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WIGNER FUNCTIONS AND STOCHASTICALLY PERTURBED
LATTICE DYNAMICS

GIADA BASILE, STEFANO OLLA, AND HERBERT SPOHN

Abstract. We consider lattice dynamics with a small stochastic perturbation
of order ε and prove that for a space-time scale of order ε−1 the Wigner function
evolves according to a linear transport equation describing inelastic collisions.
For an energy and momentum conserving chain the transport equation predicts
a slow decay, as 1/

√
t, for the energy current correlation in equilibrium. This

is in agreement with previous studies using a different method.

1. Introduction

Wigner functions are a very convenient and versatile tool in the analysis of
wave equations. For multi-component linear wave equations the semiclassical
part of the solution is covered by the time evolved Wigner function, see [9] with
refinements in [5]. If the coefficients of the wave equation are weakly random,
then in the semiclassical limit the Wigner function is governed by a transport
equation, which accounts for the finite life-time of the modes. We refer to the very
informative survey [11] and to [1], [8] for two completely worked out benchmarks.
A similar, but more involved scheme works for weakly nonlinear wave equations,
see [13, 12].

In our contribution we develop a novel application for Wigner functions. Rather
than stochastically perturbing the coefficients of the wave equation we add sto-
chastic terms to the equation. They can be written down most easily for a discrete
wave equation (lattice dynamics) which is the only case considered here. As a
Hamiltonian system the lattice dynamics conserves energy and, depending on the
couplings, also momentum. The basic idea is to have the added stochastic terms
respect locally such conservation laws. In the context of interacting mechanical
particles related models have been studied, e.g., in [10]. But in the context of
wave equations such an approach is very recent [4, 2, 3].

To have a closed equation for the evolution of the Wigner function the stochas-
tic part of the generator has to be of order ε with ε the semiclassical parameter,
0 < ε ≪ 1. We will prove that in the limit ε → 0 the Wigner function is gov-
erned by a linear transport equation. In the cases mentioned above the collision
operator of the transport equation describes elastic collisions, while in our case
the collisions are inelastic with energy conserved only on average.

The Wigner function evolution is very efficient for the understanding of the
long-time properties of the stochastic wave dynamics. We will provide only one

Date: May 20, 2008.
1



2 GIADA BASILE, STEFANO OLLA, AND HERBERT SPOHN

such illustration for which we choose the one-dimensional chain with momentum
conservation. From its transport equation it follows that the energy transport is
anomalous. Phonons with wave vector k travel, for small k, with unit speed but
have a life-time which diverges as 1/k2.

For the most general (linear) lattice dynamics the lattice is d-dimensional, the
displacement vector is n-dimensional, there are possibly several particles per unit
cell, and the interaction potential is quadratic. While our methods would apply,
at such generality our text would be hard to read. Therefore we work out the
simplest case (d = 1, n = 1, one particle per unit cell) in complete detail (sections
2 to 4) and explain the generalization to d = n arbitrary and one particle per unit
cell in section 5. In these cases the Wigner function is assumed to have a spatial
decay at infinity. To discuss energy transport and the energy current correlations
one has to consider initial probability measures which are translation invariant.
This requires some modifications which are studied in section 6. Anomalous
transport will be discussed in section 6.4.

Acknowledgments. S.O. research was supported by French ANR LHMSHE

n.BLAN07-2184264.

2. The model (One-dimensional case)

To develop the necessary techniques, we consider first the case of a one-dimensi-
onal chain. It consists of an infinite system of harmonic oscillators where particles
are labelled by y ∈ Z. The phase space is (R×R)Z and a configuration at time t
is denoted by {qy(t), py(t)}y∈Z, where py and qy, respectively, are the momentum
and the displacement from the equilibrium position of the y-th particle. The
Hamiltonian of the system is given by

H(p, q) =
1

2

∑

y∈Z

p2
y +

1

2

∑

y,y′∈Z

α(y − y′)qyqy′ . (1)

We denote with v̂(k), k ∈ T = [0, 1], the Fourier transform of a function v on Z,

v̂(k) =
∑

z∈Z

e−2πikzv(z), (2)

and with f̃(z), z ∈ Z, the inverse Fourier transform of a function f on T,

f̃(z) =

∫

T

dk e2πikzf(k). (3)

The function ω(k) =
√
α̂(k) is called dispersion relation.

We assume α(·) to satisfy the following properties:

Assumption 1.

• (a1) α(y) 6= 0 for some y 6= 0.
• (a2) α(y) = α(−y) for all y ∈ Z.
• (a3) There are constants C1, C2 > 0 such that for all y

|α(y)| ≤ C1e
−C2|y|.
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• (a4) We require either α̂(k) > 0 for all k ∈ T (pinned case), or α̂(k) > 0
∀k 6= 0, and α̂(0) = 0 (unpinned case). Moreover, in the unpinned case
we assume α̂′′(0) > 0.

Assumptions (a2), (a3) ensure that α̂ is a real analytic function on T. Notice
that in the pinned case ω is strictly positive and also analytic on T. In the
unpinned case, the condition (a4) says that ω(k) = c|k| with c > 0 for small k,
to say ω is a regular acoustic dispersion relation.

We consider the Hamiltonian dynamics weakly perturbed by a stochastic noise
acting only on momenta and locally preserving momentum and kinetic energy.
The generator of the dynamics is

L = A+ εγS (4)

with ε > 0, where A is the usual Hamiltonian vector field

A =
∑

y∈Z

py∂qy
−

∑

y,y′∈Z

α(y − y′)qy′∂py
, (5)

while S is the generator of the stochastic perturbation. The operator S acts only
on the momenta {py} and generates a diffusion on the surface of constant kinetic
energy and constant momentum. S is defined as

S =
1

6

∑

z∈Z

(Yz)
2, (6)

where

Yz = (pz − pz+1)∂pz−1
+ (pz+1 − pz−1)∂pz

+ (pz−1 − pz)∂pz+1

which is a vector field tangent to the surface of constant kinetic energy and of con-
stant momentum for three neighbouring particles. As a consequence energy and
momentum are locally conserved which, of course, implies also the conservation
of total momentum and total energy of the system,

S
∑

y∈Z

py = 0 , SH = 0.

