Giada Basile 
email: basile@wias-berlin.de
  
Stefano Olla 
email: olla@ceremade.dauphine.fr
  
Herbert Spohn 
email: spohn@ma.tum.de
  
  
  
  
ENERGY TRANSPORT IN STOCHASTICALLY PERTURBED LATTICE DYNAMICS

Keywords: Wigner distribution, semiclassical limit, phonon Boltzmann equation, energy transport

We consider lattice dynamics with a small stochastic perturbation of order ε and prove that for a space-time scale of order ε -1 the local spectral density (Wigner function) evolves according to a linear transport equation describing inelastic collisions. For an energy and momentum conserving chain the transport equation predicts a slow decay, as 1/ √ t, for the energy current correlation in equilibrium. This is in agreement with previous studies using a different method.

Introduction

Over the recent years there have been strong efforts to understand energy transport in anharmonic chains. A prototypical example is the Fermi-Pasta-Ulam chain with pinning potential and a quartic nonlinearity. Its hamiltonian reads

H(q, p) = N j=-N { 1 2m p 2 j + 1 2 ω 2 0 q 2 j } + N -1 j=-N
{ 1 2 α 1 (p j+1 -q j ) 2 + β(q j+1 -q j ) 4 } . [START_REF] Bal | Self-averaging of Wigner transforms in random media[END_REF] Here q j is the displacement of the j-th particle from its equilibrium position j, p j is the canonically conjugate momentum, m is the mass of the particle. The potential has two parts. The term ω 2 0 q 2 j confines the j-particle and is therefore referred to as pinning potential. The second part depends only on displacement differences. It consists of a harmonic nearest neighbor term of strength α 1 > 0, and the anharmonicity β(q j+1 -q j ) 4 , β ≥ 0. Energy transport can be studied by coupling the end particles, q -N and q N , to thermal reservoirs at different temperatures. An alternative method would be to take first N → ∞ in thermal equilibrium and to monitor the spreading of the energy when initially deposited close to the origin. If β = 0, the energy spreading is ballistic and the steady state energy flux, j N , is independent of N. For β > 0 and for non-zero pinning one finds, mostly based on numerical simulations, that the current j N = O(1/N). This is called regular transport. Generically the spreading of energy is then diffusive. On the other hand, for ω 0 = 0, the energy transport is anomalous, j N = N -α with α in the range from 1/3 to 2/5 (see [START_REF] Lepri | Thermal Conduction in classical low-dimensional lattices[END_REF] for a review on the subject).

The mathematical analysis of the energy transport in the FPU-chain is a difficult task, in particular since non-zero temperature is required. In [START_REF] Bernardin | Fourier's law for a microscopic model of heat conduction[END_REF] one of the author's proposed to replace the nonlinearity in (1) by a stochastic exchange of momentum between neighboring sites such that the local energy is conserved, with the extension to local momentum conservation being worked out in [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF][START_REF] Basile | Thermal conductivity for a momentum conserving model[END_REF]. We refer to section 2 below for a precise definition. The goal of our paper is to understand in this model the mechanism of energy transport for small noise strength, in particular to determine conditions for regular, resp. anomalous, transport.

Energy transport refers to large space-time scales. In case β = 0 the equations of motion for [START_REF] Bal | Self-averaging of Wigner transforms in random media[END_REF] reduce to a discrete wave equation, and semiclassical analysis provides a convenient tool. For the harmonic chain at non-zero temperature such a program was carried out by Dobrushin et al. in a series of papers [START_REF] Dobrushin | One-dimensional harmonic lattice caricature of hydrodynamics[END_REF][START_REF] Dobrushin | One-dimensional harmonic lattice caricature of hydrodynamics: second approximation[END_REF][START_REF] Dobrushin | One-dimensional harmonic lattice caricature of hydrodynamics: a higher correction[END_REF]. The local spectral density W , in physics parlance the Wigner function, is governed by the linear transport equation

∂ ∂t W (r, k, t) + 1 2π ω ′ (k) ∂ ∂r W (r, k, t) = 0 . (2) 
W depends on position r ∈ R along the chain, the wave number k ∈ [-1 2 , 1 2 ], and time t. In our model the dispersion relation ω is computed from

ω(k) 2 = ω 2 0 + α 1 1 -cos(2πk) . (3) 
The local energy density at time t is defined through e(r, t) =

1/2 -1/2 W (r, k, t)dk (4) 
in our units. Thereby (2) provides a quantitative description for the energy transport in the harmonic chain.

In [START_REF] Dudnikova | Local stationarity for lattice dynamics in the harmonic approximation[END_REF] the analysis of Dobrushin et al. is extended to a wider class of harmonic lattices, including higher dimensions. Mielke [START_REF] Mielke | Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms[END_REF] covers at great generality the case of initial conditions of finite energy, see also [START_REF] Harris | Energy transport by acoustic modes of harmonic lattices[END_REF].

The starting point of our investigation is the observation that the local spectral density should also be the appropriate quantity when stochastically perturbing the lattice dynamics, provided the strength of the stochastic term is appropriately adjusted to the semiclassical limit. This program indeed works out and, as our main result, we will prove that the stochastic exchange gives rise to a linear collision term in [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF] and the transport equation is modified to

∂ ∂t W (r, k, t) + 1 2π ω ′ (k) ∂ ∂r W (r, k, t) = R(k, k ′ ) (W (r, k ′ , t) -W (r, k, t)) dk .
(5) with an explicit transition kernel R(k, k ′ ).

We will give in detail the proofs in the one-dimensional case with a stochastic dynamics that conserves total momentum and total energy (as in [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF]). These proofs can be straightfowardly extended to lattices of dimension d ≥ 2, and to stochastic perturbations that conserves only energy (as in [START_REF] Bernardin | Fourier's law for a microscopic model of heat conduction[END_REF]).

The limit transport equation is easily analysed and is a convenient tool to study energy transport. For the one dimensional model with conservation of energy and momentum, one finds that for ω 0 = 0 the energy transport is diffusive while for no pinning, ω 0 = 0, the spreading is superdiffusive, in accord with the results in [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF][START_REF] Basile | Thermal conductivity for a momentum conserving model[END_REF]. The superdiffusion process is governed by a Levy process of index 3 2 (see [START_REF] Komorowski | Limit theorems for a additive functionals of a Markov chain[END_REF]). If ω 0 > 0 one finds regular energy transport. the same holds for dimension d ≥ 3 and for noise conserving only energy, in accordance with a direct approach using the Green-Kubo formula [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF][START_REF] Basile | Thermal conductivity for a momentum conserving model[END_REF][START_REF] Bernardin | Fourier's law for a microscopic model of heat conduction[END_REF].

Our paper is organized as follows. In sections 2 to 4 we derive equation (2) including the collision term. In section 5 we explain how our proof generalizes to higher dimensional lattices. We then discuss the energy transport in detail (section 6).

The model (One-dimensional case)

To develop the necessary techniques, we consider first the case of a one-dimensional chain, as in (1) with β = 0. In view of higher dimension it is convenient to label the particles by y ∈ Z. The chain is infinite and we allow for a general harmonic coupling. The phase space is (R × R) Z and a configuration at time t is denoted by {q y (t), p y (t)} y∈Z . The Hamiltonian of the system is given by

H(p, q) = 1 2 y∈Z p 2 y + 1 2 y,y ′ ∈Z α(y -y ′ )q y q y ′ , (6) 
where we use units such that m = 1. We denote with v(k), k ∈ T = [0, 1], the Fourier transform of a function v on Z,

v(k) = z∈Z e -2πikz v(z), (7) 
and with f (z), z ∈ Z, the inverse Fourier transform of a function f on T,

f(z) = T dk e 2πikz f (k). (8) 
The function ω(k) = α(k) is called dispersion relation.

We assume α(•) to satisfy the following properties:

Assumption 1.

• (a1) α(y) = 0 for some y = 0.

• (a2) α(y) = α(-y) for all y ∈ Z.

• (a3) There are constants C 1 , C 2 > 0 such that for all y

|α(y)| ≤ C 1 e -C 2 |y| . • (a4) We require either -(pinning): α(k) > 0 for all k ∈ T -(no pinning): α(k) > 0 ∀k = 0, α(0) = 0, α′′ (0) > 0.
Assumptions (a2), (a3) ensure that α is a real analytic function on T. Note that the potential depends only on the displacements differences iff ω(0) = 0, hence the two cases in (a4). In the pinned case ω is strictly positive and thus real analytic on T. In the unpinned case, the condition (a4) says that ω(k) = c|k| with c > 0 for small k, to say ω is a regular acoustic dispersion relation.

