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ENERGY TRANSPORT IN STOCHASTICALLY PERTURBED
LATTICE DYNAMICS

GIADA BASILE, STEFANO OLLA, AND HERBERT SPOHN

Abstract. We consider lattice dynamics with a small stochastic perturbation
of order ε and prove that for a space-time scale of order ε−1 the local spectral
density (Wigner function) evolves according to a linear transport equation
describing inelastic collisions. For an energy and momentum conserving chain
the transport equation predicts a slow decay, as 1/

√
t, for the energy current

correlation in equilibrium. This is in agreement with previous studies using a
different method.

1. Introduction

Over the recent years there have been strong efforts to understand energy
transport in anharmonic chains. A prototypical example is the Fermi-Pasta-
Ulam chain with pinning potential and a quartic nonlinearity. Its hamiltonian
reads

H(q, p) =
N∑

j=−N

{ 1
2m
p2

j + 1
2
ω2

0q
2
j} +

N−1∑

j=−N

{1
2
α1(pj+1 − qj)

2 + β(qj+1 − qj)
4} . (1)

Here qj is the displacement of the j-th particle from its equilibrium position j, pj is
the canonically conjugate momentum, m is the mass of the particle. The potential
has two parts. The term ω2

0q
2
j confines the j-particle and is therefore referred to

as pinning potential. The second part depends only on displacement differences.
It consists of a harmonic nearest neighbor term of strength α1 > 0, and the
anharmonicity β(qj+1 − qj)

4, β ≥ 0. Energy transport can be studied by coupling
the end particles, q−N and qN , to thermal reservoirs at different temperatures.
An alternative method would be to take first N → ∞ in thermal equilibrium
and to monitor the spreading of the energy when initially deposited close to the
origin. If β = 0, the energy spreading is ballistic and the steady state energy flux,
jN , is independent of N . For β > 0 and for non-zero pinning one finds, mostly
based on numerical simulations, that the current jN = O(1/N). This is called
regular transport. Generically the spreading of energy is then diffusive. On the
other hand, for ω0 = 0, the energy transport is anomalous, jN = N−α with α in
the range from 1/3 to 2/5 (see [11] for a review on the subject).
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The mathematical analysis of the energy transport in the FPU-chain is a dif-
ficult task, in particular since non-zero temperature is required. In [4] one of
the author’s proposed to replace the nonlinearity in (1) by a stochastic exchange
of momentum between neighboring sites such that the local energy is conserved,
with the extension to local momentum conservation being worked out in [2, 3]. We
refer to section 2 below for a precise definition. The goal of our paper is to under-
stand in this model the mechanism of energy transport for small noise strength,
in particular to determine conditions for regular, resp. anomalous, transport.

Energy transport refers to large space-time scales. In case β = 0 the equations
of motion for (1) reduce to a discrete wave equation, and semiclassical analysis
provides a convenient tool. For the harmonic chain at non-zero temperature such
a program was carried out by Dobrushin et al. in a series of papers [5, 6, 7]. The
local spectral density W , in physics parlance the Wigner function, is governed by
the linear transport equation

∂

∂t
W (r, k, t) +

1

2π
ω′(k)

∂

∂r
W (r, k, t) = 0 . (2)

W depends on position r ∈ R along the chain, the wave number k ∈ [−1
2
, 1

2
], and

time t. In our model the dispersion relation ω is computed from

ω(k)2 = ω2
0 + α1

(
1 − cos(2πk)

)
. (3)

The local energy density at time t is defined through

e(r, t) =

∫ 1/2

−1/2

W (r, k, t)dk (4)

in our units. Thereby (2) provides a quantitative description for the energy
transport in the harmonic chain.

In [8] the analysis of Dobrushin et al. is extended to a wider class of harmonic
lattices, including higher dimensions. Mielke [14] covers at great generality the
case of initial conditions of finite energy, see also [9].

The starting point of our investigation is the observation that the local spectral
density should also be the appropriate quantity when stochastically perturbing
the lattice dynamics, provided the strength of the stochastic term is appropriately
adjusted to the semiclassical limit. This program indeed works out and, as our
main result, we will prove that the stochastic exchange gives rise to a linear
collision term in (2) and the transport equation is modified to

∂

∂t
W (r, k, t) +

1

2π
ω′(k)

∂

∂r
W (r, k, t) =

∫
R(k, k′) (W (r, k′, t) −W (r, k, t)) dk .

(5)
with an explicit transition kernel R(k, k′).

We will give in detail the proofs in the one-dimensional case with a stochastic
dynamics that conserves total momentum and total energy (as in [2]). These
proofs can be straightfowardly extended to lattices of dimension d ≥ 2, and to
stochastic perturbations that conserves only energy (as in [4]).
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The limit transport equation is easily analysed and is a convenient tool to study
energy transport. For the one dimensional model with conservation of energy and
momentum, one finds that for ω0 6= 0 the energy transport is diffusive while for
no pinning, ω0 = 0, the spreading is superdiffusive, in accord with the results in
[2, 3]. The superdiffusion process is governed by a Levy process of index 3

2
(see

[10]). If ω0 > 0 one finds regular energy transport. the same holds for dimension
d ≥ 3 and for noise conserving only energy, in accordance with a direct approach
using the Green-Kubo formula [2, 3, 4].

Our paper is organized as follows. In sections 2 to 4 we derive equation (2)
including the collision term. In section 5 we explain how our proof generalizes
to higher dimensional lattices. We then discuss the energy transport in detail
(section 6).

2. The model (One-dimensional case)

To develop the necessary techniques, we consider first the case of a one-dimensi-
onal chain, as in (1) with β = 0. In view of higher dimension it is convenient
to label the particles by y ∈ Z. The chain is infinite and we allow for a general
harmonic coupling. The phase space is (R ×R)Z and a configuration at time t is
denoted by {qy(t), py(t)}y∈Z. The Hamiltonian of the system is given by

H(p, q) =
1

2

∑

y∈Z

p2
y +

1

2

∑

y,y′∈Z

α(y − y′)qyqy′ , (6)

where we use units such that m = 1. We denote with v̂(k), k ∈ T = [0, 1], the
Fourier transform of a function v on Z,

v̂(k) =
∑

z∈Z

e−2πikzv(z), (7)

and with f̃(z), z ∈ Z, the inverse Fourier transform of a function f on T,

f̃(z) =

∫

T

dk e2πikzf(k). (8)

The function ω(k) =
√
α̂(k) is called dispersion relation.

We assume α(·) to satisfy the following properties:

Assumption 1.

• (a1) α(y) 6= 0 for some y 6= 0.
• (a2) α(y) = α(−y) for all y ∈ Z.
• (a3) There are constants C1, C2 > 0 such that for all y

|α(y)| ≤ C1e
−C2|y|.

• (a4) We require either
– (pinning): α̂(k) > 0 for all k ∈ T

– (no pinning): α̂(k) > 0 ∀k 6= 0, α̂(0) = 0, α̂′′(0) > 0.
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Assumptions (a2), (a3) ensure that α̂ is a real analytic function on T. Note
that the potential depends only on the displacements differences iff ω(0) = 0,
hence the two cases in (a4). In the pinned case ω is strictly positive and thus
real analytic on T. In the unpinned case, the condition (a4) says that ω(k) = c|k|
with c > 0 for small k, to say ω is a regular acoustic dispersion relation.

We consider the Hamiltonian dynamics weakly perturbed by a stochastic noise
acting only on momenta and locally preserving momentum and kinetic energy.
The generator of the dynamics is

L = A+ εγS (9)

with ε > 0, where A is the usual Hamiltonian vector field

A =
∑

y∈Z

py∂qy
−

∑

y,y′∈Z

α(y − y′)qy′∂py
, (10)

while S is the generator of the stochastic perturbation. The operator S acts only
on the momenta {py} and generates a diffusion on the surface of constant kinetic
energy and constant momentum. S is defined as

S =
1

6

∑

z∈Z

(Yz)
2, (11)

where
Yz = (pz − pz+1)∂pz−1

+ (pz+1 − pz−1)∂pz
+ (pz−1 − pz)∂pz+1

which is a vector field tangent to the surface of constant kinetic energy and of con-
stant momentum for three neighbouring particles. As a consequence energy and
momentum are locally conserved which, of course, implies also the conservation
of total momentum and total energy of the system,

S
∑

y∈Z

py = 0 , SH = 0.

The evolution of {p(t), q(t)} is given by the following stochastic differential
equations

dqy = py dt,

dpy = − (α ∗ q)y dt+
εγ

6
∆(4py + py−1 + py+1)dt

+

√
εγ

3

∑

k=−1,0,1

(Yy+kpy) dwy+k(t).

(12)

Here {wy(t)}y∈Z are independent standard Wiener processes and ∆ is the discrete
laplacian on Z,

∆f(z) = f(z + 1) + f(z − 1) − 2f(z).