The evolution of {p(t), q(t)} is given by the following stochastic differential
equations

dqy = py dt,

dpy = − (α ∗ q)y dt+
εγ

6
∆(4py + py−1 + py+1)dt

+

√
εγ

3

∑

k=−1,0,1

(Yy+kpy) dwy+k(t).

(7)

Here {wy(t)}y∈Z are independent standard Wiener processes and ∆ is the discrete
laplacian on Z,

∆f(z) = f(z + 1) + f(z − 1) − 2f(z).
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Let us introduce a complex valued field ψ : Z → C defined as

ψ(y, t) =
1√
2

(
(ω̃ ∗ q)y(t) + ipy(t)

)
. (8)

Observe that |ψ(y)|2 = 1
2
p2

y + 1
2

∑
y′∈Z

α(y−y′)qyqy′ = ey is the energy of particle y
and conservation of total energy is equivalent to the conservation of the ℓ2-norm.
For every t ≥ 0 the evolution of ψ is given by the following SDE,

dψ(y, t) = − i(ω̃ ∗ ψ)(y, t)dt+
1

2
εγβ ∗ (ψ − ψ∗)(y, t)dt

+

√
εγ

3

∑

k=−1,0,1

(
Yy+k

1
2
(ψ − ψ∗)(y, t)

)
dwy+k(t),

(9)

where β is defined through

(β ∗ f)(z) =
1

6
∆(4f(z) + f(z − 1) + f(z + 1)). (10)

3. Wigner distribution and the Boltzmann Phonon Equation

Given a function J on R × T, we define on R × Z

J̃(x, z) =

∫

T

dk e2πikzJ(x, k). (11)

We also define on R × T

Ĵ(p, k) =

∫

R

dx e−2πipxJ(x, k). (12)

We choose a class of test-functions J on R × T such that J(·, k) ∈ S(R,C) for
any k ∈ T.

Let us fix ε > 0. We denote by
〈
·
〉

ε
the expectation value with respect

to a family of probability measures on phase space which satisfies the following
properties:

(b1)
〈
ψ(y)

〉
ε
= 0, ∀y ∈ Z;

(b2)
〈
ψ(y′)ψ(y)

〉
ε
= 0, ∀y, y′ ∈ Z;

(b3) supε>0 ε
〈
‖ψ‖2

ℓ2

〉
ε
≤ K for some K > 0.

Observe that, since
〈
‖ψ‖2

〉
ε

=
〈
H

〉
ε

is the expectation value of the energy,

we are considering states with an energy of order ε−1. We define the Wigner
distribution W ε through

〈
J,W ε

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′)∗ψ(y)

〉
ε

∫

T

dke2πik(y′−y)J(ε(y′ + y)/2, k)∗

=
ε

2

∑

y,y′∈Z

〈
ψ(y′)∗ψ(y)

〉
ε
J̃(ε(y′ + y)/2, y − y′)∗,

(13)

where J ∈ S(R × T). By condition (b3) this distribution is well defined, see
proposition 13 in the appendix.
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More traditionally, the Wigner distribution can be written as

〈
J,W ε

〉
=
ε

2

∫

R

dp

∫

T

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε
Ĵ(p, k)∗, (14)

where ψ̂ is the Fourier transform of ψ, periodically extended to the whole of R.
It is easy to prove the following proposition.

Proposition 2. Under the assumption (b3) for every test function J ∈ S(R×T),
there exist constants K1, K2 such that

∣∣〈J,W ε
〉∣∣ ≤ K1

∫

R

dp sup
k∈T

|Ĵ(p, k)| <∞,

∣∣〈J,W ε
〉∣∣ ≤ K2

∑

z∈Z

sup
x∈Z

|J̃(x, z)| <∞
(15)

for every ε > 0.

Remark 3. Notice that W ε is well defined on a wider class of test functions than
S(Rd × Td). In particular we can take J(x, k) = J(k), a bounded real valued
function on T, and by (14) we have

〈
J,W ε

〉
=
ε

2

∫

T

dk
〈
|ψ̂(k)|2

〉
ε
J(k),

while choosing J(x, k) = J(x), a bounded real valued function on R, we have
〈
J,W ε

〉
=
ε

2

∑

y∈Z

〈
ey

〉
ε
J(εy).

Let us start our dynamics with an initial measure satisfying conditions (b1),
(b2), (b3). We want to study the evolution of the Wigner distribution W ε on the
time scale ε−1t, i.e. we define for J ∈ S(R × T),

〈
J,W ε(t)

〉

=
ε

2

∑

y,y′∈Z

〈
ψ(y′, t/ε)∗ψ(y, t/ε)

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y′ + y)/2, k)∗.
(16)

Observe that since the dynamics preserves the total energy, the condition ε 〈‖ψ‖〉
≤ K holds at any time and, by proposition 13, the Wigner distribution is well
defined at any time.