We consider the Hamiltonian dynamics weakly perturbed by a stochastic noise acting only on momenta and locally preserving momentum and kinetic energy. The generator of the dynamics is

L = A + εγS (9) 
with ε > 0, where A is the usual Hamiltonian vector field

A = y∈Z p y ∂ qy - y,y ′ ∈Z α(y -y ′ )q y ′ ∂ py , ( 10 
)
while S is the generator of the stochastic perturbation. The operator S acts only on the momenta {p y } and generates a diffusion on the surface of constant kinetic energy and constant momentum. S is defined as

S = 1 6 z∈Z (Y z ) 2 , (11) 
where

Y z = (p z -p z+1 )∂ p z-1 + (p z+1 -p z-1 )∂ pz + (p z-1 -p z )∂ p z+1
which is a vector field tangent to the surface of constant kinetic energy and of constant momentum for three neighbouring particles. As a consequence energy and momentum are locally conserved which, of course, implies also the conservation of total momentum and total energy of the system,

S y∈Z p y = 0 , SH = 0.
The evolution of {p(t), q(t)} is given by the following stochastic differential equations dq y = p y dt,

dp y = -(α * q) y dt + εγ 6 ∆(4p y + p y-1 + p y+1 )dt + εγ 3 k=-1,0,1 (Y y+k p y ) dw y+k (t). ( 12 
)
Here {w y (t)} y∈Z are independent standard Wiener processes and ∆ is the discrete laplacian on Z, ∆f (z) = f (z + 1) + f (z -1) -2f (z). To study the local spectral density it is convenient to introduce the complex valued field ψ : Z → C defined as

ψ(y, t) = 1 √ 2 (ω * q) y (t) + ip y (t) . (13) 
Observe that |ψ(y)| 2 = 1 2 p 2 y + 1 2 y ′ ∈Z α(y -y ′ )q y q y ′ = e y is the energy of particle y and conservation of total energy is equivalent to the conservation of the ℓ 2 -norm. For every t ≥ 0 the evolution of ψ is given by the stochastic differential equations,

dψ(y, t) = -i(ω * ψ)(y, t)dt + 1 2 εγβ * (ψ -ψ * )(y, t)dt + εγ 3 k=-1,0,1 Y y+k 1 2 (ψ -ψ * )(y, t) dw y+k (t), ( 14 
)
where β is defined through

(β * f )(z) = 1 6 ∆(4f (z) + f (z -1) + f (z + 1)). ( 15 
)
3. Wigner distribution and the Boltzmann Phonon Equation

Given a complex valued function J on R × T, we define on R × Z J(x, z) = T dk e 2πikz J(x, k). (16) 
We also define on R × T

J(p, k) = R dx e -2πipx J(x, k). (17) 
We choose a class of test-functions J on R × T such that J(•, k) ∈ S(R, C) for any k ∈ T.

Let us fix ε > 0. We denote by • ε the expectation value with respect to a family of probability measures on phase space which satisfies the following properties: (b1) ψ(y) ε = 0, ∀y ∈ Z; (b2) ψ(y ′ )ψ(y) ε = 0, ∀y, y ′ ∈ Z; (b3) sup ε>0 ε ψ 2 ℓ 2 ε ≤ K for some K > 0. Observe that, since ψ 2 ε = H ε is the expectation value of the energy, we are considering states with an energy of order ε -1 .

For every ψ we define the associated Wigner function in the standard way, see [START_REF] Bal | Self-averaging of Wigner transforms in random media[END_REF][START_REF] Lions | Sur les measures de Wigner[END_REF][START_REF] Lukkarinen | Kinetic limit for wave propagation in a random medium[END_REF][START_REF] Ryzhik | Transport equations for elastic and other waves in random media[END_REF], and integrate it against the test function J. The bilinear expression in ψ is averaged over < • > ε . For simplicity we call the averaged Wigner function simply Wigner distribution and denote it by W ε with ε the small semiclassical parameter. Thereby we arrive at the following definition

J, W ε = ε 2 y,y ′ ∈Z ψ(y ′ ) * ψ(y) ε T dke 2πik(y ′ -y) J(ε(y ′ + y)/2, k) * = ε 2 y,y ′ ∈Z ψ(y ′ ) * ψ(y) ε J(ε(y ′ + y)/2, y -y ′ ) * , (18) 
where J ∈ S(R × T). By condition (b3) this distribution is well defined, see proposition 13 in the appendix.

Proposition 2. Under the assumption (b3) for every test function J ∈ S(R×T), there exist constants K 1 , K 2 such that

J, W ε ≤ K 1 R dp sup k∈T | Ĵ(p, k)| < ∞, J, W ε ≤ K 2 z∈Z sup x∈Z | J(x, z)| < ∞ (19)
for every ε > 0.

Remark 3. Notice that W ε is well defined on a wider class of test functions than S(R d × T d ). In particular we can take J(x, k) = J(k), a bounded real valued function on T, and by (18) we have

J, W ε = ε 2 T dk | ψ(k)| 2 ε J(k),
while choosing J(x, k) = J(x), a bounded real valued function on R, we have

J, W ε = ε 2 y∈Z e y ε J(εy).
Let us start our dynamics with an initial measure satisfying conditions (b1), (b2), (b3). We want to study the evolution of the Wigner distribution W ε on the time scale ε -1 t, i.e. we define for J ∈ S(R × T),

J, W ε (t) = ε 2 y,y ′ ∈Z ψ(y ′ , t/ε) * ψ(y, t/ε) ε T dk e 2πik(y ′ -y) J(ε(y ′ + y)/2, k) * . ( 20 
)
Observe that since the dynamics preserves the total energy, the condition ε ψ ≤ K holds at any time and, by proposition 13, the Wigner distribution is well defined at any time.

According to remark 3, if we choose test functions depending only on k, then we obtain the distribution of energy in k-space. It turns out that in the limit as ǫ → 0, this distribution converges to the solution of the homogeneous Boltzmann equation, and this will be our first result. We define the distribution E ε (t) on T by

J, E ε (t) = J, W ε (t) = ε 2 T dk | ψ(k, t/ε)| 2 ε J(k) (21) 
for any bounded real valued function J, and introduce the collision operator C acting on S(R × T),

CJ(x, k) = T dk ′ R(k, k ′ ) J(x, k ′ ) -J(x, k) . ( 22 
) with R(k, k ′ ) = 4 3 2 sin 2 (2πk) sin 2 (πk ′ )+2 sin 2 (2πk ′ ) sin 2 (πk) -sin 2 (2πk) sin 2 (2πk ′ ) . (23) 
Theorem 4. Assume that the initial measure satisfies conditions (b1),(b2), (b3), and furthermore E ε (0) converges to a positive measure E 0 (dk) on T. Then E ε (t) converges to E(t, dk), the solution of

∂ t J, E(t) = γ CJ, E(t) (24) 
for every bounded function J : T → R.

In order to prove the next theorem, the full inhomogeneous equation, we need an additional condition on the initial distribution in the unpinned case ( α(0) = 0): (b4) In the case of no pinning we require lim

R→0 lim ε→0 ε 2 |k|<R dk | ψ(k)| 2 ε = 0.
Condition (b4) ensures that there is no initial concentration of energy at wave number k = 0. This condition can be omitted for a dispersion relation ω which is analytic on T (as in the pinned case).

Theorem 5. Let Assumptions (b1-b4) hold and assume that W ε (0) converges to a positive measure µ 0 (dx, dk). Then, for all t ∈ [0, T ], W ε (t) converges to a positive measure µ(t) = µ(t, dx, dk), which is the unique solution of the Boltzmann equation

∂ t J, µ(t) = 1 2π ω ′ (k)∂ x J, µ(t) + γ CJ, µ(t) (25) 
with initial condition µ(0, dx, dk) = µ 0 (dx, dk).

In (25) J, µ(t) denotes the linear functional R×T J(x, k) * µ(t, dx, dk).

Observe that the kernel R of ( 23) is non-negative, symmetric, and is equal to zero only if k = 0 or k ′ = 0. Moreover, it is easy to see that

T dk ′ R(k, k ′ ) = -β(k), (26) 
where β(k) is the Fourier transform of the function β defined in [START_REF] Ryzhik | Transport equations for elastic and other waves in random media[END_REF]. Thus the Boltzmann equation ( 25) can be interpreted as the forward equation of a Markov process (X(t), K(t)) on R × T for the dynamics of a particle, which in the context of lattice dynamics is called phonon. The phonon with momentum k travels with velocity ω ′ (k)/2π and suffers random collisions. More precisely K(t) is an autonomous reversible jump Markov process with jump rate R, while the position X(t) is determined through

X(t) = X(0) + t 0 1 2π ω ′ (K(s)) ds.
4. Proof of theorems 4 and 5.