To study the local spectral density it is convenient to introduce the complex
valued field ψ : Z → C defined as

ψ(y, t) =
1√
2

(
(ω̃ ∗ q)y(t) + ipy(t)

)
. (13)
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Observe that |ψ(y)|2 = 1
2
p2

y + 1
2

∑
y′∈Z

α(y−y′)qyqy′ = ey is the energy of particle y
and conservation of total energy is equivalent to the conservation of the ℓ2-norm.
For every t ≥ 0 the evolution of ψ is given by the stochastic differential equations,

dψ(y, t) = − i(ω̃ ∗ ψ)(y, t)dt+
1

2
εγβ ∗ (ψ − ψ∗)(y, t)dt

+

√
εγ

3

∑

k=−1,0,1

(
Yy+k

1
2
(ψ − ψ∗)(y, t)

)
dwy+k(t),

(14)

where β is defined through

(β ∗ f)(z) =
1

6
∆(4f(z) + f(z − 1) + f(z + 1)). (15)

3. Wigner distribution and the Boltzmann Phonon Equation

Given a complex valued function J on R × T, we define on R × Z

J̃(x, z) =

∫

T

dk e2πikzJ(x, k). (16)

We also define on R × T

Ĵ(p, k) =

∫

R

dx e−2πipxJ(x, k). (17)

We choose a class of test-functions J on R × T such that J(·, k) ∈ S(R,C) for
any k ∈ T.

Let us fix ε > 0. We denote by
〈
·
〉

ε
the expectation value with respect

to a family of probability measures on phase space which satisfies the following
properties:

(b1)
〈
ψ(y)

〉
ε
= 0, ∀y ∈ Z;

(b2)
〈
ψ(y′)ψ(y)

〉
ε
= 0, ∀y, y′ ∈ Z;

(b3) supε>0 ε
〈
‖ψ‖2

ℓ2

〉
ε
≤ K for some K > 0.

Observe that, since
〈
‖ψ‖2

〉
ε
=

〈
H

〉
ε

is the expectation value of the energy, we

are considering states with an energy of order ε−1.
For every ψ we define the associated Wigner function in the standard way, see

[1, 12, 13, 15], and integrate it against the test function J . The bilinear expression
in ψ is averaged over < · >ε. For simplicity we call the averaged Wigner function
simply Wigner distribution and denote it by W ε with ε the small semiclassical
parameter. Thereby we arrive at the following definition

〈
J,W ε

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′)∗ψ(y)

〉
ε

∫

T

dke2πik(y′−y)J(ε(y′ + y)/2, k)∗

=
ε

2

∑

y,y′∈Z

〈
ψ(y′)∗ψ(y)

〉
ε
J̃(ε(y′ + y)/2, y − y′)∗,

(18)
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where J ∈ S(R × T). By condition (b3) this distribution is well defined, see
proposition 13 in the appendix.

Proposition 2. Under the assumption (b3) for every test function J ∈ S(R×T),
there exist constants K1, K2 such that

∣∣〈J,W ε
〉∣∣ ≤ K1

∫

R

dp sup
k∈T

|Ĵ(p, k)| <∞,

∣∣〈J,W ε
〉∣∣ ≤ K2

∑

z∈Z

sup
x∈Z

|J̃(x, z)| <∞
(19)

for every ε > 0.

Remark 3. Notice that W ε is well defined on a wider class of test functions than
S(Rd × Td). In particular we can take J(x, k) = J(k), a bounded real valued
function on T, and by (18) we have

〈
J,W ε

〉
=
ε

2

∫

T

dk
〈
|ψ̂(k)|2

〉
ε
J(k),

while choosing J(x, k) = J(x), a bounded real valued function on R, we have

〈
J,W ε

〉
=
ε

2

∑

y∈Z

〈
ey

〉
ε
J(εy).

Let us start our dynamics with an initial measure satisfying conditions (b1),
(b2), (b3). We want to study the evolution of the Wigner distribution W ε on the
time scale ε−1t, i.e. we define for J ∈ S(R × T),

〈
J,W ε(t)

〉

=
ε

2

∑

y,y′∈Z

〈
ψ(y′, t/ε)∗ψ(y, t/ε)

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y′ + y)/2, k)∗.
(20)

Observe that since the dynamics preserves the total energy, the condition ε 〈‖ψ‖〉
≤ K holds at any time and, by proposition 13, the Wigner distribution is well
defined at any time.

According to remark 3, if we choose test functions depending only on k, then
we obtain the distribution of energy in k-space. It turns out that in the limit as
ǫ→ 0, this distribution converges to the solution of the homogeneous Boltzmann
equation, and this will be our first result. We define the distribution Eε(t) on T

by
〈
J, Eε(t)

〉
=

〈
J,W ε(t)

〉
=
ε

2

∫

T

dk
〈
|ψ̂(k, t/ε)|2

〉
ε
J(k) (21)

for any bounded real valued function J , and introduce the collision operator C
acting on S(R × T),

CJ(x, k) =

∫

T

dk′R(k, k′)
(
J(x, k′) − J(x, k)

)
. (22)
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with

R(k, k′) =
4

3

(
2 sin2(2πk) sin2(πk′)+2 sin2(2πk′) sin2(πk)

− sin2(2πk) sin2(2πk′)
)
.

(23)

Theorem 4. Assume that the initial measure satisfies conditions (b1),(b2), (b3),
and furthermore Eε(0) converges to a positive measure E0(dk) on T. Then Eε(t)
converges to E(t, dk), the solution of

∂t

〈
J, E(t)

〉
= γ

〈
CJ, E(t)

〉
(24)

for every bounded function J : T → R.

In order to prove the next theorem, the full inhomogeneous equation, we need
an additional condition on the initial distribution in the unpinned case (α̂(0) = 0):

(b4) In the case of no pinning we require

lim
R→0

lim
ε→0

ε

2

∫

|k|<R

dk
〈
|ψ̂(k)|2

〉
ε
= 0.

Condition (b4) ensures that there is no initial concentration of energy at wave
number k = 0. This condition can be omitted for a dispersion relation ω which
is analytic on T (as in the pinned case).

Theorem 5. Let Assumptions (b1-b4) hold and assume that W ε(0) converges
to a positive measure µ0(dx, dk). Then, for all t ∈ [0, T ], W ε(t) converges to a
positive measure µ(t) = µ(t, dx, dk), which is the unique solution of the Boltzmann
equation

∂t

〈
J, µ(t)

〉
=

1

2π

〈
ω′(k)∂xJ, µ(t)

〉
+ γ

〈
CJ, µ(t)

〉
(25)

with initial condition µ(0, dx, dk) = µ0(dx, dk).

In (25)
〈
J, µ(t)

〉
denotes the linear functional

∫
R×T

J(x, k)∗µ(t, dx, dk).

Observe that the kernel R of (23) is non-negative, symmetric, and is equal to
zero only if k = 0 or k′ = 0. Moreover, it is easy to see that

∫

T

dk′ R(k, k′) = −β̂(k), (26)

where β̂(k) is the Fourier transform of the function β defined in (15). Thus
the Boltzmann equation (25) can be interpreted as the forward equation of a
Markov process (X(t), K(t)) on R × T for the dynamics of a particle, which in
the context of lattice dynamics is called phonon. The phonon with momentum k
travels with velocity ω′(k)/2π and suffers random collisions. More precisely K(t)
is an autonomous reversible jump Markov process with jump rate R, while the
position X(t) is determined through

X(t) = X(0) +

∫ t

0

1

2π
ω′(K(s)) ds.
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4. Proof of theorems 4 and 5.

4.1. Relative Compactness of the Wigner distribution. Existence of the
limit of the Wigner distributions W ε(t) will be established as in [1]. The limit
distribution W (t) is non-negative, as it is proved in [12], [13], i.e. for every
J ∈ S(R × T,C) one has

〈
|J |2,W ε

〉
=
ε

2

〈 ∫

T

dk
∣∣∣
∑

y∈Z

J(εy, k)e−2πikyψ(y)
∣∣∣
2〉

ε
+ O(ε). (27)

Let us introduce the space A of functions J on Rd × Td such that

‖J‖A =
∑

z∈Z

sup
x∈R

|J̃(x, z)| <∞, (28)

where J̃ is defined in (16). The following lemma shows that if the distributions
W ε are uniformly bounded in A′, the dual space to A, then at every time t one
can choose a sequence εj → 0 such that W εj converge in the *-weak topology in
A′ to a limit distribution W (t).

Lemma 6. There exists a constant C > 0 independent of t such that ∀ε > 0

‖W ε(t)‖A′ ≤ C.

Proof. For every J ∈ A
〈
J,W ε(t)

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′)ψ(y)

〉
ε
J̃(ε(y + y′)/2, y − y′)∗.

Then, using Schwarz inequality and Assumption (b3),
∣∣〈J,W ε(t)

〉
ε

∣∣ ≤ ε

2

∑

y∈Z

〈
|ψ(y)|2

〉
ε
‖J‖A ≤ K‖J‖A.