According to remark 3, if we choose test functions depending only on k, then
we obtain the distribution of energy in k-space. It turns out that in the limit as
ǫ→ 0, this distribution converges to the solution of the homogeneous Boltzmann
equation, and this will be our first result. Define the distribution Eε(t) on T by

〈
J, Eε(t)

〉
=

〈
J,W ε(t)

〉
=
ε

2

∫

T

dk
〈
|ψ̂(k, t/ε)|2

〉
ε
J(k) (17)

for any bounded function J .
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Theorem 4. Assume that the initial measure satisfies conditions (b1),(b2), (b3),
and furthermore Eε(0) converges to a positive measure E0(dk) on T. Then Eε(t)
converges to E(t, dk), the solution of

∂t

〈
J, E(t)

〉
= γ

〈
CJ, E(t)

〉
(18)

for every bounded function J : T → R. The collision operator, C, is defined by

CJ(x, k) =

∫

T

dk′R(k, k′)
(
J(x, k′) − J(x, k)

)
(19)

with

R(k, k′) =
4

3

(
2 sin2(2πk) sin2(πk′) + 2 sin2(2πk′) sin2(πk)

− sin2(2πk) sin2(2πk′)
)
.

(20)

In order to prove the next theorem, the full inhomogeneous equation, we need
an additional condition on the initial distribution in the unpinned case (α̂(0) = 0):

(b4) In the unpinned case we require

lim
R→0

lim
ε→0

ε

2

∫

|k|<R

dk
〈
|ψ̂(k)|2

〉
ε
= 0.

Condition (b4) ensures that there is no initial concentration of energy at wave
number k = 0. This condition can be omitted if we consider a dispersion relation
ω which is analytic on T (as in the pinned case).

Theorem 5. Let Assumptions (b1-b4) hold and assume that W ε(0) converges
to a positive measure µ0(dx, dk). Then, for all t ∈ [0, T ], W ε(t) converges to
a positive measure µ0(t, dx, dk), which is the unique solution of the Boltzmann
equation

∂t

〈
J, µ(t)

〉
=

1

2π

〈
ω′(k)∂xJ, µ(t)

〉
+ γ

〈
CJ, µ(t)

〉
(21)

with initial condition µ0(dx, dk).

In (21)
〈
J, µ(t)

〉
denotes the linear functional

∫
R×T

J(x, k)∗µ(dx, dk).
Observe that the kernel R of (20) is non-negative, symmetric, and is equal to

zero only if k = 0 or k′ = 0. Moreover, it is easy to see that
∫

T

dk′ R(k, k′) = −β̂(k), (22)

where β̂(k) is the Fourier transform of the function β defined in (10). Thus
the Boltzmann equation (21) can be interpreted as the forward equation of a
Markov process (X(t), K(t)) on R × T for the dynamics of a particle, which in
the context of lattice dynamics is called phonon. The phonon with momentum
k travels with velocity ω′(k) and suffers random collisions. More precisely K(t)
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is an autonomous reversible jump Markov process with jump rate R, while the
position X(t) is determined through

X(t) = X(0) +

∫ t

0

ω′(K(s)) ds.

4. Proof of theorems 4 and 5.

4.1. Relative Compactness of the Wigner distribution. Existence of the
limit of the Wigner distributions W ε(t) will be established as in [1]. The limit
distribution W (t) is non-negative, as it is proved in [7], [8], i.e. for every J ∈
S(R × T,C)

〈
|J |2,W ε

〉
=
ε

2

〈 ∫

T

dk
∣∣∣
∑

y∈Z

J(εy, k)e−2πikyψ(y)
∣∣∣
2〉

ε
+ O(ε). (23)

Let us introduce the space A of functions J on Rd × Td such that

‖J‖A =
∑

z∈Z

sup
x∈R

|J̃(x, z)| <∞, (24)

where J̃ is defined in (11). The following lemma shows that if the distributions
W ε are uniformly bounded in A′, the dual space to A, then at every time t one
can choose a sequence εj → 0 such that W εj converge in the *-weak topology in
A′ to a limit distribution W (t).

Lemma 6. There exists a constant C > 0 independent of t such that ∀ε > 0

‖W ε(t)‖A′ ≤ C.

Proof. For every J ∈ A
〈
J,W ε(t)

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′)ψ(y)

〉
ε
J̃(ε(y + y′)/2, y − y′)∗.

Then, using Schwarz inequality and Assumption (b3),
∣∣〈J,W ε(t)

〉
ε

∣∣ ≤ ε

2

∑

y∈Z

〈
|ψ(y)|2

〉
ε
‖J‖A ≤ K‖J‖A.

�

4.2. Proof of theorem 4. We consider a class of test functions J depending
only on k ∈ T. In particular we choose J real valued and bounded. Recall the
definition

〈
J, Eε

〉
=
ε

2

∫

T

dk
〈
|ψ̂(k)|2

〉
ε
J(k),

which is well defined since |
〈
J, Eε

〉
| ≤ 1

2
K supk∈T

|J(k)|.
The evolution of the distribution Eε(t) is determined by Ito’s formula, namely

∂t

〈
J, Eε(t)

〉
=
ε

2

∫

T

dk ε−1
〈
L|ψ̂(k, t/ε)|2

〉
ε
J(k) ,
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where

L|ψ̂(k)|2 = A|ψ̂(k)|2 + εγS|ψ̂(k)|2

and A, S are respectively defined in (5), (6). We have

A|ψ̂(k)|2 = [Aψ̂(k)∗]ψ̂(k) + ψ̂(k)∗[Aψ̂(k)],

where by direct computation

Aψ̂(k) =
∑

y∈Z

e−2πikyAψ(y) = −i
∑

y∈Z

e−2πiky(ω̃ ∗ ψ)(y) = −iω(k)ψ̂(k) (25)

and thus A|ψ̂(k)|2 = 0. For the stochastic part, since S is a second order operator,
we have

S|ψ̂(k)|2 = [Sψ̂(k)∗]ψ̂(k) + ψ̂(k)∗[Sψ̂(k)] +
1

3

∑

z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)],

where by direct computation

Sψ̂(k) =
∑

y∈Z

e−2πikySψ(y) =
1

2

∑

y∈Z

e−2πikyβ ∗ (ψ − ψ∗)(y)