4.1.

Relative Compactness of the Wigner distribution. Existence of the limit of the Wigner distributions W ε (t) will be established as in [START_REF] Bal | Self-averaging of Wigner transforms in random media[END_REF]. The limit distribution W (t) is non-negative, as it is proved in [START_REF] Lions | Sur les measures de Wigner[END_REF], [START_REF] Lukkarinen | Kinetic limit for wave propagation in a random medium[END_REF], i.e. for every

J ∈ S(R × T, C) one has |J| 2 , W ε = ε 2 T dk y∈Z J(εy, k)e -2πiky ψ(y) 2 ε + O(ε). (27) 
Let us introduce the space A of functions J on R d × T d such that

J A = z∈Z sup x∈R | J(x, z)| < ∞, ( 28 
)
where J is defined in (16). The following lemma shows that if the distributions W ε are uniformly bounded in A ′ , the dual space to A, then at every time t one can choose a sequence ε j → 0 such that W ε j converge in the *-weak topology in A ′ to a limit distribution W (t).

Lemma 6. There exists a constant C > 0 independent of t such that ∀ε > 0

W ε (t) A ′ ≤ C. Proof. For every J ∈ A J, W ε (t) = ε 2 y,y ′ ∈Z ψ(y ′ )ψ(y) ε J(ε(y + y ′ )/2, y -y ′ ) * .
Then, using Schwarz inequality and Assumption (b3),

J, W ε (t) ε ≤ ε 2 y∈Z |ψ(y)| 2 ε J A ≤ K J A .
4.2. Proof of theorem 4. We consider a class of test functions J depending only on k ∈ T. In particular we choose J real valued and bounded. Recall the definition

J, E ε = ε 2 T dk | ψ(k)| 2 ε J(k), which is well defined since | J, E ε | ≤ 1 2 K sup k∈T |J(k)|. The evolution of the distribution E ε (t) is determined by Ito's formula, namely ∂ t J, E ε (t) = ε 2 T dk ε -1 L| ψ(k, t/ε)| 2 ε J(k) , where L| ψ(k)| 2 = A| ψ(k)| 2 + εγS| ψ(k)| 2
and A, S are respectively defined in [START_REF] Komorowski | Limit theorems for a additive functionals of a Markov chain[END_REF], [START_REF] Lepri | Thermal Conduction in classical low-dimensional lattices[END_REF]. We have

A| ψ(k)| 2 = [A ψ(k) * ] ψ(k) + ψ(k) * [A ψ(k)],
where by direct computation

A ψ(k) = y∈Z e -2πiky Aψ(y) = -i y∈Z e -2πiky (ω * ψ)(y) = -iω(k) ψ(k) (29)
and thus A| ψ(k)| 2 = 0. For the stochastic part, since S is a second order operator, we have

S| ψ(k)| 2 = [S ψ(k) * ] ψ(k) + ψ(k) * [S ψ(k)] + 1 3 z∈Z [Y z ψ(k) * ][Y z ψ(k)],
where by direct computation

S ψ(k) = y∈Z e -2πiky Sψ(y) = 1 2 y∈Z e -2πiky β * (ψ -ψ * )(y) = 1 2 β(k)( ψ(k) -ψ(-k) * ) (30) 
with β defined in [START_REF] Ryzhik | Transport equations for elastic and other waves in random media[END_REF]. Thus

(S ψ(k) * ) ψ(k) + ψ(k) * (S ψ(k)) = β| ψ(k)| 2 - 1 2 β( ψ(k) ψ(-k) + ψ(k) * ψ(-k) * ), where β(k) = - 4 3 sin 2 (πk)(1 + 2 cos 2 (πk)). ( 31 
)
Finally we have to compute

1 3 z∈Z [Y z ψ(k) * ][Y z ψ(k)]. It holds z∈Z [Y z ψ(k) * ][Y z ψ(k)] = y,y ′ ∈Z e 2πik(y ′ -y) z∈Z [Y z ψ(y ′ ) * ][Y z ψ(y)], (32) 
where

z∈Z [Y z ψ(y ′ ) * ][Y z ψ(y)] = [Y y+1 ψ(y ′ ) * ][Y y+1 ψ(y)] + [Y y ψ(y ′ ) * ][Y y ψ(y)] + [Y y-1 ψ(y ′ ) * ][Y y-1 ψ(y)].
This expression is explicitly computed in the appendix, see eq. ( 81). By inserting it in (32) we get

y,y ′ ∈Z e 2πik(y ′ -y) z∈Z [Y z ψ(y ′ ) * ][Y z ψ(y)] = cos(4πk) y∈Z (2p y p y+1 -p y p y+2 -p 2 y ) + cos(2πk) y∈Z (2p y p y+2 -2p 2 y ) + y∈Z (-2p y p y+1 -p y p y+2 + 3p 2 y ),
which is equal to

T dξ |p(ξ)| 2 cos(4πk)[2 cos(2πξ) -cos(4πξ) -1] + 2 cos(2πk)[cos(4πξ) -1] + [3 -2 cos(2πξ) -cos(4πξ)] .
Finally, after some trigonometric identities and using the relation

|p(k)| 2 = 1 2 | ψ(k)| 2 + | ψ(-k)| 2 -ψ(k) ψ(-k) -ψ(k) * ψ(-k) * , we get 1 3 z∈Z [Y z ψ(k) * ][Y z ψ(k)] = T dξ R(k, ξ) | ψ(ξ)| 2 - 1 2 [ ψ(ξ) ψ(-ξ) + ψ(ξ) * ψ(-ξ) * ] ,
where R(k, ξ) is given by ( 23).

Since T dξ R(k, ξ) = -β(k), we can write S| ψ(k)| 2 = C| ψ(k)| 2 - 1 2 C( ψ(k) ψ(-k) + ψ(k) * ψ(-k) * ),
where C is the operator defined in (22), i.e.

Cf (k) = T dξ R(k, ξ) f (ξ) -f (k) .
The evolution of E ε (t) is given by

∂ t J, E ε (t) = γ ε 2 T dk | ψ(k, t/ε)| 2 ε CJ(k) -γ ε 2 T dk 1 2 [ ( ψ(k) ψ(-k))(t/ε) ε + ( ψ(k) * ψ(-k) * )(t/ε) ε ](CJ)(k). Defining the distribution Y ε (t) on T through J, Y ε (t) = ε 2 y,y ′ ∈Z ψ(y ′ , t/ε)ψ(y, t/ε) ε T dk e 2πik(y ′ -y) J(k) = ε 2 T dk [ ψ(k) ψ(-k)](t/ε) ε J(k),
we can rewrite the evolution equation as

∂ t J, E ε (t) = γ CJ, E ε (t) - γ 2 CJ, Y ε (t) + CJ, Y ε (t) * . ( 33 
)
This is not a closed equation for E ε (t). However we expect that in the limit ε → 0 the terms containing the distributions Y ε (t), Y ε (t) * disappear. In order to prove it, let us consider the evolution of the distribution Y ε (t) on the kinetic time scale. Calculations are similar to the previous ones, but with the difference that now A[ ψ(k) ψ(-k)] = 0, and precisely

A[ ψ(k) ψ(-k)] = -2iω(k) ψ(k) ψ(-k).
We arrive at

∂ t J, Y ε (t) = - 2i ε ωJ, Y ε (t) + γ 2 βJ, Y ε (t) + γ 2 CJ, Y ε (t) + CJ, Y ε (t) * - γ 2 βJ, Y ε (t) * -γ CJ, E ε (t) . (34) 
Observe that by integrating eq. ( 34) in time, we obtain

lim ε→0 t 0 dt ωJ, Y ε (t) = 0
for every bounded function J. In particular, since by item (i) of lemma 14

sup k∈T R(k, k ′ ) ω(k) < ∞,
we can choose a function ω -1 CJ with J bounded and obtain

lim ε→0 t 0 dt CJ, Y ε (t) = 0.
In the same way we have lim ε→0 t 0 dt CJ, Y ε (t) * = 0 and any limit distribution E(t) of E ε (t) solves the equation

J, E(t) = J, E(0) + γ t 0 ds CJ, E(s)
for every bounded real valued function J.

4.3.