�

4.2. Proof of theorem 4. We consider a class of test functions J depending
only on k ∈ T. In particular we choose J real valued and bounded. Recall the
definition

〈
J, Eε

〉
=
ε

2

∫

T

dk
〈
|ψ̂(k)|2

〉
ε
J(k),

which is well defined since |
〈
J, Eε

〉
| ≤ 1

2
K supk∈T

|J(k)|.
The evolution of the distribution Eε(t) is determined by Ito’s formula, namely

∂t

〈
J, Eε(t)

〉
=
ε

2

∫

T

dk ε−1
〈
L|ψ̂(k, t/ε)|2

〉
ε
J(k) ,

where
L|ψ̂(k)|2 = A|ψ̂(k)|2 + εγS|ψ̂(k)|2

and A, S are respectively defined in (10), (11). We have

A|ψ̂(k)|2 = [Aψ̂(k)∗]ψ̂(k) + ψ̂(k)∗[Aψ̂(k)],
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where by direct computation

Aψ̂(k) =
∑

y∈Z

e−2πikyAψ(y) = −i
∑

y∈Z

e−2πiky(ω̃ ∗ ψ)(y) = −iω(k)ψ̂(k) (29)

and thus A|ψ̂(k)|2 = 0. For the stochastic part, since S is a second order operator,
we have

S|ψ̂(k)|2 = [Sψ̂(k)∗]ψ̂(k) + ψ̂(k)∗[Sψ̂(k)] +
1

3

∑

z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)],

where by direct computation

Sψ̂(k) =
∑

y∈Z

e−2πikySψ(y) =
1

2

∑

y∈Z

e−2πikyβ ∗ (ψ − ψ∗)(y)

=
1

2
β̂(k)(ψ̂(k) − ψ̂(−k)∗)

(30)

with β defined in (15). Thus

(Sψ̂(k)∗)ψ̂(k) + ψ̂(k)∗(Sψ̂(k))

= β̂|ψ̂(k)|2 − 1

2
β̂(ψ̂(k)ψ̂(−k) + ψ̂(k)∗ψ̂(−k)∗),

where

β̂(k) = −4

3
sin2(πk)(1 + 2 cos2(πk)). (31)

Finally we have to compute 1
3

∑
z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)]. It holds

∑

z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)] =
∑

y,y′∈Z

e2πik(y′−y)
∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)], (32)

where
∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)]

= [Yy+1ψ(y′)∗][Yy+1ψ(y)] + [Yyψ(y′)∗][Yyψ(y)] + [Yy−1ψ(y′)∗][Yy−1ψ(y)].

This expression is explicitly computed in the appendix, see eq. (81). By inserting
it in (32) we get

∑

y,y′∈Z

e2πik(y′−y)
∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)]

= cos(4πk)
∑

y∈Z

(2pypy+1 − pypy+2 − p2
y)

+ cos(2πk)
∑

y∈Z

(2pypy+2 − 2p2
y) +

∑

y∈Z

(−2pypy+1 − pypy+2 + 3p2
y),
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which is equal to
∫

T

dξ |p̂(ξ)|2
(
cos(4πk)[2 cos(2πξ) − cos(4πξ) − 1]

+ 2 cos(2πk)[cos(4πξ) − 1] + [3 − 2 cos(2πξ) − cos(4πξ)]
)
.

Finally, after some trigonometric identities and using the relation

|p̂(k)|2 =
1

2

(
|ψ̂(k)|2 + |ψ̂(−k)|2 − ψ̂(k)ψ̂(−k) − ψ̂(k)∗ψ̂(−k)∗

)
,

we get

1

3

∑

z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)]

=

∫

T

dξ R(k, ξ)
(
|ψ̂(ξ)|2 − 1

2
[ψ̂(ξ)ψ̂(−ξ) + ψ̂(ξ)∗ψ̂(−ξ)∗]

)
,

where R(k, ξ) is given by (23).

Since
∫

T
dξ R(k, ξ) = −β̂(k), we can write

S|ψ̂(k)|2 = C|ψ̂(k)|2 − 1

2
C(ψ̂(k)ψ̂(−k) + ψ̂(k)∗ψ̂(−k)∗),

where C is the operator defined in (22), i.e.

Cf(k) =

∫

T

dξ R(k, ξ)
(
f(ξ) − f(k)

)
.

The evolution of Eε(t) is given by

∂t

〈
J, Eε(t)

〉
= γ

ε

2

∫

T

dk
〈
|ψ̂(k, t/ε)|2

〉
ε
CJ(k)

− γ
ε

2

∫

T

dk
1

2
[
〈
(ψ̂(k)ψ̂(−k))(t/ε)

〉
ε
+

〈
(ψ̂(k)∗ψ̂(−k)∗)(t/ε)

〉
ε
](CJ)(k).

Defining the distribution Y ε(t) on T through

〈
J, Y ε(t)

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′, t/ε)ψ(y, t/ε)

〉
ε

∫

T

dk e2πik(y′−y)J(k)

=
ε

2

∫

T

dk
〈
[ψ̂(k)ψ̂(−k)](t/ε)

〉
ε
J(k),

we can rewrite the evolution equation as

∂t

〈
J, Eε(t)

〉
= γ

〈
CJ, Eε(t)

〉
− γ

2

(〈
CJ, Y ε(t)

〉
+

〈
CJ, Y ε(t)∗

〉)
. (33)

This is not a closed equation for Eε(t). However we expect that in the limit ε→ 0
the terms containing the distributions Y ε(t), Y ε(t)∗ disappear. In order to prove
it, let us consider the evolution of the distribution Y ε(t) on the kinetic time scale.
Calculations are similar to the previous ones, but with the difference that now
A[ψ̂(k)ψ̂(−k)] 6= 0, and precisely

A[ψ̂(k)ψ̂(−k)] = −2iω(k)ψ̂(k)ψ̂(−k).
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We arrive at

∂t

〈
J, Y ε(t)

〉
= −2i

ε

〈
ωJ, Y ε(t)

〉
+
γ

2

〈
β̂J, Y ε(t)

〉

+
γ

2

(〈
CJ, Y ε(t)

〉
+

〈
CJ, Y ε(t)∗

〉)
− γ

2

〈
β̂J, Y ε(t)∗

〉
− γ

〈
CJ, Eε(t)

〉
.

(34)

Observe that by integrating eq. (34) in time, we obtain

lim
ε→0

∣∣∣
∫ t

0

dt
〈
ωJ, Y ε(t)

〉∣∣∣ = 0

for every bounded function J . In particular, since by item (i) of lemma 14

sup
k∈T

R(k, k′)

ω(k)
<∞,

we can choose a function ω−1CJ with J bounded and obtain

lim
ε→0

∣∣∣
∫ t

0

dt
〈
CJ, Y ε(t)

〉∣∣∣ = 0.

In the same way we have limε→0

∣∣ ∫ t

0
dt

〈
CJ, Y ε(t)∗

〉∣∣ = 0 and any limit distribu-
tion E(t) of Eε(t) solves the equation

〈
J, E(t)

〉
=

〈
J, E(0)

〉
+ γ

∫ t

0

ds
〈
CJ, E(s)

〉

for every bounded real valued function J . �

4.3. Proof of theorem 5. Now we will give the proof of (25) for test functions
J ∈ S(R×T,C). The main difference to the previous case is that the Hamiltonian
part of the generator contributes to the evolution of W ε(t), resulting in a ballistic
transport term. In order to control this term, we need to ensure that there is no
mass concentration at k = 0 for every macroscopic time t ∈ [0, T ] with T > 0.
This is stated in the following lemma.

Lemma 7. Let assumption (b4) hold. Then for every t ∈ [0, T ]

lim
ρ→0

lim
ε→0

ε

2

∫

|k|<ρ

dk
〈
|ψ̂(k, t/ε)|2

〉
ε

= 0.

Proof. We use the evolution equation (33) for Jρ(k) = 1[−ρ,ρ](k). Since

|CJρ(k)| ≤ c1(2ρ+Jρ(k)) and
〈
|CJρ(k)|, |Y ε(t)+Y ε(t)∗|

〉
≤

〈
|CJρ(k)|, Eε(t)

〉
, we

obtain the bound
〈
Jρ, Eε(t)

〉
≤

〈
Jρ, Eε(0)

〉
+ c2γ

∫ t

0

ds
〈
|CJρ|, Eε(s)

〉

≤
〈
Jρ, Eε(0)

〉
+ c3γ

(
2ρKt+

∫ t

0

ds
〈
Jρ, Eε(s)

〉)
,

whereK is the bound on the total energy from condition (b3). Then by Gronwall’s
inequality 〈

Jρ, Eε(t)
〉
≤

(
2ρK +

〈
Jρ, Eε(0)

〉)
ec3γt,
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where, by assumption (b4), limε→0

〈
Jρ, Eε(0)

〉
→ 0 for ρ→ 0. �

4.3.1. Proof of theorem 5. For every J ∈ S(R ×T,C) the evolution of the distri-
bution W ε(t) on the kinetic time-scale is given by

∂t

〈
J,W ε(t)

〉

= (ε/2)
∑

y,y′∈Z

∂t

〈
ψ(y′, t/ε)∗ψ(y, t/ε)

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y + y′)/2, k)∗

= (ε/2)
∑

y,y′∈Z

ε−1
〈
L[ψ(y′)∗ψ(y)]

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y + y′)/2, k)∗,

where

L[ψ(y′)∗ψ(y)] = A[ψ(y′)∗ψ(y)] + εγS[ψ(y′)∗ψ(y)]

and A, S are defined in (10), (11), respectively. We start by computing the
evolution determined by A, the Hamiltonian part of the generator. Using the
representation of the Wigner distribution in Fourier space we get

ε

2

∫

R

dp

∫

T

dk ε−1A
[〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε
]Ĵ(p, k)∗

= −iε
2

∫

R

dp

∫

T

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

× ε−1[ω(k + εp/2) − ω(k − εp/2)]Ĵ(p, k)∗.

Now we prove that one can replace ε−1[ω(k + εp/2) − ω(k − εp/2)] with ω′(k)p
in the last expression. For every 0 < ρ < 1/2

ε

2

∫

R

dp

∫

T

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

×
(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗ = Iε

>(ρ) + Iε
<(ρ),

where

Iε
>(ρ) =

ε

2

∫

R

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

×
(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗,

Iε
<(ρ) =

ε

2

∫

R

dp

∫

|k|<ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

×
(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗.

