propositions3.7& 3.9.

Proposition 4.4. Under the assumptions of Theorem4.2, if ϑ > 1, thenkeff > ϑ. On the other hand,
if ϑ > 1, thenkeff 6 ϑ.

Proof. The proof is very similar to that of Prop.3.7& 3.9. We only prove the first part of the result,
the second part proceeding along the same lines. Assume thusthatϑ > 1. For anyϑ ∈ (1, ϑ), let

ψ0 ∈ E+ be such thatess inf(x,ξ)∈D×E
[Kλ0(x)ψ0](ξ)

ψ0(ξ) > ϑ. Choose then the test-functionϕ(x, ξ) =

̺0(x)ψ0(ξ). Such an applicationϕ belongs toW+
2 and, as in the above proof, for anyγ > 0, one
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sees that

(T + K(γ))ϕ(x, ξ) =
̺0(x)

ϑ
(λ0d1(ξ) + σ(x, ξ))

(
− ϑψ0(ξ) + [Kλ0(x)ψ0](ξ)+

(ϑ− 1)[Kλ0
s (x)ψ0](ξ) +

ϑ− γ

γ
[Kλ0

f (x)ψ0](ξ)

)

whereKλ0

f (x) has been already defined and the definition ofKλ0
s (x) is similar (Σs replacingΣf ).

Then, from the positivity ofΣs andΣf , the assumptionϑ > 1 implies that(T +K(γ))ϕ is nonnegative
for anyγ 6 ϑ. Consequently,τ+(ϕ) > ϑ and Prop.2.9 implies thatkeff > ϑ. Sinceϑ ∈ (1, ϑ) is
arbitrary, one obtainskeff > ϑ. �

WheneverE is of finite Lebesgue measure, one has the following practical criteria, already stated
by C. V. Pao [24, Theorem 5.3] using completely different arguments.

Corollary 4.5. AssumeE to be of finite Lebesgue measure. If

λ0 d1(ξ) + σ(x, ξ) <

∫

E
[Σs(x, ξ, ξ

′) + Σf (x, ξ, ξ
′)]dξ′ (x, ξ) ∈ D × E, (4.9)

then, the reactor core is non super-critical, i.e.keff > 1.

Proof. SinceE is of finite Lebesgue measure, the constant functionψ = 1E such thatψ(ξ) = 1 for
any ξ ∈ E belongs toE+. Then, assumption (4.9) means exactly that[Kλ0(x)1E ](ξ) > 1E(ξ) for
almost any(x, ξ) ∈ D × E. Therefore,ϑ > 1 and the conclusion follows from Prop.4.4. �

Remark 4.6. Notice that, under the above assumption, one has

keff > ess inf
(x,ξ)

∫
E [Σs(x, ξ, ξ

′) + Σf (x, ξ, ξ
′)]dξ′

λ0d1(ξ) + σ(x, ξ)
.
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