Proof of theorem 5. Now we will give the proof of (25) for test functions J ∈ S(R×T, C). The main difference to the previous case is that the Hamiltonian part of the generator contributes to the evolution of W ε (t), resulting in a ballistic transport term. In order to control this term, we need to ensure that there is no mass concentration at k = 0 for every macroscopic time t ∈ [0, T ] with T > 0. This is stated in the following lemma. Lemma 7. Let assumption (b4) hold. Then for every t ∈ [0, T ] lim

ρ→0 lim ε→0 ε 2 |k|<ρ dk | ψ(k, t/ε)| 2 ε = 0.
Proof. We use the evolution equation (33

) for J ρ (k) = 1 [-ρ,ρ] (k). Since |CJ ρ (k)| ≤ c 1 (2ρ + J ρ (k)) and |CJ ρ (k)|, |Y ε (t) + Y ε (t) * | ≤ |CJ ρ (k)|, E ε (t) , we obtain the bound J ρ , E ε (t) ≤ J ρ , E ε (0) + c 2 γ t 0 ds |CJ ρ |, E ε (s) ≤ J ρ , E ε (0) + c 3 γ 2ρKt + t 0 ds J ρ , E ε (s) ,
where K is the bound on the total energy from condition (b3). Then by Gronwall's inequality

J ρ , E ε (t) ≤ 2ρK + J ρ , E ε (0) e c 3 γt ,
where, by assumption (b4), lim ε→0 J ρ , E ε (0) → 0 for ρ → 0.

4.3.1. Proof of theorem 5. For every J ∈ S(R × T, C) the evolution of the distribution W ε (t) on the kinetic time-scale is given by

∂ t J, W ε (t) = (ε/2) y,y ′ ∈Z ∂ t ψ(y ′ , t/ε) * ψ(y, t/ε) ε T dk e 2πik(y ′ -y) J(ε(y + y ′ )/2, k) * = (ε/2) y,y ′ ∈Z ε -1 L[ψ(y ′ ) * ψ(y)] ε T dk e 2πik(y ′ -y) J(ε(y + y ′ )/2, k) * ,
where

L[ψ(y ′ ) * ψ(y)] = A[ψ(y ′ ) * ψ(y)] + εγS[ψ(y ′ ) * ψ(y)]
and A, S are defined in [START_REF] Komorowski | Limit theorems for a additive functionals of a Markov chain[END_REF], [START_REF] Lepri | Thermal Conduction in classical low-dimensional lattices[END_REF], respectively. We start by computing the evolution determined by A, the Hamiltonian part of the generator. Using the representation of the Wigner distribution in Fourier space we get

ε 2 R dp T dk ε -1 A ψ(k -εp/2) * ψ(k + εp/2) ε ] J(p, k) * = -i ε 2 R dp T dk ψ(k -εp/2) * ψ(k + εp/2) ε × ε -1 [ω(k + εp/2) -ω(k -εp/2)] J(p, k) * .
Now we prove that one can replace ε -1 [ω(k + εp/2) -ω(k -εp/2)] with ω ′ (k)p in the last expression. For every 0

< ρ < 1/2 ε 2 R dp T dk ψ(k -εp/2) * ψ(k + εp/2) ε × ε -1 [ω(k + εp/2) -ω(k -εp/2)] -ω ′ (k)p J (p, k) * = I ε > (ρ) + I ε < (ρ)
, where

I ε > (ρ) = ε 2 R dp |k|>ρ dk ψ(k -εp/2) * ψ(k + εp/2) ε × ε -1 [ω(k + εp/2) -ω(k -εp/2)] -ω ′ (k)p J(p, k) * , I ε < (ρ) = ε 2 R dp |k|<ρ dk ψ(k -εp/2) * ψ(k + εp/2) ε × ε -1 [ω(k + εp/2) -ω(k -εp/2)] -ω ′ (k)p J(p, k) * .
Using Schwarz inequality and points (i), (ii) of lemma 14 in the appendix

I ε < (ρ) ≤ R dp (C|p| + ∇ω ∞ ) sup k∈T | J(p, k)| ε 2 |k|≤ρ dk | ψ(k)| 2 ε ≤ C 0 ε 2 |k|≤ρ dk | ψ(k)| 2 ε
and, by lemma 7, lim ρ→0 lim ε→0 I ε < (ρ) = 0. To compute I ε > (ρ) we split it into two parts,

I ε > (ρ) = ε 2 R,ε|p|≥ρ dp |k|>ρ dk ψ(k -εp/2) * ψ(k + εp/2) ε × ε -1 [ω(k + εp/2) -ω(k -εp/2)] -ω ′ (k)p J(p, k) * + ε 2 R,ε|p|<ρ dp |k|>ρ dk ψ(k -εp/2) * ψ(k + εp/2) ε × ε -1 [ω(k + εp/2) -ω(k -εp/2)] -ω ′ (k)p J(p, k) * .
Again we use Schwarz inequality and points (i), (ii) of lemma 14 to show that the first term on the RHS is negligible, since for all ρ > 0 it is bounded by

K |p|≥ρ/ε dp (c|p| + ∇ω ∞ ) sup k∈T | J(p, k)|,
which tends to 0 as ε → 0.

For the second term on the RHS we use the point (iii) of lemma 14, since |k| > ρ, ε|p| < ρ implies |k| > ε|p|, and for all ρ > 0 we get

ε 2 |p|<ρ/ε dp |k|>ρ dk ψ(k -εp/2) * ψ(k + εp/2) ε × ε -1 [ω(k + εp/2) -ω(k -εp/2)] -ω ′ (k)p J(p, k) * ≤ K R dp ε C 4 ρ |p| 2 sup k∈T | J(p, k)|,
which tends to 0 as ε → 0. Then we have

ε 2 R dp T dk ε -1 A ψ(k -εp/2) * ψ(k + εp/2) ε ] J(p, k) * = ε 2 R dp T dk ψ(k -εp/2) * ψ(k + εp/2) ε (-i p)ω ′ (k) J (p, k) * + O(ε) = 1 2π ∇ω∇ r J, W ε (t) ε + O(ε). (35) 
We have to compute

(ε/2) y,y ′ ∈Z S[ψ(y ′ ) * ψ(y)] ε T dk e 2πik(y ′ -y) J(ε(y + y ′ )/2, k) * = ε 2 y,y ′ ∈Z S[ψ(y ′ ) * ψ(y)] ε J ε(y + y ′ )/2, y -y ′ * .
Since S is a second order operator, we have

S[ψ(y ′ ) * ψ(y)] = ψ(y ′ ) * Sψ(y) + [Sψ(y ′ ) * ]ψ(y) + 1 3 z∈Z [Y z ψ(y ′ ) * ][Y z ψ(y)],
where by direct computation

Sψ(y) = i √ 2 Sp y = 1 2 β * (ψ * -ψ)(y) (36) 
and

ψ(y ′ ) * Sψ(y) + [Sψ(y ′ ) * ]ψ(y) = i √ 2 ψ(y ′ ) * (β * p) y -ψ(y)(β * p) y ′ .
Integrating by parts and using the symmetry of β, we can rewrite

γ(ε/2) y,y ′ ∈Z ψ(y ′ ) * Sψ(y) ε + (Sψ(y ′ ) * )ψ(y) ε J ε(y + y ′ )/2, y -y ′ * = γ(ε/2) y,y ′ ∈Z i √ 2 ψ(y ′ ) * p y ε z∈Z β(z) J ε(y + y ′ + z)/2, y -y ′ + z * -γ(ε/2) y,y ′ ∈Z i √ 2 ψ(y)p y ′ ε z∈Z β(z) J ε(y + y ′ -z)/2, y -y ′ + z * .
Using the energy bound and the properties of the test functions J, one can write the first term on right hand side as

γ(ε/2) y,y ′ ∈Z i √ 2 ψ(y ′ ) * p y ε z∈Z β(z) J ε(y + y ′ )/2, y -y ′ + z * + O(ε) = γ(ε/2) y,y ′ ∈Z i √ 2 ψ(y ′ ) * p y ε T dke 2πik(y ′ -y) β(k)J ε (y + y ′ )/2, k * + O(ε)
and the same can be done for the other term. Finally we obtain

(ε/2) y,y ′ ∈Z ψ(y ′ ) * Sψ(y) ε + (Sψ(y ′ ) * )ψ(y) ε J ε(y + y ′ )/2, y -y ′ * = (ε/2) y,y ′ ∈Z i √ 2 ψ(y ′ ) * p y -ψ(y)p y ′ ε T dk e 2πik(y ′ -y) β(k)J ε(y + y ′ )/2, k * + O(ε). ( 37 
)
About the other term in (36