Using Schwarz inequality and points (i), (ii) of lemma 14 in the appendix

∣∣Iε
<(ρ)

∣∣ ≤
∫

R

dp (C|p| + ‖∇ω‖∞) sup
k∈T

|Ĵ(p, k)|
(ε

2

∫

|k|≤ρ

dk
〈
|ψ̂(k)|2

〉
ε

)

≤ C0
ε

2

∫

|k|≤ρ

dk
〈
|ψ̂(k)|2

〉
ε
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and, by lemma 7,
lim
ρ→0

lim
ε→0

∣∣Iε
<(ρ)

∣∣ = 0.

To compute Iε
>(ρ) we split it into two parts,

Iε
>(ρ) =

ε

2

∫

R,ε|p|≥ρ

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

×
(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗

+
ε

2

∫

R,ε|p|<ρ

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

×
(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗.

Again we use Schwarz inequality and points (i), (ii) of lemma 14 to show that
the first term on the RHS is negligible, since for all ρ > 0 it is bounded by

K

∫

|p|≥ρ/ε

dp (c|p| + ‖∇ω‖∞) sup
k∈T

|Ĵ(p, k)|,

which tends to 0 as ε→ 0.
For the second term on the RHS we use the point (iii) of lemma 14, since

|k| > ρ, ε|p| < ρ implies |k| > ε|p|, and for all ρ > 0 we get

ε

2

∫

|p|<ρ/ε

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

×
(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗

≤ K

∫

R

dp ε
C4

ρ
|p|2 sup

k∈T

|Ĵ(p, k)|,

which tends to 0 as ε→ 0. Then we have

ε

2

∫

R

dp

∫

T

dk ε−1A
[〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε
]Ĵ(p, k)∗

=
ε

2

∫

R

dp

∫

T

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε
(−i p)ω′(k)Ĵ(p, k)∗ + O(ε)

=
1

2π

〈
∇ω∇rJ,W

ε(t)
〉

ε
+ O(ε).

(35)

We have to compute

(ε/2)
∑

y,y′∈Z

〈
S[ψ(y′)∗ψ(y)]

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y + y′)/2, k)∗

=
ε

2

∑

y,y′∈Z

〈
S[ψ(y′)∗ψ(y)]

〉
ε
J̃
(
ε(y + y′)/2, y − y′

)∗
.

Since S is a second order operator, we have

S[ψ(y′)∗ψ(y)] = ψ(y′)∗Sψ(y) + [Sψ(y′)∗]ψ(y) +
1

3

∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)],
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where by direct computation

Sψ(y) =
i√
2
Spy =

1

2
β ∗ (ψ∗ − ψ)(y) (36)

and

ψ(y′)∗Sψ(y) + [Sψ(y′)∗]ψ(y) =
i√
2

(
ψ(y′)∗(β ∗ p)y − ψ(y)(β ∗ p)y′

)
.

Integrating by parts and using the symmetry of β, we can rewrite

γ(ε/2)
∑

y,y′∈Z

[〈
ψ(y′)∗Sψ(y)

〉
ε
+

〈
(Sψ(y′)∗)ψ(y)

〉
ε

]
J̃
(
ε(y + y′)/2, y − y′

)∗

= γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y′)∗py〉ε

∑

z∈Z

β(z)J̃
(
ε(y + y′ + z)/2, y − y′ + z

)∗

− γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y)py′〉ε

∑

z∈Z

β(z)J̃
(
ε(y + y′ − z)/2, y − y′ + z

)∗
.

Using the energy bound and the properties of the test functions J , one can write
the first term on right hand side as

γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y′)∗py〉ε

∑

z∈Z

β(z)J̃
(
ε(y + y′)/2, y − y′ + z

)∗
+ O(ε)

= γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y′)∗py〉ε

∫

T

dke2πik(y′−y)β̂(k)J
(
ε (y + y′)/2, k

)∗

+ O(ε)

and the same can be done for the other term. Finally we obtain

(ε/2)
∑

y,y′∈Z

[〈
ψ(y′)∗Sψ(y)

〉
ε
+

〈
(Sψ(y′)∗)ψ(y)

〉
ε

]
J̃
(
ε(y + y′)/2, y − y′

)∗

= (ε/2)
∑

y,y′∈Z

i√
2

〈
ψ(y′)∗py − ψ(y)py′

〉
ε

∫

T

dk e2πik(y′−y)β̂(k)J
(
ε(y + y′)/2, k

)∗

+ O(ε).
(37)

About the other term in (36) first observe that
∑

z∈Z
[Yzψ(y′)∗][Yzψ(y)] is just

a finite sum for any y, y′ fixed and, computing it explicitly and identifying terms
that differ by translations, see details of the computation in appendix 7.1, one
obtains

1

3
(ε/2)

∑

y,y′,z∈Z

〈
[Yzψ(y′)∗][Yzψ(y)]

〉
J̃(ε(y′ + y)/2, y − y′)∗

= (ε/2)
∑

y∈Z

2∑

z,u=−2

α(z, u)
〈
pypy+z

〉
ε
J̃(εy, u)∗ + O(ε),

(38)
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where α(z, u) = α(−z, u) = α(z,−u) = α(u, z) and is given by (82). We can
rewrite it as

(ε/2)
∑

y∈Z

2∑

z,u=−2

α(z, u)
〈
pypy+z

〉
ε
J̃(ε(y + z/2), u)∗ + O(ε)

= (ε/2)
∑

y∈Z

∑

z,u∈Z

α(z, u)
〈
pypy+z

〉
ε
J̃(ε(y + z/2), u)∗ + O(ε),

where we put α(z, u) = 0 if |z| > 2 or |u| > 2 and by changing variables we obtain

(ε/2)
∑

y,y′∈Z

〈
pypy′

〉
ε

∑

u∈Z

α(y′ − y, u)J̃ (ε(y′ + y)/2, u)
∗
+ O(ε). (39)

Defining

R(k, k′) =
∑

z∈Z

∑

u∈Z

e−2πikze−2πik′uα(z, u),

we can rewrite (39) as

(ε/2)
∑

y,y′∈Z

〈
pypy′

〉
ε

∫
dk e2πik(y′−y)

∫
dk′ R(k, k′)J(ε(y′ + y)/2, k′)∗ + O(ε),

where direct computation gives

R(k, k′) =
2

3

(
3 − 2 cos(2πk) − cos(4πk) − 2 cos(2πk′) + 2 cos(2π(k′ + 2k))

− cos(4πk′) + 2 cos(2π(2k′ + k)) − cos(2π(2k′ + 2k))
)

=
4

3

(
2 sin2(2πk) sin2(πk′) + 2 sin2(2πk′) sin2(πk) − sin2(2πk) sin2(2πk′)

)
,

which is the kernel defined in (23). Using the relation
∫

T
dk′R(k, k′) = −β̂(k) and

〈
pypy′

〉
ε

=
1

2
[
〈
ψ(y′)∗ψ(y)

〉
ε
+

〈
ψ(y′)ψ(y)∗

〉
ε
] − 1

2
[
〈
ψ(y′)ψ(y)

〉
ε
+

〈
ψ(y′)∗ψ(y)∗

〉
ε
]

i√
2

〈
ψ(y′)∗py − ψ(y)py′

〉
ε

=
〈
ψ(y′)∗ψ(y)

〉
ε
− 1

2
[
〈
ψ(y′)ψ(y)

〉
ε
+

〈
ψ(y′)∗ψ(y)∗

〉
ε
],

we obtain

γ
ε

2

∑

y,y′∈Z

〈S (ψ(y′)∗ψ(y))〉ε J(ε(y′ + y)/2, y′ − y)

= γ 〈CJ,W ε〉 − γ

2
(〈CJ, Y ε〉 + 〈CJ, Y ε∗〉) + O(ε),

(40)
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where the collision operator C is defined in (22) and the distributions Y ε(t),
Y ε(t)∗ are defined as

〈
J, Y ε(t)

〉
=(ε/2)

∑

y,y′∈Z

〈ψ(y′)ψ(y)〉ε J̃(ε(y + y′)/2, y − y′)∗,

〈
J, Y ε(t)∗

〉
=(ε/2)

∑

y,y′∈Z

〈ψ(y′)∗ψ(y)∗〉ε J̃(ε(y + y′)/2, y − y′)∗
(41)

for every J ∈ S(R × T,C).
The evolution of W ε(t) is not a closed equation,

∂t

〈
J,W ε(t)

〉
=

〈
(∇ω∇xJ),W ε(t)

〉
+ γ

〈
(CJ),W ε(t)

〉

− γ

2

〈
(CJ), Y ε(t)

〉
− γ

2

〈
(CJ), Y ε(t)∗

〉
+ O(ε).

(42)

However we expect that in the kinetic limit ε → 0 the terms containing the
distributions Y ε(t), Y ε(t)∗ to disappear. To prove this, we consider the evolution
of Y ε(t). Again by Ito’s formula

∂t

〈
J, Y ε(t)

〉
= (ε/2)

∑

y,y′∈Z

∂t

〈
ψ(y′)ψ(y)

〉
ε
J̃(ε(y + y′)/2, y − y′)∗

= (ε/2)
∑

y,y′∈Z

ε−1
〈
L[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y − y′)∗

= (ε/2)
∑

y,y′∈Z

ε−1
〈
A[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y − y′)∗

+ γ(ε/2)
∑

y,y′∈Z

〈
S[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y − y′)∗.