=
1

2
β̂(k)(ψ̂(k) − ψ̂(−k)∗)

(26)

with β defined in (10). Thus

(Sψ̂(k)∗)ψ̂(k) + ψ̂(k)∗(Sψ̂(k))

= β̂|ψ̂(k)|2 − 1

2
β̂(ψ̂(k)ψ̂(−k) + ψ̂(k)∗ψ̂(−k)∗),

where

β̂(k) = −4

3
sin2(πk)(1 + 2 cos2(πk)). (27)

Finally we have to compute 1
3

∑
z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)]. It holds

∑

z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)] =
∑

y,y′∈Z

e2πik(y′−y)
∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)], (28)

where
∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)]

= [Yy+1ψ(y′)∗][Yy+1ψ(y)] + [Yyψ(y′)∗][Yyψ(y)] + [Yy−1ψ(y′)∗][Yy−1ψ(y)].
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This expression is explicitly computed in the appendix, see eq. (77). By inserting
it in (28) we get

∑

y,y′∈Z

e2πik(y′−y)
∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)]

= cos(4πk)
∑

y∈Z

(2pypy+1 − pypy+2 − p2
y)

+ cos(2πk)
∑

y∈Z

(2pypy+2 − 2p2
y) +

∑

y∈Z

(−2pypy+1 − pypy+2 + 3p2
y),

which is equal to
∫

T

dξ |p̂(ξ)|2
(
cos(4πk)[2 cos(2πξ) − cos(4πξ) − 1]

+ 2 cos(2πk)[cos(4πξ) − 1] + [3 − 2 cos(2πξ) − cos(4πξ)]
)
.

Finally, after some trigonometric identities and using the relation

|p̂(k)|2 =
1

2

(
|ψ̂(k)|2 + |ψ̂(−k)|2 − ψ̂(k)ψ̂(−k) − ψ̂(k)∗ψ̂(−k)∗

)
,

we get

1

3

∑

z∈Z

[Yzψ̂(k)∗][Yzψ̂(k)]

=

∫

T

dξ R(k, ξ)
(
|ψ̂(ξ)|2 − 1

2
[ψ̂(ξ)ψ̂(−ξ) + ψ̂(ξ)∗ψ̂(−ξ)∗]

)
,

where R(k, ξ) is given by (20).

Since
∫

T
dξ R(k, ξ) = −β̂(k), we can write

S|ψ̂(k)|2 = C|ψ̂(k)|2 − 1

2
C(ψ̂(k)ψ̂(−k) + ψ̂(k)∗ψ̂(−k)∗),

where C is the operator defined in (19), i.e.

Cf(k) =

∫

T

dξ R(k, ξ)
(
f(ξ) − f(k)

)
.

The evolution of Eε(t) is given by

∂t

〈
J, Eε(t)

〉
= γ

ε

2

∫

T

dk
〈
|ψ̂(k, t/ε)|2

〉
ε
CJ(k)

− γ
ε

2

∫

T

dk
1

2
[
〈
(ψ̂(k)ψ̂(−k))(t/ε)

〉
ε
+

〈
(ψ̂(k)∗ψ̂(−k)∗)(t/ε)

〉
ε
](CJ)(k).

Defining the distribution Y ε(t) on T through

〈
J, Y ε(t)

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′, t/ε)ψ(y, t/ε)

〉
ε

∫

T

dk e2πik(y′−y)J(k)

=
ε

2

∫

T

dk
〈
[ψ̂(k)ψ̂(−k)](t/ε)

〉
ε
J(k),
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we can rewrite the evolution equation as

∂t

〈
J, Eε(t)

〉
= γ

〈
CJ, Eε(t)

〉
− γ

2

(〈
CJ, Y ε(t)

〉
+

〈
CJ, Y ε(t)∗

〉)
. (29)

This is not a closed equation for Eε(t). However we expect that in the limit ε→ 0
the terms containing the distributions Y ε(t), Y ε(t)∗ disappear. In order to prove
it, let us consider the evolution of the distribution Y ε(t) on the kinetic time scale.
Calculations are similar to the previous ones, but with the difference that now
A[ψ̂(k)ψ̂(−k)] 6= 0, and precisely

A[ψ̂(k)ψ̂(−k)] = −2iω(k)ψ̂(k)ψ̂(−k).
We arrive at

∂t

〈
J, Y ε(t)

〉
= −2i

ε

〈
ωJ, Y ε(t)

〉
+
γ

2

〈
β̂J, Y ε(t)

〉

+
γ

2

(〈
CJ, Y ε(t)

〉
+

〈
CJ, Y ε(t)∗

〉)
− γ

2

〈
β̂J, Y ε(t)∗

〉
− γ

〈
CJ, Eε(t)

〉
.

(30)

Observe that by integrating eq. (30) in time, we obtain

lim
ε→0

∣∣∣
∫ t

0

dt
〈
ωJ, Y ε(t)

〉∣∣∣ = 0

for every bounded function J . In particular, since by item (i) of lemma 14

sup
k∈T

R(k, k′)

ω(k)
<∞,

we can choose a function ω−1CJ with J bounded and obtain

lim
ε→0

∣∣∣
∫ t

0

dt
〈
CJ, Y ε(t)

〉∣∣∣ = 0.

In the same way we have limε→0

∣∣ ∫ t

0
dt

〈
CJ, Y ε(t)∗

〉∣∣ = 0 and any limit distribu-
tion E(t) of Eε(t) solves the equation

〈
J, E(t)

〉
=

〈
J, E(0)

〉
+ γ

∫ t

0

ds
〈
CJ, E(s)

〉

for every bounded real valued function J . �

4.3. Proof of theorem 5. Now we will give the proof of (21) for the class test
function J ∈ S(R × T,C). The main difference to the previous case is that the
Hamiltonian part of the generator contributes to the evolution of W ε(t), resulting
in a ballistic transport term. In order to control this term, we need to ensure
that there is no mass concentration at k = 0 for every macroscopic time t ∈ [0, T ]
with T > 0. This is stated in the following lemma.