) first observe that z∈Z [Y z ψ(y ′ ) * ][Y z ψ(y)
] is just a finite sum for any y, y ′ fixed and, computing it explicitly and identifying terms that differ by translations, see details of the computation in appendix 7.1, one obtains 1 3 (ε/2)

y,y ′ ,z∈Z [Y z ψ(y ′ ) * ][Y z ψ(y)] J(ε(y ′ + y)/2, y -y ′ ) * = (ε/2) y∈Z 2 z,u=-2 α(z, u) p y p y+z ε J(εy, u) * + O(ε), (38) 
where α(z, u) = α(-z, u) = α(z, -u) = α(u, z) and is given by (82). We can rewrite it as

(ε/2) y∈Z 2 z,u=-2 α(z, u) p y p y+z ε J(ε(y + z/2), u) * + O(ε) = (ε/2) y∈Z z,u∈Z α(z, u) p y p y+z ε J (ε(y + z/2), u) * + O(ε),
where we put α(z, u) = 0 if |z| > 2 or |u| > 2 and by changing variables we obtain

(ε/2) y,y ′ ∈Z p y p y ′ ε u∈Z α(y ′ -y, u) J (ε(y ′ + y)/2, u) * + O(ε). ( 39 
) Defining R(k, k ′ ) = z∈Z u∈Z e -2πikz e -2πik ′ u α(z, u),
we can rewrite (39) as

(ε/2) y,y ′ ∈Z p y p y ′ ε dk e 2πik(y ′ -y) dk ′ R(k, k ′ )J(ε(y ′ + y)/2, k ′ ) * + O(ε),
where direct computation gives

R(k, k ′ ) = 2 3 3 -2 cos(2πk) -cos(4πk) -2 cos(2πk ′ ) + 2 cos(2π(k ′ + 2k)) -cos(4πk ′ ) + 2 cos(2π(2k ′ + k)) -cos(2π(2k ′ + 2k)) = 4 3 2 sin 2 (2πk) sin 2 (πk ′ ) + 2 sin 2 (2πk ′ ) sin 2 (πk) -sin 2 (2πk) sin 2 (2πk ′ ) ,
which is the kernel defined in (23). Using the relation T dk ′ R(k, k ′ ) = -β(k) and

p y p y ′ ε = 1 2 [ ψ(y ′ ) * ψ(y) ε + ψ(y ′ )ψ(y) * ε ] - 1 2 [ ψ(y ′ )ψ(y) ε + ψ(y ′ ) * ψ(y) * ε ] i √ 2 ψ(y ′ ) * p y -ψ(y)p y ′ ε = ψ(y ′ ) * ψ(y) ε - 1 2 [ ψ(y ′ )ψ(y) ε + ψ(y ′ ) * ψ(y) * ε ],
we obtain

γ ε 2 y,y ′ ∈Z S (ψ(y ′ ) * ψ(y)) ε J(ε(y ′ + y)/2, y ′ -y) = γ CJ, W ε - γ 2 ( CJ, Y ε + CJ, Y ε * ) + O(ε), (40) 
where the collision operator C is defined in ( 22) and the distributions Y ε (t), Y ε (t) * are defined as

J, Y ε (t) =(ε/2) y,y ′ ∈Z ψ(y ′ )ψ(y) ε J(ε(y + y ′ )/2, y -y ′ ) * , J, Y ε (t) * =(ε/2) y,y ′ ∈Z ψ(y ′ ) * ψ(y) * ε J(ε(y + y ′ )/2, y -y ′ ) * (41) 
for every J ∈ S(R × T, C).

The evolution of W ε (t) is not a closed equation,

∂ t J, W ε (t) = (∇ω∇ x J), W ε (t) + γ (CJ), W ε (t) - γ 2 (CJ), Y ε (t) - γ 2 (CJ), Y ε (t) * + O(ε). ( 42 
)
However we expect that in the kinetic limit ε → 0 the terms containing the distributions Y ε (t), Y ε (t) * to disappear. To prove this, we consider the evolution of Y ε (t). Again by Ito's formula

∂ t J, Y ε (t) = (ε/2) y,y ′ ∈Z ∂ t ψ(y ′ )ψ(y) ε J (ε(y + y ′ )/2, y -y ′ ) * = (ε/2) y,y ′ ∈Z ε -1 L[ψ(y ′ )ψ(y)] ε J(ε(y + y ′ )/2, y -y ′ ) * = (ε/2) y,y ′ ∈Z ε -1 A[ψ(y ′ )ψ(y)] ε J(ε(y + y ′ )/2, y -y ′ ) * + γ(ε/2) y,y ′ ∈Z S[ψ(y ′ )ψ(y)] ε J(ε(y + y ′ )/2, y -y ′ ) * .
For the stochastic part of the generator, by a similar computation as above, we obtain

γ(ε/2) y,y ′ ∈Z S[ψ(y ′ )ψ(y)] ε J(ε(y + y ′ )/2, y ′ -y) = γ 2 (CJ), Y ε + γ 2 (CJ), Y ε * + γ 2 ( βJ), Y ε - γ 2 ( βJ), Y ε * - γ 2 (CJ), W ε + (CJ), W ε * + O(ε). (43) 
To compute the Hamiltonian contribution to the evolution of Y ε (t), we use the representation of Y ε (t) in the Fourier space and get

(ε/2) R dp T dk ε -1 A[ ψ(k -εp/2) ψ(k + εp/2) ε ] = -2iε -1 (ε/2) R dp T dk ε -1 ψ(k -εp/2) ψ(k + εp/2) ε (ω(k + εp/2) + ω(k -εp/2)) J(p, k) * ,
where with similar arguments as above one can replace ω(k + εp/2) + ω(k -εp/2) by 2ω(k), with an error of order ε 2 . Then we arrive at the following equation for the evolution of Y ε (t),

∂ t J, Y ε (t) = - 2i ε (ωJ), Y ε (t) + γ 2 (CJ), Y ε + γ 2 ( βJ), Y ε + γ 2 (CJ), Y ε * - γ 2 ( βJ), Y ε * - γ 2 (CJ), W ε + (CJ), W ε * + O(ε). (44) 
After time integration, we obtain, for any J ∈ S(R × T),

lim ε→0 t 0 dt (ωJ), Y ε (t) = 0. Observe that R(k, k ′ )/ω(k) ∈ C ∞ (T/{0}
) and, using item (i) of lemma 14 in the appendix,

sup k∈T R(k, k ′ ) ω(k) < ∞.
Then equation (44) holds for any function

ω(k) -1 CJ(y, k) = T dq R(k, q) ω(k) (J(y, q) -J(y, k))
with J ∈ S(R × T) and consequently lim ε→0 t 0 dt (CJ), Y ε (t) = 0.

Extension to dimensions d ≥ 2

We consider a particular generalisation of our model to d dimensions, d ≥ 2. The perfect lattice is Z d . Deviations from the equilibrium position y ∈ Z d is q y ∈ R d and p y denotes the corresponding momentum. Thus the phase space is (R d × R d ) Z d . The Hamiltonian of the system is given by

H(p, q) = 1 2 y∈Z d p 2 y + 1 2 y,y ′ ∈Z d α(y -y ′ )q y • q y ′ . ( 45 
)
For simplicity the couplings α are taken to be scalar. In general, α would be a d × d matrix. We denote

v(k) = z∈Z d e -2πik•z v(z), f (z) = T d dk e 2πik•z f (k). ( 46 
)
We assume α(•) to satisfy the following properties: The dynamics is determined by the generator L = A + εγS with

A = y∈Z d p y • ∂ qy - y,y ′ ∈Z d α(y -y ′ )q y ′ • ∂ py . ( 47 
)
S is defined through the vector fields

X i,j x,z = (p j z -p j y )(∂ p i z -∂ p i y ) -(p i z -p i y )(∂ p j z -∂ p j y ), according to S = 1 2(d -1) y∈Z d d i,j,k=1 X i,j y,y+e k 2 = 1 4(d -1) y,z∈Z d , y-z =1 d i,j=1 X i,j x,z 2 , ( 48 
)
where e 1 , . . . , e d is the canonical basis of Z d . As in the one-dimensional case S y∈Z d p y = 0 , SH = 0.

Note that now it suffices to couple nearest neighbors. The evolution of {p(t), q(t)} is given by the following stochastic differential equations

dq y = p y dt, dp y = -(α * q) y dt + 2εγ∆p y dt + √ εγ 2 √ d -1 z∈Z d , z-y =1 d i,j=1 X i,j y,z p y dw i,j y,z (t) (49) 
for all y ∈ Z d . Here {w i,j z,y = w i,j y,z ; z, y ∈ Z d ; i, j = 1, . . . , d; y -z = 1} are independent standard Wiener processes.