For the stochastic part of the generator, by a similar computation as above, we
obtain

γ(ε/2)
∑

y,y′∈Z

〈
S[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y′ − y)

=
γ

2

〈
(CJ), Y ε

〉
+
γ

2

〈
(CJ), Y ε∗

〉
+
γ

2

〈
(β̂J), Y ε

〉
− γ

2

〈
(β̂J), Y ε∗

〉

− γ

2

[〈
(CJ),W ε

〉
+

〈
(CJ),W ε∗

〉]
+ O(ε).

(43)

To compute the Hamiltonian contribution to the evolution of Y ε(t), we use the
representation of Y ε(t) in the Fourier space and get

(ε/2)

∫

R

dp

∫

T

dk ε−1A[
〈
ψ̂(k − εp/2)ψ̂(k + εp/2)

〉
ε
]

= −2iε−1(ε/2)

∫

R

dp

∫

T

dk ε−1
〈
ψ̂(k − εp/2)ψ̂(k + εp/2)

〉
ε

(ω(k + εp/2) + ω(k − εp/2))Ĵ(p, k)∗,
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where with similar arguments as above one can replace ω(k+εp/2)+ω(k−εp/2)
by 2ω(k), with an error of order ε2. Then we arrive at the following equation for
the evolution of Y ε(t),

∂t

〈
J, Y ε(t)

〉
= −2i

ε

〈
(ωJ), Y ε(t)

〉
+
γ

2

〈
(CJ), Y ε

〉
+
γ

2

〈
(β̂J), Y ε

〉

+
γ

2

〈
(CJ), Y ε∗

〉
− γ

2

〈
(β̂J), Y ε∗

〉
− γ

2

[〈
(CJ),W ε

〉
+

〈
(CJ),W ε∗

〉]
+ O(ε).

(44)

After time integration, we obtain, for any J ∈ S(R × T),

lim
ε→0

∣∣∣
∫ t

0

dt
〈
(ωJ), Y ε(t)

〉∣∣∣ = 0.

Observe that R(k, k′)/ω(k) ∈ C∞(T/{0}) and, using item (i) of lemma 14 in the
appendix,

sup
k∈T

R(k, k′)

ω(k)
<∞.

Then equation (44) holds for any function

ω(k)−1CJ(y, k) =

∫

T

dq
R(k, q)

ω(k)
(J(y, q)− J(y, k))

with J ∈ S(R × T) and consequently

lim
ε→0

∣∣∣
∫ t

0

dt
〈
(CJ), Y ε(t)

〉∣∣∣ = 0.

5. Extension to dimensions d ≥ 2

We consider a particular generalisation of our model to d dimensions, d ≥ 2.
The perfect lattice is Zd. Deviations from the equilibrium position y ∈ Zd is
qy ∈ Rd and py denotes the corresponding momentum. Thus the phase space is

(Rd × Rd)Z
d

. The Hamiltonian of the system is given by

H(p,q) =
1

2

∑

y∈Zd

p2
y +

1

2

∑

y,y′∈Zd

α(y − y′)qy · qy′. (45)

For simplicity the couplings α are taken to be scalar. In general, α would be a
d× d matrix. We denote

v̂(k) =
∑

z∈Zd

e−2πik·zv(z), f̃(z) =

∫

Td

dk e2πik·zf(k). (46)

We assume α(·) to satisfy the following properties:

Assumption 8.

• (a1) α(y) 6= 0 for some y 6= 0.
• (a2) α(y) = α(−y) for all y ∈ Zd.
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• (a3) There are constants C1, C2 > 0 such that for all y

|α(y)| ≤ C1e
−C2|y|.

• (a4)
– (pinning): α̂ > 0 on Td,
– (no pinning): α̂(k) > 0 for all k 6= 0, α̂(0) = 0, Hess(α̂(0)) is

invertible.

The dynamics is determined by the generator L = A+ εγS with

A =
∑

y∈Zd

py · ∂qy
−

∑

y,y′∈Zd

α(y − y′)qy′ · ∂py
. (47)

S is defined through the vector fields

X i,j
x,z = (pj

z − pj
y)(∂pi

z
− ∂pi

y
) − (pi

z − pi
y)(∂pj

z

− ∂pj
y

),

according to

S =
1

2(d− 1)

∑

y∈Zd

d∑

i,j,k=1

(
X i,j

y,y+ek

)2
=

1

4(d− 1)

∑

y,z∈Zd,

‖y−z‖=1

d∑

i,j=1

(
X i,j

x,z

)2
, (48)

where e1, . . . , ed is the canonical basis of Z
d. As in the one-dimensional case

S
∑

y∈Zd

py = 0 , SH = 0.

Note that now it suffices to couple nearest neighbors.
The evolution of {p(t),q(t)} is given by the following stochastic differential

equations

dqy = py dt,

dpy = −(α ∗ q)y dt+ 2εγ∆py dt

+

√
εγ

2
√
d− 1

∑

z∈Zd,

‖z−y‖=1

d∑

i,j=1

(
X i,j

y,zpy

)
dwi,j

y,z(t)
(49)

for all y ∈ Zd. Here {wi,j
z,y = wi,j

y,z; z,y ∈ Zd; i, j = 1, . . . , d; ‖y − z‖ = 1} are
independent standard Wiener processes.

As before, we define the complex valued vector field ψ : Zd → Cd by

ψ(y, t) =
1√
2

(
(ω̃ ∗ q)y(t) + ipy(t)

)
(50)

with the inverse relation

py(t) =
i√
2
(ψ∗ −ψ)(y, t). (51)
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Observe that |ψ(y)|2 = ey, the local energy ay y. For every t ≥ 0, the evolution
of ψ is given by the stochastic differential equation,

dψ(y, t) = − i(ω̃ ∗ψ)(y, t)dt+
1

2
εγβ ∗ (ψ −ψ∗)(y, t)dt

+

√
εγ

4
√
d− 1

∑

y′∈Zd,

‖y′−y‖=1

d∑

i,j=1

(
X i,j

y,y′(ψ −ψ∗)(y, t)
)
dwi,j

y,y′(t),
(52)

where β is determined through (β ∗ f)(z) = ∆f(z).
Given a function J on Rd × Td, we define

J̃(x, z) =

∫

Td

dk ei2πk·zJ(x,k) (53)

on Rd × Zd. We also define

Ĵ(p,k) =

∫

Rd

dx e−i2πp·xJ(x,k). (54)

We choose a class of test-functions J on Rd × Td such that J ∈ S(Rd × Td,Md),
where Md is the space of complex d× d matrices.

Fix ε > 0. We introduce the complex valued correlation matrices
〈
ψ(y′)∗ ⊗ψ(y)

〉
ε
,

〈
ψ(y′) ⊗ψ(y)

〉
ε
, (55)

where
〈
·
〉

ε
denotes the expectation value with respect to a probability measure

on phase space which satisfies the following properties:

(c1)
〈
ψ(y)

〉
ε

= 0, ∀y ∈ Zd,

(c2)
〈
ψ(y′) ⊗ψ(y)

〉
ε

= 0, ∀y,y′ ∈ Zd,

(c3)
〈
‖ψ‖2

〉
ε
=

〈 ∑
z∈Zd |ψ(z)|2

〉
ε
≤ Kε−d.

Observe that, since
〈
‖ψ‖2

〉
ε

=
〈
H

〉
ε
, we are considering states with an energy of

order ε−d. We define the matrix-valued Wigner distribution W ε as
〈
J,W ε

〉

= (ε/2)d
∑

y,y′∈Zd

d∑

i,j=1

〈
ψj(y

′)∗ψi(y)
〉

ε

∫

Td

dk ei2πk·(y′−y)Jj,i(ε(y
′ + y)/2, k)∗

= (ε/2)d
∑

y,y′∈Zd

d∑

i,j=1

〈
ψj(y

′)∗ψi(y)
〉

ε
J̃j,i(ε(y

′ + y)/2,y − y′)∗

(56)

with J ∈ S(Rd×Td,Md). The evolution of the diagonal terms of the distribution
W ε on time scale ε−1t is determined through

〈
J,W ε(t)

〉
= (ε/2)d

d∑

i=1

∑

y,y′∈Zd

〈
ψi(y

′, t/ε)∗ψi(y, t/ε)
〉

ε

×
∫

Td

dk ei2πk·(y′−y)Ji(ε(y
′ + y)/2, k)∗

(57)



20 GIADA BASILE, STEFANO OLLA, AND HERBERT SPOHN

for Ji ∈ S(Rd × Td), i = 1 . . . , d.
Observe that since the dynamics preserves the total energy, the condition

εd 〈‖ψ‖〉 ≤ K holds at any time and, by proposition 13, the Wigner distri-
bution is well defined at any time. On this time scale the diagonal terms of
the distribution W ε(t) converge in a weak sense to a (vector valued) measure
µ = {µi(t), i = 1, .., d} on Rd × Td which satisfies the following Boltzmann equa-
tion. For any vector valued function J ∈ S(Rd × Td,Cd),

〈
J, µ(t)

〉
−

〈
J, µ(0)

〉
=

1

2π

∫ t

0

ds
(〈
∇ω · ∇xJ, µ(s)

〉
+ γ

〈
CJ, µ(s)

〉)
, (58)

where
〈
J, µ(t)

〉
denotes the scalar product

∑d
i=1

∫
Rd×Td Ji(x,k)∗µi(dx, dk). The

collision operator is given by

(CJ)i(x,k) =
1

d− 1

∑

1≤j≤d,

j 6=i

∫

Td

dk′ R(k,k′)
(
Jj(x,k

′) − Ji(x,k)
)
, (59)

where the kernel R : Td × Td → R has the following expression,

R(k,k′) = 16

d∑

ℓ=1

sin2(πkℓ) sin2(πk′ℓ). (60)

As in the one-dimensional case, in order to prove the inhomogeneous Boltzmann
equation (58), we need an additional condition on the initial distribution in the
unpinned case (α̂(0) = 0), which ensures that there is no initial concentration of
energy at k = 0:

(c4) In the case of no pinning we require

lim
R→0

lim
ε→0

(ε/2)d

∫

|k|<R

dk
〈
|ψ̂(k)|2

〉
ε
= 0.