Lemma 7. Let assumption (b4) hold. Then for every t ∈ [0, T ]

lim
ρ→0

lim
ε→0

ε

2

∫

|k|<ρ

dk
〈
|ψ̂(k, t/ε)|2

〉
ε

= 0.
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Proof. We use the evolution equation (29) for Jρ(k) = 1[−ρ,ρ](k). Since

|CJρ(k)| ≤ c1(2ρ+Jρ(k)) and
〈
|CJρ(k)|, |Y ε(t)+Y ε(t)∗|

〉
≤

〈
|CJρ(k)|, Eε(t)

〉
, we

obtain the bound

〈
Jρ, Eε(t)

〉
≤

〈
Jρ, Eε(0)

〉
+ c2γ

∫ t

0

ds
〈
|CJρ|, Eε(s)

〉

≤
〈
Jρ, Eε(0)

〉
+ c3γ

(
2ρKt+

∫ t

0

ds
〈
Jρ, Eε(s)

〉)
,

whereK is the bound on the total energy from condition (b3). Then by Gronwall’s
inequality

〈
Jρ, Eε(t)

〉
≤

(
2ρK +

〈
Jρ, Eε(0)

〉)
ec3γt,

where, by assumption (b4), limε→0

〈
Jρ, Eε(0)

〉
→ 0 for ρ→ 0. �

4.3.1. Proof of theorem 5. For every J ∈ S(R ×T,C) the evolution of the distri-
bution W ε(t) on the kinetic time-scale is given by

∂t

〈
J,W ε(t)

〉

= (ε/2)
∑

y,y′∈Z

∂t

〈
ψ(y′, t/ε)∗ψ(y, t/ε)

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y + y′)/2, k)∗

= (ε/2)
∑

y,y′∈Z

ε−1
〈
L[ψ(y′)∗ψ(y)]

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y + y′)/2, k)∗,

where

L[ψ(y′)∗ψ(y)] = A[ψ(y′)∗ψ(y)] + εγS[ψ(y′)∗ψ(y)]

and A, S are defined in (5), (6), respectively. We start by computing the evolution
determined by A, the Hamiltonian part of the generator. Using the representation
of the Wigner distribution in Fourier space we get

ε

2

∫

R

dp

∫

T

dk ε−1A
[〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε
]Ĵ(p, k)∗

= −iε
2

∫

R

dp

∫

T

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

ε−1[ω(k + εp/2) − ω(k − εp/2)]Ĵ(p, k)∗.

Now we prove that one can replace ε−1[ω(k + εp/2) − ω(k − εp/2)] with ω′(k)p
in the last expression. For every 0 < ρ < 1/2

ε

2

∫

R

dp

∫

T

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗ = Iε

>(ρ) + Iε
<(ρ),
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where

Iε
>(ρ) =

ε

2

∫

R

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗

Iε
<(ρ) =

ε

2

∫

R

dp

∫

|k|<ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗.

Using Schwarz inequality and points (i), (ii) of lemma 14 in the appendix

∣∣Iε
<(ρ)

∣∣ ≤
∫

R

dp (C|p| + ‖∇ω‖∞) sup
k∈T

|Ĵ(p, k)|
(ε

2

∫

|k|≤ρ

dk
〈
|ψ̂(k)|2

〉
ε

)

≤ C0
ε

2

∫

|k|≤ρ

dk
〈
|ψ̂(k)|2

〉
ε

and, by lemma 7,

lim
ρ→0

lim
ε→0

∣∣Iε
<(ρ)

∣∣ = 0.

To compute Iε
>(ρ) we split it into two parts,

Iε
>(ρ) =

ε

2

∫

R,ε|p|≥ρ

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗

+
ε

2

∫

R,ε|p|<ρ

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗.

Again we use Schwarz inequality and points (i), (ii) of lemma 14 to show that
the first term on the RHS is negligible, since for all ρ > 0 it is bounded by

K

∫

|p|≥ρ/ε

dp (c|p| + ‖∇ω‖∞) sup
k∈T

|Ĵ(p, k)|,

which tends to 0 as ε→ 0.
For the second term on the RHS we use the point (iii) of lemma 14, since

|k| > ρ, ε|p| < ρ implies |k| > ε|p|, and for all ρ > 0 we get

ε

2

∫

|p|<ρ/ε

dp

∫

|k|>ρ

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε

(
ε−1[ω(k + εp/2) − ω(k − εp/2)] − ω′(k)p

)
Ĵ(p, k)∗

≤ K

∫

R

dp ε
C4

ρ
|p|2 sup

k∈T

|Ĵ(p, k)|,
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which tends to 0 as ε→ 0. Then we have

ε

2

∫

R

dp

∫

T

dk ε−1A
[〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε
]Ĵ(p, k)∗

=
ε

2

∫

R

dp

∫

T

dk
〈
ψ̂(k − εp/2)∗ψ̂(k + εp/2)

〉
ε
(−i p)ω′(k)Ĵ(p, k)∗ + O(ε)

=
1

2π

〈
∇ω∇rJ,W

ε(t)
〉

ε
+ O(ε).

(31)

We have to compute

(ε/2)
∑

y,y′∈Z

〈
S[ψ(y′)∗ψ(y)]

〉
ε

∫

T

dk e2πik(y′−y)J(ε(y + y′)/2, k)∗

=
ε

2

∑

y,y′∈Z

〈
S[ψ(y′)∗ψ(y)]

〉
ε
J̃
(
ε(y + y′)/2, y − y′

)∗
.