As before, we define the complex valued vector field ψ :

Z d → C d by ψ(y, t) = 1 √ 2 (ω * q) y (t) + ip y (t) (50)
with the inverse relation

p y (t) = i √ 2 (ψ * -ψ)(y, t). ( 51 
)
Observe that |ψ(y)| 2 = e y , the local energy ay y. For every t ≥ 0, the evolution of ψ is given by the stochastic differential equation,

dψ(y, t) = -i(ω * ψ)(y, t)dt + 1 2 εγβ * (ψ -ψ * )(y, t)dt + √ εγ 4 √ d -1 y ′ ∈Z d , y ′ -y =1 d i,j=1 X i,j y,y ′ (ψ -ψ * )(y, t) dw i,j y,y ′ (t), ( 52 
)
where

β is determined through (β * f )(z) = ∆f (z). Given a function J on R d × T d , we define J(x, z) = T d dk e i2πk•z J(x, k) (53) 
on R d × Z d . We also define

J(p, k) = R d dx e -i2πp•x J(x, k). ( 54 
)
We choose a class of test-functions

J on R d × T d such that J ∈ S(R d × T d , M d ),
where M d is the space of complex d × d matrices.

Fix ε > 0. We introduce the complex valued correlation matrices

ψ(y ′ ) * ⊗ ψ(y) ε , ψ(y ′ ) ⊗ ψ(y) ε , (55) 
where • ε denotes the expectation value with respect to a probability measure on phase space which satisfies the following properties:

(c1) ψ(y) ε = 0, ∀y ∈ Z d , (c2) ψ(y ′ ) ⊗ ψ(y) ε = 0, ∀y, y ′ ∈ Z d , (c3) ψ 2 ε = z∈Z d |ψ(z)| 2 ε ≤ Kε -d .
Observe that, since ψ 2 ε = H ε , we are considering states with an energy of order ε -d . We define the matrix-valued Wigner distribution W ε as

J, W ε = (ε/2) d y,y ′ ∈Z d d i,j=1 ψ j (y ′ ) * ψ i (y) ε T d dk e i2πk•(y ′ -y) J j,i (ε(y ′ + y)/2, k) * = (ε/2) d y,y ′ ∈Z d d i,j=1 ψ j (y ′ ) * ψ i (y) ε Jj,i (ε(y ′ + y)/2, y -y ′ ) * (56) with J ∈ S(R d × T d , M d ).
The evolution of the diagonal terms of the distribution W ε on time scale ε -1 t is determined through

J, W ε (t) = (ε/2) d d i=1 y,y ′ ∈Z d ψ i (y ′ , t/ε) * ψ i (y, t/ε) ε × T d dk e i2πk•(y ′ -y) J i (ε(y ′ + y)/2, k) * (57) for J i ∈ S(R d × T d ), i = 1 . . . , d.
Observe that since the dynamics preserves the total energy, the condition ε d ψ ≤ K holds at any time and, by proposition 13, the Wigner distribution is well defined at any time. On this time scale the diagonal terms of the distribution W ε (t) converge in a weak sense to a (vector valued) measure µ = {µ i (t), i = 1, .., d} on R d × T d which satisfies the following Boltzmann equation. For any vector valued function

J ∈ S(R d × T d , C d ), J, µ(t) -J, µ(0) = 1 2π t 0 ds ∇ω • ∇ x J, µ(s) + γ CJ, µ(s) , (58) 
where J, µ(t) denotes the scalar product

d i=1 R d ×T d J i (x, k) * µ i (dx, dk).
The collision operator is given by

(CJ) i (x, k) = 1 d -1 1≤j≤d, j =i T d dk ′ R(k, k ′ ) J j (x, k ′ ) -J i (x, k) , (59) 
where the kernel R :

T d × T d → R has the following expression, R(k, k ′ ) = 16 d ℓ=1 sin 2 (πk ℓ ) sin 2 (πk ′ ℓ ). (60) 
As in the one-dimensional case, in order to prove the inhomogeneous Boltzmann equation (58), we need an additional condition on the initial distribution in the unpinned case ( α(0) = 0), which ensures that there is no initial concentration of energy at k = 0: (c4) In the case of no pinning we require lim

R→0 lim ε→0 (ε/2) d |k|<R dk | ψ(k)| 2 ε = 0.
Now we state the precise theorem. The proof is analogous to the one-dimensional case.

Theorem 9. Let Assumptions (c1-c4) hold and assume that W ε (0) converges to a positive vector valued measure µ 0 . Then, for all t ∈ [0, T ], W ε (t) converges to a positive (vector-valued) measure µ 0 (t) which is the unique solution of the Boltzmann equation

∂ t J, µ(t) = 1 2π ∇ω • ∇ x J, µ(t) + γ CJ, µ(t) (61) 
with initial condition µ 0 (t).

As in the one-dimensional case, the Boltzmann equation has a probabilistic interpretation as the forward equation of a Markov process. We consider the Markov process X(t), K(t), i(t) .

By (59), the jump rate from (i, k) to (j, dk ′ ) is given by

ν k,i (j, dk ′ ) = 1 d -1 (1 -δ i,j )R(k, k ′ )dk ′ , ∀i, j = 1, ..., d.
Transitions between states with the same index i are forbidden. The total collision rate is

φ i (k) = d j=1 T d ν k,i (j, dk ′ ) = T d dk ′ R(k, k ′ ), i = 1, ..., d, which does not depend on i. Explicitly φ i (k) = φ(k) = 8 d ℓ=1 sin 2 (πk ℓ ). ( 62 
)
Given a state (k, i) at t = 0, it jumps at time τ to the state (dk ′ , j) with a probability ν k,i (dk ′ , j)/φ(k), where τ is an exponentially distributed random variable of mean φ(k) -1 . As before the position process X(t) is defined through

X(t) = X(0) + 1 2π t 0 ds ∇ω(K(s)). (63) 
6. Homogeneous case: correlations, energy current and conductivity 6.1. Translation invariant measures. We consider a situation where the initial measure on phase space is invariant under space translations. For simplicity we work in the one-dimensional setting. Using the methods from section 5, the generalization to d ≥ 2 is straightforward. Since energy will be now a.s. infinite, the results of section 3 do not apply. Let us denote with • the expectation value with respect to this initial translation invariant measure, and assume that it has the following properties:

(d1) ψ(y) = 0, ∀y ∈ Z, (d2) ψ(y)ψ(0) = 0, ∀y ∈ Z, (d3) z∈Z ψ(0) * ψ(z) < ∞.
The Wigner distribution is still well defined for every function J ∈ S(R × T). Using translation invariance

J, W ε = ε 2 y,y ′ ∈Z ψ(y ′ ) * ψ(y) T dke 2πik(y ′ -y) J(ε(y ′ + y)/2, k) * = ε 2 y,y ′ ∈Z ψ(0) * ψ(y -y ′ ) T dke 2πik(y ′ -y) J(ε(y ′ + y)/2, k) * = z∈Z ψ(0) * ψ(z) T dke -2πikz ε 2 y∈Z J(ε(2y + z)/2, k) * ,
which is finite by condition (d3) and by the fast decay of J. In Fourier space the previous expression becomes

J, W ε = ε 2 y,y ′ ∈Z R dp
T dk e 2πi(k-εp/2)y ′ ψ(y ′ ) * ψ(y) e -2πi(k+εp/2)y J(p, k) * and using translation invariance

J, W ε = 1 2 R dp T dk δ(p)W(k) J(p, k) * = 1 2 T dk W(k) J(0, k) * ,
where W(k) is the Fourier transform of the correlation function ψ(0) * ψ(z) ,

W(k) = z∈Z e -2πikz ψ(0) * ψ(z) . (64) 
By condition (d3), W(k) is well defined and in L 1 (T). Moreover, by translation invariance, W(k) is a real positive function.

If we consider the deterministic dynamics only, then W is preserved by the dynamics, i.e. ∂ t W(t) = 0. This follows from eq. ( 14) for γ = 0. Such property is no longer true if the system evolves according to the full dynamics, defined trough the generator L = A + εγS. In order to observe an effective change of the covariance, hence of the function W, we have to consider the time scale of order ε -1 . Denoting by W ε (t) = W(t/ε), we obtain the following evolution equation,

∂ t W ε (k, t) = γ(CW ε )(k, t) - γ 2 [C(Y ε + Y ε * )](k, t), ( 65 
)
where C is the collision operator defined in (22), while Y ε (k, t) is the Fourier transform of the correlation function ψ(0)ψ(z) at the rescaled time t/ε,

Y ε (k, t) = z∈Z e -2πikz ψ(t/ε, 0)ψ(t/ε, z) .
As before, we prove that in the limit ε → 0 one obtains a closed equation for W ε (t), as stated in the next theorem.