Now we state the precise theorem. The proof is analogous to the one-dimensional
case.

Theorem 9. Let Assumptions (c1-c4) hold and assume that W ε(0) converges to
a positive vector valued measure µ0. Then, for all t ∈ [0, T ], W ε(t) converges
to a positive (vector-valued) measure µ0(t) which is the unique solution of the
Boltzmann equation

∂t

〈
J, µ(t)

〉
=

1

2π

〈
∇ω · ∇xJ, µ(t)

〉
+ γ

〈
CJ, µ(t)

〉
(61)

with initial condition µ0(t).

As in the one-dimensional case, the Boltzmann equation has a probabilistic
interpretation as the forward equation of a Markov process. We consider the
Markov process (

X(t),K(t), i(t)
)
.



ENERGY TRANSPORT 21

By (59), the jump rate from (i,k) to (j, dk′) is given by

νk,i(j, dk
′) =

1

d− 1
(1 − δi,j)R(k,k′)dk′, ∀i, j = 1, ..., d.

Transitions between states with the same index i are forbidden. The total collision
rate is

φi(k) =
d∑

j=1

∫

Td

νk,i(j, dk
′) =

∫

Td

dk′ R(k,k′),

i = 1, ..., d, which does not depend on i. Explicitly

φi(k) = φ(k) = 8

d∑

ℓ=1

sin2(πkℓ). (62)

Given a state (k, i) at t = 0, it jumps at time τ to the state (dk′, j) with a prob-
ability νk,i(dk

′, j)/φ(k), where τ is an exponentially distributed random variable
of mean φ(k)−1. As before the position process X(t) is defined through

X(t) = X(0) +
1

2π

∫ t

0

ds ∇ω(K(s)). (63)

6. Homogeneous case: correlations, energy current and
conductivity

6.1. Translation invariant measures. We consider a situation where the ini-
tial measure on phase space is invariant under space translations. For simplicity
we work in the one-dimensional setting. Using the methods from section 5, the
generalization to d ≥ 2 is straightforward.

Since energy will be now a.s. infinite, the results of section 3 do not apply. Let
us denote with

〈
·
〉

the expectation value with respect to this initial translation
invariant measure, and assume that it has the following properties:

(d1)
〈
ψ(y)

〉
= 0, ∀y ∈ Z,

(d2)
〈
ψ(y)ψ(0)

〉
= 0, ∀y ∈ Z,

(d3)
∑

z∈Z

∣∣〈ψ(0)∗ψ(z)
〉∣∣ <∞.

The Wigner distribution is still well defined for every function J ∈ S(R × T).
Using translation invariance

〈
J,W ε

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′)∗ψ(y)

〉∫

T

dke2πik(y′−y)J(ε(y′ + y)/2, k)∗

=
ε

2

∑

y,y′∈Z

〈
ψ(0)∗ψ(y − y′)

〉 ∫

T

dke2πik(y′−y)J(ε(y′ + y)/2, k)∗

=
∑

z∈Z

〈
ψ(0)∗ψ(z)

〉 ∫

T

dke−2πikz
[ε
2

∑

y∈Z

J(ε(2y + z)/2, k)∗
]
,
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which is finite by condition (d3) and by the fast decay of J . In Fourier space the
previous expression becomes

〈
J,W ε

〉

=
ε

2

∑

y,y′∈Z

∫

R

dp

∫

T

dk e2πi(k−εp/2)y′〈
ψ(y′)∗ψ(y)

〉
e−2πi(k+εp/2)yĴ(p, k)∗

and using translation invariance

〈
J,W ε

〉
=

1

2

∫

R

dp

∫

T

dk δ(p)W(k)Ĵ(p, k)∗ =
1

2

∫

T

dk W(k)Ĵ(0, k)∗,

where W(k) is the Fourier transform of the correlation function
〈
ψ(0)∗ψ(z)

〉
,

W(k) =
∑

z∈Z

e−2πikz
〈
ψ(0)∗ψ(z)

〉
. (64)

By condition (d3), W(k) is well defined and in L1(T). Moreover, by translation
invariance, W(k) is a real positive function.

If we consider the deterministic dynamics only, then W is preserved by the
dynamics, i.e. ∂tW(t) = 0. This follows from eq. (14) for γ = 0. Such property
is no longer true if the system evolves according to the full dynamics, defined
trough the generator L = A+ εγS. In order to observe an effective change of the
covariance, hence of the function W, we have to consider the time scale of order
ε−1. Denoting by Wε(t) = W(t/ε), we obtain the following evolution equation,

∂tWε(k, t) = γ(CWε)(k, t) − γ

2
[C(Yε + Yε∗)](k, t), (65)

where C is the collision operator defined in (22), while Yε(k, t) is the Fourier
transform of the correlation function

〈
ψ(0)ψ(z)

〉
at the rescaled time t/ε,

Yε(k, t) =
∑

z∈Z

e−2πikz
〈
ψ(t/ε, 0)ψ(t/ε, z)

〉
.

As before, we prove that in the limit ε → 0 one obtains a closed equation for
Wε(t), as stated in the next theorem.

Theorem 10. Assume that the initial state satisfies the above conditions and
that Wε(k, 0) = W0(k) is continuous on T. Then, ∀k ∈ T, t ∈ [0, T ],

lim
ε→0

Wε(k, t) = W(k, t),

where W(k, t) satisfies the homogeneous Boltzmann equation

∂tW(k, t) = γ(CW)(k, t),

W(k, 0) = W0(k)
(66)

with C defined in (22).

The proof of this theorem will be given in section 6.5.
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6.2. Equilibrium time correlations. We consider the system in equilibrium
and we denote by

〈
·
〉

T
the average at respect to the equilibrium measure with

temperature T . This is a translation invariant Gaussian centered measure with
zero mean, uniquely characterised through its covariance

W(k) = T,
〈
ψ(y)ψ(0)

〉
T

= 0, ∀y ∈ Z. (67)
〈
·
〉

T
is a stationary measure for the SDE (14).

Consider a function g ∈ ℓ1(Z) antisymmetric, g(z) = −g(−z), and such that
‖ĝ/ω‖∞ <∞ and define the function

Φ =
∑

x∈Z

g(x)pxq0.

The total time covariance is defined as

F ε(t) =
∑

z∈Z

〈
Φ(t/ε)τzΦ(0)

〉
T
. (68)

We want to compute F ε(t) in the kinetic limit ε→ 0.
Consider the centered translation invariant Gaussian measure defined by the

following covariance,

W(T,τ)(k) =
ω(k)

T−1ω(k) + iτ ĝ(k)
, Y (T,τ)(k) = 0 (69)

with τ > 0. Observe that W(β,τ) is a real, continuous function which is positive
for τ small enough. Formally (69) corresponds to the perturbed measure

Z−1 exp
[
− T−1H + τ

∑

z∈Z

τzΦ
]
.

We denote by
〈
·
〉
(T,τ)

its expectation.

Lemma 11. For every ε > 0,
∑

z∈Z

〈
Φ(t/ε)τzΦ(0)

〉
T

= lim
τ→0

〈
Φ(t/ε)

〉
(T,τ)

. (70)

The proof of this lemma is given in section 6.6 below.
By direct computation, at the rescaled time t/ε,

〈
Φ(t/ε)

〉
(T,τ)

= −1

2

∑

z∈Z

g(z)
〈
qzp0 − q0pz

〉
(T,τ)

= −i
∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, t/ε).

By Theorem 10, W(T,τ)(k, t/ε) → W(k, t) for ε → 0, where W(k, t) satisfies
the homogeneous Boltzmann equation (66) with initial condition W(k, 0) =
ω(k)(T−1ω(k) + iτ ĝ(k))−1. It is easy to verify that for any bounded antisym-
metric function f on T∫

T

dk (Cf)(k)W(k, t) = −
∫

T

dk φ(k)W(k, t),
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with φ = −β̂(k) = 4
3
sin2(πk)[1 + 2 cos2(πk)], see (31). Then

−i
∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, t) = −i

∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, 0)e−γφ(k)t

and finally, for t ≥ 0,

lim
ε→0

F ε(t) = lim
τ→0

− i

τ

∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, 0)e−γφ(k)t

= T 2

∫

T

dk
|ĝ(k)|2
ω(k)2

e−γφ(k)t.

(71)

6.3. Energy current time correlation. The Hamiltonian energy current J is
implicitly defined through the conservation law

Aex = τx−1J − τxJ .
By direct computation J =

∑
z>0 j0,z with

j0,z = −1

2
α(z)

z−1∑

y=0

(qz−yp−y − q−ypz−y).