Since S is a second order operator, we have

S[ψ(y′)∗ψ(y)] = ψ(y′)∗Sψ(y) + [Sψ(y′)∗]ψ(y) +
1

3

∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)],

where by direct computation

Sψ(y) =
i√
2
Spy =

1

2
β ∗ (ψ∗ − ψ)(y) (32)

and

ψ(y′)∗Sψ(y) + [Sψ(y′)∗]ψ(y) =
i√
2

(
ψ(y′)∗(β ∗ p)y − ψ(y)(β ∗ p)y′

)
.

Integrating by parts and using the symmetry of β, we can rewrite

γ(ε/2)
∑

y,y′∈Z

[〈
ψ(y′)∗Sψ(y)

〉
ε
+

〈
(Sψ(y′)∗)ψ(y)

〉
ε

]
J̃
(
ε(y + y′)/2, y − y′

)∗

= γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y′)∗py〉ε

∑

z∈Z

β(z)J̃
(
ε(y + y′ + z)/2, y − y′ + z

)∗

− γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y)py′〉ε

∑

z∈Z

β(z)J̃
(
ε(y + y′ − z)/2, y − y′ + z

)∗
.

Using the energy bound and the properties of the test functions J , one can write
the first term on right hand side as

γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y′)∗py〉ε

∑

z∈Z

β(z)J̃
(
ε(y + y′)/2, y − y′ + z

)∗
+ O(ε)

= γ(ε/2)
∑

y,y′∈Z

i√
2
〈ψ(y′)∗py〉ε

∫

T

dke2πik(y′−y)β̂(k)J
(
ε (y + y′)/2, k

)∗

+ O(ε)
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and the same can be done for the other term. Finally we obtain

(ε/2)
∑

y,y′∈Z

[〈
ψ(y′)∗Sψ(y)

〉
ε
+

〈
(Sψ(y′)∗)ψ(y)

〉
ε

]
J̃
(
ε(y + y′)/2, y − y′

)∗

= (ε/2)
∑

y,y′∈Z

i√
2

〈
ψ(y′)∗py − ψ(y)py′

〉
ε

∫

T

dk e2πik(y′−y)β̂(k)J
(
ε(y + y′)/2, k

)∗
+ O(ε).

(33)

About the other term in (32) first observe that
∑

z∈Z
[Yzψ(y′)∗][Yzψ(y)] is just

a finite sum for any y, y′ fixed and, computing it explicitly and identifying terms
that differ by translations, see details of the computation in appendix 7.1, one
obtains

1

3
(ε/2)

∑

y,y′,z∈Z

〈
[Yzψ(y′)∗][Yzψ(y)]

〉
J̃(ε(y′ + y)/2, y − y′)∗

= (ε/2)
∑

y∈Z

2∑

z,u=−2

α(z, u)
〈
pypy+z

〉
ε
J̃(εy, u)∗ + O(ε),

(34)

where α(z, u) = α(−z, u) = α(z,−u) = α(u, z) and is given by (78). We can
rewrite it as

(ε/2)
∑

y∈Z

2∑

z,u=−2

α(z, u)
〈
pypy+z

〉
ε
J̃(ε(y + z/2), u)∗ + O(ε)

= (ε/2)
∑

y∈Z

∑

z,u∈Z

α(z, u)
〈
pypy+z

〉
ε
J̃(ε(y + z/2), u)∗ + O(ε),

where we put α(z, u) = 0 if |z| > 2 or |u| > 2 and by changing variables we obtain

(ε/2)
∑

y,y′∈Z

〈
pypy′

〉
ε

∑

u∈Z

α(y′ − y, u)J̃ (ε(y′ + y)/2, u)
∗
+ O(ε). (35)

Defining

R(k, k′) =
∑

z∈Z

∑

u∈Z

e−2πikze−2πik′uα(z, u),

we can rewrite (35) as

(ε/2)
∑

y,y′∈Z

〈
pypy′

〉
ε

∫
dk e2πik(y′−y)

∫
dk′ R(k, k′)J(ε(y′ + y)/2, k′)∗ + O(ε),

where direct computation gives

R(k, k′) =
2

3

(
3 − 2 cos(2πk) − cos(4πk) − 2 cos(2πk′) + 2 cos(2π(k′ + 2k))

− cos(4πk′) + 2 cos(2π(2k′ + k)) − cos(2π(2k′ + 2k))
)

=
4

3

(
2 sin2(2πk) sin2(πk′) + 2 sin2(2πk′) sin2(πk) − sin2(2πk) sin2(2πk′)

)
,
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which is the kernel defined in (20). Using the relation
∫

T
dk′R(k, k′) = −β̂(k) and

〈
pypy′

〉
ε

=
1

2
[
〈
ψ(y′)∗ψ(y)

〉
ε
+

〈
ψ(y′)ψ(y)∗

〉
ε
] − 1

2
[
〈
ψ(y′)ψ(y)

〉
ε
+

〈
ψ(y′)∗ψ(y)∗

〉
ε
]

i√
2

〈
ψ(y′)∗py − ψ(y)py′

〉
ε

=
〈
ψ(y′)∗ψ(y)

〉
ε
− 1

2
[
〈
ψ(y′)ψ(y)

〉
ε
+

〈
ψ(y′)∗ψ(y)∗

〉
ε
],

we obtain

γ
ε

2

∑

y,y′∈Z

〈S (ψ(y′)∗ψ(y))〉ε J(ε(y′ + y)/2, y′ − y)

= γ 〈CJ,W ε〉 − γ

2
(〈CJ, Y ε〉 + 〈CJ, Y ε∗〉) + O(ε),

(36)

where the collision operator C is defined in (19) and the distributions Y ε(t),
Y ε(t)∗ are defined as