Theorem 10. Assume that the initial state satisfies the above conditions and that

W ε (k, 0) = W 0 (k) is continuous on T. Then, ∀k ∈ T, t ∈ [0, T ], lim ε→0 W ε (k, t) = W(k, t),
where W(k, t) satisfies the homogeneous Boltzmann equation

∂ t W(k, t) = γ(CW)(k, t), W(k, 0) = W 0 (k) ( 66 
)
with C defined in (22).

The proof of this theorem will be given in section 6.5.

6.2.

Equilibrium time correlations. We consider the system in equilibrium and we denote by • T the average at respect to the equilibrium measure with temperature T . This is a translation invariant Gaussian centered measure with zero mean, uniquely characterised through its covariance

W(k) = T, ψ(y)ψ(0) T = 0, ∀y ∈ Z. ( 67 
)
• T is a stationary measure for the SDE [START_REF] Mielke | Macroscopic behavior of microscopic oscillations in harmonic lattices via Wigner-Husimi transforms[END_REF]. Consider a function g ∈ ℓ 1 (Z) antisymmetric, g(z) = -g(-z), and such that ĝ/ω ∞ < ∞ and define the function

Φ = x∈Z g(x)p x q 0 .
The total time covariance is defined as

F ε (t) = z∈Z Φ(t/ε)τ z Φ(0) T . (68) 
We want to compute F ε (t) in the kinetic limit ε → 0. Consider the centered translation invariant Gaussian measure defined by the following covariance,

W (T,τ ) (k) = ω(k) T -1 ω(k) + iτ ĝ(k) , Y (T,τ ) (k) = 0 (69) 
with τ > 0. Observe that W (β,τ ) is a real, continuous function which is positive for τ small enough. Formally (69) corresponds to the perturbed measure

Z -1 exp -T -1 H + τ z∈Z τ z Φ .
We denote by • (T,τ ) its expectation.

Lemma 11. For every ε > 0, z∈Z

Φ(t/ε)τ z Φ(0) T = lim τ →0 Φ(t/ε) (T,τ ) . (70) 
The proof of this lemma is given in section 6.6 below. By direct computation, at the rescaled time t/ε,

Φ(t/ε) (T,τ ) = - 1 2 z∈Z g(z) q z p 0 -q 0 p z (T,τ ) = -i T dk ĝ(k) ω(k) W (T,τ ) (k, t/ε).
By Theorem 10, W (T,τ ) (k, t/ε) → W(k, t) for ε → 0, where W(k, t) satisfies the homogeneous Boltzmann equation (66

) with initial condition W(k, 0) = ω(k)(T -1 ω(k) + iτ ĝ(k)) -1 .
It is easy to verify that for any bounded antisymmetric function f on

T T dk (Cf )(k)W(k, t) = - T dk φ(k)W(k, t), with φ = -β(k) = 4 3 sin 2 (πk)[1 + 2 cos 2 (πk)], see (31). Then -i T dk ĝ(k) ω(k) W (T,τ ) (k, t) = -i T dk ĝ(k) ω(k) W (T,τ ) (k, 0)e -γφ(k)t
and finally, for t ≥ 0,

lim ε→0 F ε (t) = lim τ →0 - i τ T dk ĝ(k) ω(k) W (T,τ ) (k, 0)e -γφ(k)t = T 2 T dk |ĝ(k)| 2 ω(k) 2 e -γφ(k)t .
(71) 6.3. Energy current time correlation. The Hamiltonian energy current J is implicitly defined through the conservation law

Ae x = τ x-1 J -τ x J .
By direct computation J = z>0 j 0,z with

j 0,z = - 1 2 α(z) z-1 y=0
(q z-y p -y -q -y p z-y ).

Denoting by • the expectation value with respect to some translation invariant centered Gaussian measure with covariance W, it is easy to see that

J = - 1 2 z>0 z α(z) q z p 0 -q 0 p z = 1 4π T dk α′ (k) ω(k) W(k) = 1 2π T dk ω ′ (k)W(k).
Let us denote by C ε (t) the energy time correlation function on the kinetic time scale t/ε at temperature T ,

C ε (t) = x∈Z J (t/ε)τ x J (0) T .
Using the translation invariance of the Gaussian measure • T we have

C ε (t) = x∈Z z∈Z z 4 α(z) z ′ ∈Z z ′ 4 α(z ′ ) (q z p 0 -q 0 p z )(t/ε) (q x+z ′ p x -q x p x+z ′ )(0) T = x∈Z J (t/ε)τ x J (0) T , where J = - 1 4 z∈Z z α(z)(q z p 0 -q 0 p z ).
Using the results of the previous subsection we arrive at

lim ε→0 C ε (t) = T 2 (4π) 2 T dk | α′ (k)| 2 ω(k) 2 e -γφ(k)|t| = T 2 4π 2 T dk |ω ′ (k)| 2 e -γφ(k)|t| (72) 
for all t ∈ R.

Thermal Conductivity.

A standard definition of the thermal conductivity, κ (ε) , is by means of the Green-Kubo formula as

κ (ε) = 1 T 2 ∞ 0 dt C ε (εt). ( 73 
)
We refer to [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF][START_REF] Bernardin | Fourier's law for a microscopic model of heat conduction[END_REF] for details. In general, the kinetic limit provides the lowest order approximation in ε as

κ (ε) = ε -1 κ (0) + O(1).
Inserting in (73) the limit (72) thus yields

κ (0) = 1 4π 2 π dk |ω ′ (k)| 2 γφ(k) . (74) 
For the pinned case κ (0) < ∞. κ (ε) has been computed in [START_REF] Basile | A momentum conserving model with anomalous thermal conductivity in low dimension[END_REF] with the result

κ (ε) = ε -1 κ (0) + εγ.
Thus, somewhat unexpectedly, the kinetic theory captures already the main details of the conductivity. For the unpinned case κ (0) = ∞, hence κ (ε) = ∞, for d = 1, 2. The Boltzmann equation (25) provides a simple explanation. For small k, ω(k) = 2πc|k|. Thus small k phonons travel with speed c. On the other hand, the collision rate vanishes as k 2 for small k, see (31). Thus at small k there are only very few collisions which, together with c > 0, is responsible for the divergent conductivity. The positional part X(t) of the process consists mostly of very long stretches of uniform motion. In fact on a large scale X(t) is governed by a symmetric Levy process of index α = 3/2, see [START_REF] Komorowski | Limit theorems for a additive functionals of a Markov chain[END_REF] for details. 6.5. Proof of theorem 10. The proof of the theorem 10 is analogous to the proof above. We only have to control that W ε (t) and Y ε (t) are well defined for every t ∈ [0, T ]. This is stated in the next lemma. Lemma 12. Let the conditions (d1-d3) hold. Then W ε (t), Y ε (t) ∈ L 1 (T) for every t ∈ [0, T ].

Proof. By similar computations as above we find that W ε (t), Y ε (t) satisfy the following evolution equations,

∂ t W ε (k, t) = γ(CW ε )(k, t) - γ 2 (C(Y ε + Y ε * ))(k, t), ∂ t Y ε (k, t) = - 2iω(k) ε Y ε (k, t) + γ 2 β(k)(Y ε + Y ε * )(k, t) + γ 2 (C(Y ε + Y ε * ))(k, t) - γ 2 C(W ε (k, t) + W ε (-k, t)).
In particular by Duhamel's formula we can rewrite the second equation as

Y ε (k, t) =γ t 0 ds e -2iω(k)(t-s)/ε 1 2 β(k)(Y ε + Y ε * )(k, s) + 1 2 (C(Y ε + Y ε * ))(k, s) - 1 2 C(W ε (k, s) + W ε (-k, s)) .
Then we get the following bounds

|W ε (k, t)| ≤ W(k) + γc 1 t 0 ds |W ε (k, s)| + |Y ε (k, s)| + γc 2 t 0 ds T dk |W ε (k, s)| + |Y ε (k, s)| |Y ε (k, t)| ≤ +γc 3 t 0 ds |W ε (k, s)| + |W ε (-k, s)| + |Y ε (k, s)| + γc 4 t 0 ds T dk |W ε (k, s)| + |Y ε (k, s)| and finally T dk |W ε (k, t)| + |Y ε (k, t)| ≤ T dk W(k)+ γc 5 t 0 ds T dk |W ε (k, s)| + |Y ε (k, s)| . By Gronwall's lemma T dk |W ε (k, t)| + |Y ε (k, t)| ≤ e γc 5 t
T dk W(k).