Denoting by
〈
·
〉

the expectation value with respect to some translation invariant
centered Gaussian measure with covariance W, it is easy to see that

〈
J

〉
= −1

2

∑

z>0

z α(z)
〈
qzp0 − q0pz

〉

=
1

4π

∫

T

dk
α̂′(k)

ω(k)
W(k)

=
1

2π

∫

T

dk ω′(k)W(k).

Let us denote by Cε(t) the energy time correlation function on the kinetic time
scale t/ε at temperature T ,

Cε(t) =
∑

x∈Z

〈
J (t/ε)τxJ (0)

〉
T
.

Using the translation invariance of the Gaussian measure
〈
·
〉

T
we have

Cε(t) =
∑

x∈Z

∑

z∈Z

z

4
α(z)

∑

z′∈Z

z′

4
α(z′)

〈
(qzp0 − q0pz)(t/ε)

(qx+z′px − qxpx+z′)(0)
〉

T
=

∑

x∈Z

〈
J̃ (t/ε)τxJ̃ (0)

〉
T
,

where

J̃ = −1

4

∑

z∈Z

z α(z)(qzp0 − q0pz).
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Using the results of the previous subsection we arrive at

lim
ε→0

Cε(t) =
T 2

(4π)2

∫

T

dk
|α̂′(k)|2
ω(k)2

e−γφ(k)|t|

=
T 2

4π2

∫

T

dk |ω′(k)|2e−γφ(k)|t|

(72)

for all t ∈ R.

6.4. Thermal Conductivity. A standard definition of the thermal conductiv-
ity, κ(ε), is by means of the Green-Kubo formula as

κ(ε) =
1

T 2

∫ ∞

0

dt Cε(εt). (73)

We refer to [2, 4] for details. In general, the kinetic limit provides the lowest
order approximation in ε as

κ(ε) = ε−1κ(0) + O(1).

Inserting in (73) the limit (72) thus yields

κ(0) =
1

4π2

∫

π

dk
|ω′(k)|2
γφ(k)

. (74)

For the pinned case κ(0) <∞. κ(ε) has been computed in [2] with the result

κ(ε) = ε−1κ(0) + εγ.

Thus, somewhat unexpectedly, the kinetic theory captures already the main de-
tails of the conductivity.

For the unpinned case κ(0) = ∞, hence κ(ε) = ∞, for d = 1, 2. The Boltzmann
equation (25) provides a simple explanation. For small k, ω(k) = 2πc|k|. Thus
small k phonons travel with speed c. On the other hand, the collision rate vanishes
as k2 for small k, see (31). Thus at small k there are only very few collisions which,
together with c > 0, is responsible for the divergent conductivity. The positional
part X(t) of the process consists mostly of very long stretches of uniform motion.
In fact on a large scale X(t) is governed by a symmetric Levy process of index
α = 3/2, see [10] for details.

6.5. Proof of theorem 10. The proof of the theorem 10 is analogous to the
proof above. We only have to control that Wε(t) and Yε(t) are well defined for
every t ∈ [0, T ]. This is stated in the next lemma.

Lemma 12. Let the conditions (d1-d3) hold. Then Wε(t),Yε(t) ∈ L1(T) for
every t ∈ [0, T ].
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Proof. By similar computations as above we find that Wε(t),Yε(t) satisfy the
following evolution equations,

∂tWε(k, t) = γ(CWε)(k, t) − γ

2
(C(Yε + Yε∗))(k, t),

∂tYε(k, t) = −2iω(k)

ε
Yε(k, t) +

γ

2
β̂(k)(Yε + Yε∗)(k, t)

+
γ

2
(C(Yε + Yε∗))(k, t) − γ

2
C(Wε(k, t) + Wε(−k, t)).

In particular by Duhamel’s formula we can rewrite the second equation as

Yε(k, t) =γ

∫ t

0

ds e−2iω(k)(t−s)/ε
(1

2
β̂(k)(Yε + Yε∗)(k, s)

+
1

2
(C(Yε + Yε∗))(k, s) − 1

2
C(Wε(k, s) + Wε(−k, s))

)
.

Then we get the following bounds

|Wε(k, t)| ≤ W(k) + γc1

∫ t

0

ds
[
|Wε(k, s)| + |Yε(k, s)|

]

+ γc2

∫ t

0

ds

∫

T

dk
(
|Wε(k, s)| + |Yε(k, s)|

)

|Yε(k, t)| ≤ +γc3

∫ t

0

ds
[
|Wε(k, s)| + |Wε(−k, s)| + |Yε(k, s)|

]

+ γc4

∫ t

0

ds

∫

T

dk
(
|Wε(k, s)| + |Yε(k, s)|

)

and finally
∫

T

dk
[
|Wε(k, t)| + |Yε(k, t)|

]
≤

∫

T

dk W(k)+

γc5

∫ t

0

ds

∫

T

dk
(
|Wε(k, s)| + |Yε(k, s)|

)
.

By Gronwall’s lemma
∫

T

dk
[
|Wε(k, t)| + |Yε(k, t)|

]
≤ eγc5t

∫

T

dk W(k).

�

6.6. Proof of (70). We define the generator of the speeded up process as

Lε = ε−1L = ε−1A+ S.

Let us denote by
〈
·
〉

T
the average with respect to the Gaussian measure with

zero mean and covariance (67), and by
〈
·
〉
(β,τ)

the Gaussian measure with zero
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mean and covariance (69). We consider the Laplace transforms of
〈
Φ(t/ε)

〉
(T,τ)

and
∑

x∈Z

〈
Φ(t/ε)τxΦ(0)

〉
T
,

∫ ∞

0

dt e−λt
〈
Φ(t/ε)

〉
(T,τ)

=
〈
(λ− Lε)

−1Φ
〉
(T,τ)

=
〈
uλ

〉
(T,τ)

,

∫ ∞

0

dt e−λt
∑

x

〈
Φ(t/ε)τxΦ(0)

〉
T

=
∑

x∈Z

〈
[(λ− Lε)

−1Φ]τxΦ
〉

T

=
∑

x∈Z

〈
uλτxΦ

〉
T
,

(75)

where uλ =
∑

z∈Z
fλ(z) q0pz with fλ the solution of the equation

λ fλ(z) −
γ

6
∆(4fλ(z) + fλ(z + 1) + fλ(z − 1)) = g(z).

Observe that uλ does not depend on ε, because Lεuλ = ε−1∇F + γSuλ with F
some non-local function. Since fλ is antisymmetric, and by translation invariance
of the measure, the gradient term does not contribute. We have

〈
uλ

〉
T,τ

=
∑

z∈Z

fλ(z)
〈
q0pz

〉
T,τ

= −1

2

∑

z∈Z

fλ(z)
〈
qzp0 − q0pz

〉
T,τ

= −i
∫

T

dk f̂λ(k)
1

ω(k)
W(T,τ)(k)

= −i
∫

T

dk
ĝ(k)

λ+ γφ(k)

1

T−1ω(k) + iτ ĝ(k)

with φ(k) = −β̂(k). For every positive λ, the right hand side is finite for every
τ . In particular

lim
τ→0

1

τ

〈
uλ

〉
T,τ

= T 2

∫

T

dk
|ĝ(k)|2

ω(k)2(λ+ γφ(k))
.

In the same way
∑

x∈Z

〈
uλ τxΦ

〉
T

= T
∑

y∈Z

∑

z∈Z

fλ(y)g(z)
〈
q0qy−z)

〉
T

= T

∫

T

dk f̂λ(k)
∗ ĝ(k)

ω(k)2
W(β)(k) = T 2

∫

T

dk
|ĝ(k)|2

ω(k)2(λ+ φ(k))
,

where Parseval’s identity is used. �

7. Appendix

Proposition 13. Under the assumption (b3),
∣∣〈J,W ε

〉∣∣ ≤ CJ (76)

for every test function J ∈ S(Rd × Td) and for every ε > 0.
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Proof. For any test function J ∈ S(Rd×Td) we denote by ‖J‖n,∞ the following
norm,

‖J‖n,∞ = sup
i,j∈{1,...,d}

sup
r∈Rd,k∈Td

∣∣
d∑

i1=1

. . .

d∑

in=1

∂ki1
. . . ∂kin

Ji,j(r,k)
∣∣.

Let us define

Wε[J ](y,y′, i, j) =

∫

Td

dk e2πik·(y′−y)Jj,iε(y
′ + y)/2,k)∗,

for every y,y′ ∈ Zd, i, j = 1, . . . , d. Integrating by part in k for (d+ 1) times, we
get

|Wε[J ](y,y′, i, j)| ≤ 1

(2π)d+1

1

|(y′1 − y1) + . . .+ (y′d − yd)|d+1
‖J‖d+1,∞,

where yi denotes the i-th component of the vector y. We denote by
〈
y′ − y

〉d+1
= |(y′1 − y1) + . . .+ (y′d − yd)|d+1.

By Schwarz inequality
∣∣〈J,W ε

〉∣∣

≤ (ε/2)d
∑

y,y′∈Zd

d∑

i,j=1

[
〈
|ψi(y)|2

〉
ε
]1/2[

〈
|ψj(y

′)|2
〉

ε
]1/2|Wε[J ](y,y′, i, j)|

≤ (ε/2)d
〈
‖ψ‖2

〉
ε

∑

z∈Zd

1
〈
z
〉d+1

c0‖J‖d+1,∞ ≤ c‖J‖d+1,∞,

where in the last inequality we used εd
〈
‖ψ‖2

〉
≤ K with K positive. �

Lemma 14. Let Assumption 1 hold with α̂(0) = 0 (unpinned case). The following
assertions hold.