〈
J, Y ε(t)

〉
=(ε/2)

∑

y,y′∈Z

〈ψ(y′)ψ(y)〉ε J̃(ε(y + y′)/2, y − y′)∗,

〈
J, Y ε(t)∗

〉
=(ε/2)

∑

y,y′∈Z

〈ψ(y′)∗ψ(y)∗〉ε J̃(ε(y + y′)/2, y − y′)∗
(37)

for every J ∈ S(R × T,C).
The evolution of W ε(t) is not a closed equation,

∂t

〈
J,W ε(t)

〉
=

〈
(∇ω∇xJ),W ε(t)

〉
+ γ

〈
(CJ),W ε(t)

〉

− γ

2

〈
(CJ), Y ε(t)

〉
− γ

2

〈
(CJ), Y ε(t)∗

〉
+ O(ε).

(38)

However we expect that in the kinetic limit ε → 0 the terms containing the
distributions Y ε(t), Y ε(t)∗ to disappear. To prove this, we consider the evolution
of Y ε(t). Again by Ito’s formula

∂t

〈
J, Y ε(t)

〉
= (ε/2)

∑

y,y′∈Z

∂t

〈
ψ(y′)ψ(y)

〉
ε
J̃(ε(y + y′)/2, y − y′)∗

= (ε/2)
∑

y,y′∈Z

ε−1
〈
L[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y − y′)∗

= (ε/2)
∑

y,y′∈Z

ε−1
〈
A[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y − y′)∗

+ γ(ε/2)
∑

y,y′∈Z

〈
S[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y − y′)∗.
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For the stochastic part of the generator, by a similar computation as above, we
obtain

γ(ε/2)
∑

y,y′∈Z

〈
S[ψ(y′)ψ(y)]

〉
ε
J̃(ε(y + y′)/2, y′ − y)

=
γ

2

〈
(CJ), Y ε

〉
+
γ

2

〈
(CJ), Y ε∗

〉
+
γ

2

〈
(β̂J), Y ε

〉
− γ

2

〈
(β̂J), Y ε∗

〉

− γ

2

[〈
(CJ),W ε

〉
+

〈
(CJ),W ε∗

〉]
+ O(ε).

(39)

To compute the Hamiltonian contribution to the evolution of Y ε(t), we use the
representation of Y ε(t) in the Fourier space and get

(ε/2)

∫

R

dp

∫

T

dk ε−1A[
〈
ψ̂(k − εp/2)ψ̂(k + εp/2)

〉
ε
]

= −2iε−1(ε/2)

∫

R

dp

∫

T

dk ε−1
〈
ψ̂(k − εp/2)ψ̂(k + εp/2)

〉
ε

(ω(k + εp/2) + ω(k − εp/2))Ĵ(p, k)∗,

where with similar arguments as above one can replace ω(k+εp/2)+ω(k−εp/2)
by 2ω(k), with an error of order ε2. Then we arrive at the following equation for
the evolution of Y ε(t),

∂t

〈
J, Y ε(t)

〉
= −2i

ε

〈
(ωJ), Y ε(t)

〉
+
γ

2

〈
(CJ), Y ε

〉
+
γ

2

〈
(β̂J), Y ε

〉

+
γ

2

〈
(CJ), Y ε∗

〉
− γ

2

〈
(β̂J), Y ε∗

〉
− γ

2

[〈
(CJ),W ε

〉
+

〈
(CJ),W ε∗

〉]
+ O(ε).

(40)

After time integration, we obtain, for any J ∈ S(R × T),

lim
ε→0

∣∣∣
∫ t

0

dt
〈
(ωJ), Y ε(t)

〉∣∣∣ = 0.

Observe that R(k, k′)/ω(k) ∈ C∞(T/{0}) and, using item (i) of lemma 14 in the
appendix,

sup
k∈T

R(k, k′)

ω(k)
<∞.

Then equation (40) holds for any function

ω(k)−1CJ(y, k) =

∫

T

dq
R(k, q)

ω(k)
(J(y, q)− J(y, k))

with J ∈ S(R × T) and consequently

lim
ε→0

∣∣∣
∫ t

0

dt
〈
(CJ), Y ε(t)

〉∣∣∣ = 0.
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5. Extension to dimensions d ≥ 2

We consider a particular generalisation of our model to d dimensions, d ≥ 2.
The perfect lattice is Zd. Deviations from the equilibrium position y ∈ Zd is
qy ∈ Rd and py denotes the corresponding momentum. Thus the phase space is

(Rd × Rd)Z
d

. The Hamiltonian of the system is given by

H(p,q) =
1

2

∑

y∈Zd

p2
y +

1

2

∑

y,y′∈Zd

α(y − y′)qy · qy′. (41)

For simplicity the couplings α are taken to be scalar. In general, α would be a
d× d matrix. We denote

v̂(k) =
∑

z∈Zd

e−2πik·zv(z), f̃(z) =

∫

Td

dk e2πik·zf(k). (42)

We assume α(·) to satisfy the following properties:

Assumption 8.

• (a1)α(y) 6= 0 for some y 6= 0.
• (a2)α(y) = α(−y) for all y ∈ Z

d.
• (a3)There are constants C1, C2 > 0 such that for all y

|α(y)| ≤ C1e
−C2|y|.

• (a4) We require α̂ > 0 on T
d (pinned case) or α̂(k) > 0, ∀k 6= 0, α̂(0) =

0 (unpinned case). Moreover, in the unpinned case we require that the
Hessian of α̂ at k = 0 is invertible.