6.6. Proof of (70). We define the generator of the speeded up process as

L ε = ε -1 L = ε -1 A + S.
Let us denote by • T the average with respect to the Gaussian measure with zero mean and covariance (67), and by • (β,τ ) the Gaussian measure with zero mean and covariance (69). We consider the Laplace transforms of Φ(t/ε) (T,τ )

and x∈Z Φ(t/ε)τ x Φ(0) T , ∞ 0 dt e -λt Φ(t/ε) (T,τ ) = (λ -L ε ) -1 Φ (T,τ ) = u λ (T,τ ) , ∞ 0 dt e -λt x Φ(t/ε)τ x Φ(0) T = x∈Z [(λ -L ε ) -1 Φ]τ x Φ T = x∈Z u λ τ x Φ T , (75) 
where u λ = z∈Z f λ (z) q 0 p z with f λ the solution of the equation

λ f λ (z) - γ 6 ∆(4f λ (z) + f λ (z + 1) + f λ (z -1)) = g(z).
Observe that u λ does not depend on ε, because L ε u λ = ε -1 ∇F + γSu λ with F some non-local function. Since f λ is antisymmetric, and by translation invariance of the measure, the gradient term does not contribute. We have 

u λ T,τ = z∈Z f λ (z) q 0 p z T,τ = - 1 2 z∈Z f λ (z) q z p 0 -q 0 p z T,τ = -i T dk fλ (k) 1 ω(k) W (T,τ ) (k) = -i T dk ĝ(k) λ + γφ(k)
Proof. The first inequality of item (i) follows from a Taylor expansion of α around zero, using the fact that ∇ α(0) = 0 and D 2 α ∞ < ∞. Using the same argument we have ω(k) ≤ C 3 |k|, since ω(k) = α(k) 1/2 and α(k) ≤ C|k| 2 , with C > 0. Let us denote with A 0 the Hessian of α at k = 0. By assumption (a4), k • A 0 k > c|k| 2 . Moreover, there is a δ > 0 such that for every |k| < δ,

(| α(k) -1 2 k • A 0 k|) 2 < 1 4 k • A 0 k. Then ω(k) = (( α(k) -1 2 k • A 0 k) + 1 2 k • A 0 k) 1/2 ≥ c 2 |k| 2 if |k| < δ.
For |k| ≥ δ, ω strictly positive and there is a constant c ′ such that ω(k) ≥ c ′ |k| if |k| ≥ δ, which proves the second inequality. To prove the last one it is enough to observe that for all k = 0,

|∇ω(k)| = 1 2 |∇ α(k)| ω(k) ≤ 1 2 C 1 C 2 < ∞.
Hence ω ∞ < ∞.

Let us prove item (iii). We observe that the function on the left hand side of (79) is zero if |p| = 0 and we have to consider only the case |p| > 0. Since we are assuming |k| > ε|p|, it follows that we need to discuss the case |k| > 0. Observe that for any s ∈ (0, ε], |k ± 

Assumption 8 .

 8 • (a1) α(y) = 0 for some y = 0. • (a2) α(y) = α(-y) for all y ∈ Z d . • (a3) There are constants C 1 , C 2 > 0 such that for all y |α(y)| ≤ C 1 e -C 2 |y| . • (a4) -(pinning): α > 0 on T d , -(no pinning): α(k) > 0 for all k = 0, α(0) = 0, Hess( α(0)) is invertible.

1 T

 1 -1 ω(k) + iτ ĝ(k) with φ(k) = -β(k). For every positive λ, the right hand side is finite for every τ . In particularlim τ →0 1 τ u λ T,τ = T 2 T dk |ĝ(k)| 2 ω(k) 2 (λ + γφ(k)) .In the same wayx∈Z u λ τ x Φ T = T y∈Z z∈Z f λ (y)g(z) q 0 q y-z ) T = T T dk fλ (k) * ĝ(k) ω(k) 2 W (β) (k) = T 2 T dk |ĝ(k)| 2 ω(k) 2 (λ + φ(k)), where Parseval's identity is used.7. AppendixProposition 13. Under the assumption (b3),J, W ε ≤ C J(76)for every test function J ∈ S(R d × T d ) and for every ε > 0.Proof. For any test function J ∈ S(R d × T d ) we denote by J n,∞ the following norm, J n,∞ = sup i,j∈{1,...,d} sup r∈R d ,k∈T d

∂≤ (ε/ 2 ) d ψ 2 ε z∈Z d 1 z

 21 k i 1 . . . ∂ k in J i,j (r, k) .Let us defineW ε [J](y, y ′ , i, j) = T d dk e 2πik•(y ′ -y) J j,i ε(y ′ + y)/2, k) * , for every y, y ′ ∈ Z d , i, j = 1, . . . , d. Integrating by part in k for (d + 1) times, we get|W ε [J](y, y ′ , i, j)| ≤ 1 (2π) d+1 1 |(y ′ 1 -y 1 ) + . . . + (y ′ d -y d )| d+1 J d+1,∞, where y i denotes the i-th component of the vector y. We denote byy ′ -y d+1 = |(y ′ 1 -y 1 ) + . . . + (y ′ d -y d )| d+1 . By Schwarz inequality J, W ε ≤ (ε/2) d y,y ′ ∈Z d d i,j=1 [ |ψ i (y)| 2 ε ] 1/2 [ |ψ j (y ′ )| 2 ε ] 1/2 |W ε [J](y, y ′ , i, j)| d+1 c 0 J d+1,∞ ≤ c J d+1,∞ ,where in the last inequality we used ε d ψ 2 ≤ K with K positive.Lemma 14. Let Assumption 1 hold with α(0) = 0 (unpinned case). The following assertions hold.(i) There are constantsC 1 , C 2 , C 3 such that ∀k ∈ T d |∇ α(k)| ≤ C 1 |k|, C 2 |k| ≤ ω(k) ≤ C 3 |k|.(77)In addition, ∇ω ∞ < ∞. (ii) For all k ∈ T d and p ∈ R d , there is a positive constant C such thatε -1 ω(k + εp/2) -ω(k -εp/2) ≤ C|p|(78) for every ε > 0. (iii) For p ∈ R d , there is a positive constant C 4 such that for all k ∈ T d , |k| > ε|p|, with ε > 0 one has ε -1 [ω(k + εp/2) -ω(k -εp/2)] -p • ∇ω(k) ≤ εC 4 |p| 2 |k| .

1 2 sp| ≥ 1 2 2 ω 7 . 1 .

 1271 |k| > 0 if |k| > ε|p| and the function ω(k+ 1 2 εp) -ω(k -1 2 εp) is C ∞ in this range. In particular ε -1 ω(k + εp/2) -ω(k -εp/2) -p • ∇ω(k) (k -sp/2) with s, s ∈ (0, ε), where, denoting k ± = k ± 1 2 sp, (p • ∇) 2 ω(k ± ) ± ) 3 (p • ∇ α(k ± )) 2and, using item (i),(p • ∇) 2 ω(k ± ) ≤ 4C 4 |p| 2 |k| .This prove item (iii). Item (ii) follows from (iii) if |k| > ε|p|. If |k| ≤ ε|p| we use the boundε -1 |ω(k + εp/2) -ω(k -εp/2)| ≤ C 3 ε -1 (|k + εp/2| + |k -εp/2|) ≤ C|p|. Proof of (38). First of all we observe that z∈Z [Y z ψ(y ′ ) * ][Y z ψ(y)] = [Y y+1 ψ(y ′ ) * ][Y y+1 ψ(y)] + [Y y ψ(y ′ ) * ][Y y ψ(y)] + [Y y-1 ψ(y ′ ) * ][Y y-1 ψ(y)],(80)whereY y+1 ψ(y) = i √ 2 (p y+1 -p y+2 ), Y y ψ(y) = i √2(p y+1 -p y-1 ), Y y-1 ψ(y) = i √ 2 (p y-2 -p y-1 ).
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Then (80) is equal to (p y+1 -p y+2 ) (p y+1 -p y+2 )δ y ′ ,y + (p y+2 -p y )δ y ′ ,y+1 + (p y -p y+1 )δ y ′ ,y+2 + (p y+1 -p y-1 ) (p y -p y+1 )δ y ′ ,y-1

and we can write

A y,r J(ε(y + r/2), -r) * .

Expanding the A y,r and identifying terms that differ by translations, we arrive at

where we have used the smoothness of J in x ∈ R. We can rewrite the last expression as

where α(z, u) = α(z, -u) = α(u, z) = α(-u, z) and is given by α(0, 0) = 1, α(0, 1) = -1/3, α(0, 2) = -1/6 α(1, 1) = 0, α(1, 2) = 1/6 α(2, 2) = -1/12.

(82)