(i) There are constants C1, C2, C3 such that ∀k ∈ Td

|∇α̂(k)| ≤ C1|k|, C2|k| ≤ ω(k) ≤ C3|k|. (77)

In addition, ‖∇ω‖∞ <∞.
(ii) For all k ∈ Td and p ∈ Rd, there is a positive constant C such that

ε−1
∣∣ω(k + εp/2) − ω(k − εp/2)

∣∣ ≤ C|p| (78)

for every ε > 0.
(iii) For p ∈ Rd, there is a positive constant C4 such that for all k ∈ Td,

|k| > ε|p|, with ε > 0 one has

∣∣ε−1[ω(k + εp/2) − ω(k − εp/2)] − p · ∇ω(k)
∣∣ ≤ εC4

|p|2
|k| . (79)
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Proof. The first inequality of item (i) follows from a Taylor expansion of α̂
around zero, using the fact that ∇α̂(0) = 0 and ‖D2α̂‖∞ < ∞. Using the same
argument we have ω(k) ≤ C3|k|, since ω(k) = α̂(k)1/2 and α̂(k) ≤ C|k|2, with
C > 0. Let us denote with A0 the Hessian of α̂ at k = 0. By assumption
(a4), k · A0k > c|k|2. Moreover, there is a δ > 0 such that for every |k| < δ,
(|α̂(k)− 1

2
k ·A0k|)2 < 1

4
k ·A0k. Then ω(k) = ((α̂(k)− 1

2
k ·A0k)+ 1

2
k ·A0k)1/2 ≥

c
2
|k|2 if |k| < δ. For |k| ≥ δ, ω is strictly positive and there is a constant c′ such

that ω(k) ≥ c′|k| if |k| ≥ δ, which proves the second inequality. To prove the last
one it is enough to observe that for all k 6= 0,

|∇ω(k)| =
1

2

|∇α̂(k)|
ω(k)

≤ 1

2

C1

C2
<∞.

Hence ‖ω‖∞ <∞.
Let us prove item (iii). We observe that the function on the left hand side

of (79) is zero if |p| = 0 and we have to consider only the case |p| > 0. Since
we are assuming |k| > ε|p|, it follows that we need to discuss the case |k| > 0.
Observe that for any s ∈ (0, ε], |k± 1

2
sp| ≥ 1

2
|k| > 0 if |k| > ε|p| and the function

ω(k + 1
2
εp) − ω(k − 1

2
εp) is C∞ in this range. In particular

ε−1ω(k + εp/2) − ω(k− εp/2) − p · ∇ω(k)

= ε
(p

2
· ∇

)2

ω(k + sp/2) − ε
(p

2
· ∇

)2

ω(k − s̃p/2)

with s, s̃ ∈ (0, ε), where, denoting k± = k ± 1
2
sp,

(p · ∇)2 ω(k±) =
1

2

1

ω(k±)
(p · ∇)2 α̂(k±) − 1

4

1

ω(k±)3
(p · ∇α̂(k±))2

and, using item (i),
∣∣(p · ∇)2 ω(k±)

∣∣ ≤ 4C4
|p|2
|k| .

This prove item (iii).
Item (ii) follows from (iii) if |k| > ε|p|. If |k| ≤ ε|p| we use the bound

ε−1|ω(k + εp/2) − ω(k− εp/2)| ≤ C3ε
−1(|k + εp/2| + |k − εp/2|) ≤ C|p|.

7.1. Proof of (38). First of all we observe that
∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)] = [Yy+1ψ(y′)∗][Yy+1ψ(y)]

+ [Yyψ(y′)∗][Yyψ(y)] + [Yy−1ψ(y′)∗][Yy−1ψ(y)],

(80)

where

Yy+1ψ(y) =
i√
2
(py+1 − py+2), Yyψ(y) =

i√
2
(py+1 − py−1),

Yy−1ψ(y) =
i√
2
(py−2 − py−1).
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Then (80) is equal to

(py+1 − py+2)
[
(py+1 − py+2)δy′,y + (py+2 − py)δy′,y+1

+ (py − py+1)δy′,y+2

]
+ (py+1 − py−1)

[
(py − py+1)δy′,y−1

+ (py+1 − py−1)δy′,y + (py−1 − py)δy′,y+1

]
+ (py−2 − py−1)

×
[
(py−1 − py)δy′,y−2 + (py − py−2)δy′,y−1 + (py−2 − py−1)δy′,y

]

= (py+1 − py+2)(py − py+1)δy′,y+2 + (py−2 − py−1)(py−1 − py)δy′,y−2

+ [(py+1 − py+2)(py+2 − py) + (py+1 − py−1)(py−1 − py)] δy′,y+1

+ [(py+1 − py−1)(py − py+1) + (py−2 − py−1)(py − py−2)] δy′,y−1

+
[
(py+1 − py+2)

2 + (py+1 − py−1)
2 + (py−2 − py−1)

2
]
δy′,y

= 2

2∑

r=−2

Ay,rδy′,y+r

(81)

and we can write

1

3
(ε/2)

∑

y,y′,z∈Z

〈
[Yzψ(y′)∗][Yzψ(y)]

〉
ε
J̃(ε(y′ + y)/2, y − y′)∗

=
1

3
(ε/2)

∑

y∈Z

2∑

r=−2

Ay,rJ̃(ε(y + r/2),−r)∗.

Expanding the Ay,r and identifying terms that differ by translations, we arrive at

1

3
(ε/2)

∑

y,y′,z∈Z

〈
[Yzψ(y′)∗][Yzψ(y)]

〉
ε
J̃(ε(y′ + y)/2, y − y′)∗

=
ε

6

∑

y∈Z

[〈
2pypy+1 − pypy+2 − p2

y

〉
ε
(J̃(εy, 2)∗ + J̃(εy,−2)∗)

+
〈
2pypy+2 − 2p2

y

〉
ε
(J̃(εy, 1)∗ + J̃(εy,−1)∗)

+
〈
− 4pypy+1 − 2pypy+2 + 6p2

y

〉
ε
J̃(εy, 0)∗

]
+ O(ε),

where we have used the smoothness of J̃ in x ∈ R. We can rewrite the last
expression as

(ε/2)
∑

y∈Z

2∑

z,u=−2

α(z, u)
〈
pypy+z

〉
ε
J̃(εy, u)∗ + O(ε),

where α(z, u) = α(z,−u) = α(u, z) = α(−u, z) and is given by

α(0, 0) = 1, α(0, 1) = −1/3, α(0, 2) = −1/6
α(1, 1) = 0, α(1, 2) = 1/6

α(2, 2) = −1/12.
(82)



ENERGY TRANSPORT 31

References

[1] G. Bal, T. Komorowski, and L. Ryzhik, Self-averaging of Wigner transforms in random
media, Comm. Math. Phys. 242, 81-135 (2003).

[2] G. Basile, C. Bernardin, and S. Olla, A momentum conserving model with anomalous
thermal conductivity in low dimension, Phys. Rev. Lett. 96, 204303 (2006).

[3] G. Basile, C. Bernardin, and S. Olla, Thermal conductivity for a momentum conserving
model, arXiv:cond-mat/0601544v3, to appear in Comm. Math. Phys.

[4] C. Bernardin and S. Olla, Fourier’s law for a microscopic model of heat conduction, J.
Stat. Phys. 121, 271-289 (2005).

[5] R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, L. Triolo, One-dimensional harmonic
lattice caricature of hydrodynamics, J. Stat. Phys. 43, 571-607 (1986).

[6] R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, L. Triolo, One-dimensional harmonic
lattice caricature of hydrodynamics: second approximation, J. Stat. Phys. 52, 423-439
(1988).

[7] R. L. Dobrushin, A. Pellegrinotti, Yu. M. Suhov, One-dimensional harmonic lattice cari-
cature of hydrodynamics: a higher correction, J. Stat. Phys. 61, 387-402 (1990).

[8] T. V. Dudnikova, H. Spohn, Local stationarity for lattice dynamics in the harmonic ap-
proximation, Markov Processes and Related Fields 12, 645-678 (2006).

[9] L. Harris, J. Lukkarinen, S. Teufel, and F. Theil, Energy transport by acoustic modes of
harmonic lattices, Siam J. Math. Anal., online (2008).

[10] T. Komorowski, M. Jara, and S. Olla, Limit theorems for a additive functionals of a Markov
chain, http://fr.arxiv.org/abs/0809.0177 (2008).

[11] S. Lepri, R. Livi, A. Politi, Thermal Conduction in classical low-dimensional lattices, Phys.
Rep. 377, 1-80 (2003).

[12] P.L. Lions and T.Paul, Sur les measures de Wigner, Revista Mat. Iberoamericana, 9 553-
618 (1993).

[13] J. Lukkarinen and H. Spohn, Kinetic limit for wave propagation in a random medium,
Arch. Rat. Mech. Anal. 183, 93-162 (2007).

[14] A. Mielke, Macroscopic behavior of microscopic oscillations in harmonic lattices via
Wigner-Husimi transforms, Arch. Rat. Mech. Anal. 181, 401-448 (2006).

[15] L. Ryzhik, G. Papanicolaou, and J.B. Keller, Transport equations for elastic and other
waves in random media, Wave Motion 24, 327-370 (1996).

E-mail address : basile@wias-berlin.de

WIAS, Mohrenstr. 39, 10117 Berlin, Germany

E-mail address : olla@ceremade.dauphine.fr
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