The dynamics is determined by the generator L = A+ εγS with

A =
∑

y∈Zd

py · ∂qy
−

∑

y,y′∈Zd

α(y − y′)qy′ · ∂py
. (43)

S is defined through the vector fields

X i,j
x,z = (pj

z − pj
y)(∂pi

z
− ∂pi

y
) − (pi

z − pi
y)(∂pj

z

− ∂pj
y

),

according to

S =
1

2(d− 1)

∑

y∈Zd

d∑

i,j,k=1

(
X i,j

y,y+ek

)2
=

1

4(d− 1)

∑

y,z∈Zd,

‖y−z‖=1

d∑

i,j=1

(
X i,j

x,z

)2
, (44)

where e1, . . . , ed is the canonical basis of Zd. As in the one-dimensional case

S
∑

y∈Zd

py = 0 , SH = 0.

Note that now it suffices to couple nearest neighbors.
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The evolution of {p(t),q(t)} is given by the following stochastic differential
equations

dqy = py dt,

dpy = −(α ∗ q)y dt+ 2εγ∆py dt

+

√
εγ

2
√
d− 1

∑

z∈Zd,

‖z−y‖=1

d∑

i,j=1

(
X i,j

y,zpy

)
dwi,j

y,z(t)
(45)

for all y ∈ Zd. Here {wi,j
z,y = wi,j

y,z; z,y ∈ Zd; i, j = 1, . . . , d; ‖y − z‖ = 1} are
independent standard Wiener processes.

Define the complex valued vector field ψ : Z
d → C

d as

ψ(y, t) =
1√
2

(
(ω̃ ∗ q)y(t) + ipy(t)

)
(46)

with the inverse relation

py(t) =
i√
2
(ψ∗ −ψ)(y, t). (47)

Observe that |ψ(y)|2 = ey, the local energy ay y. For every t ≥ 0, the evolution
of ψ is given by the following SDE,

dψ(y, t) = − i(ω̃ ∗ψ)(y, t)dt+
1

2
εγβ ∗ (ψ −ψ∗)(y, t)dt

+

√
εγ

4
√
d− 1

∑

y′∈Zd,

‖y′−y‖=1

d∑

i,j=1

(
X i,j

y,y′(ψ −ψ∗)(y, t)
)
dwi,j

y,y′(t),
(48)

where β is determined through (β ∗ f)(z) = ∆f(z).
Given a function J on Rd × Td, we define

J̃(x, z) =

∫

Td

dk ei2πk·zJ(x,k) (49)

on R
d × Z

d. We also define

Ĵ(p,k) =

∫

Rd

dx e−i2πp·xJ(x,k). (50)

We choose a class of test-functions J on Rd × Td such that J ∈ S(Rd × Td,Md),
where Md is the space of complex d× d matrices.

Fix ε > 0. We introduce the complex valued correlation matrices
〈
ψ(y′)∗ ⊗ψ(y)

〉
ε
,

〈
ψ(y′) ⊗ψ(y)

〉
ε
, (51)

where
〈
·
〉

ε
denotes the expectation value with respect to a probability measure

on phase space which satisfies the following properties:

(c1)
〈
ψ(y)

〉
ε

= 0, ∀y ∈ Zd,

(c2)
〈
ψ(y′) ⊗ψ(y)

〉
ε

= 0, ∀y,y′ ∈ Zd,

(c3)
〈
‖ψ‖2

〉
ε
=

〈 ∑
z∈Zd |ψ(z)|2

〉
ε
≤ Kε−d.
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Observe that, since
〈
‖ψ‖2

〉
ε

=
〈
H

〉
ε
, we are considering states with an energy of

order ε−d. We define the matrix-valued Wigner distribution W ε as
〈
J,W ε

〉

= (ε/2)d
∑

y,y′∈Zd

d∑

i,j=1

〈
ψj(y

′)∗ψi(y)
〉

ε

∫

Td

dk ei2πk·(y′−y)Jj,i(ε(y
′ + y)/2, k)∗

= (ε/2)d
∑

y,y′∈Zd

d∑

i,j=1

〈
ψj(y

′)∗ψi(y)
〉

ε
J̃j,i(ε(y

′ + y)/2,y − y′)∗

(52)

with J ∈ S(Rd×Td,Md). The evolution of the diagonal terms of the distribution
W ε on time scale ε−1t is determined through

〈
J,W ε(t)

〉
= (ε/2)d

d∑

i=1

∑

y,y′∈Zd

〈
ψi(y

′, t/ε)∗ψi(y, t/ε)
〉

ε

∫

Td

dk ei2πk·(y′−y)Ji(ε(y
′ + y)/2, k)∗

(53)

for Ji ∈ S(Rd × Td), i = 1 . . . , d.
Observe that since the dynamics preserves the total energy, the condition

εd 〈‖ψ‖〉 ≤ K holds at any time and, by proposition 13, the Wigner distri-
bution is well defined at any time. On this time scale the diagonal terms of
the distribution W ε(t) converge in a weak sense to a (vector valued) measure
µ = {µi(t), i = 1, .., d} on Rd × Td which satisfies the following Boltzmann equa-
tion. For any vector valued function J ∈ S(Rd × Td,Cd),

〈
J, µ(t)

〉
−

〈
J, µ(0)

〉
=

1

2π

∫ t

0

ds
(〈
∇ω · ∇xJ, µ(s)

〉
+ γ

〈
CJ, µ(t)

〉)
, (54)

where
〈
J, µ(t)

〉
denotes the scalar product

∑d
i=1

∫
Rd×Td Ji(x,k)∗µi(dx, dk). The

collision operator is given by

(CJ)i(x,k) =
1

d− 1

∑

1≤j≤d,

j 6=i

∫

Td

dk′ R(k,k′)
(
Jj(x,k

′) − Ji(x,k)
)
, (55)

where the kernel R : Td × Td → R has the following expression,

R(k,k′) = 16
d∑

ℓ=1

sin2(πkℓ) sin2(πk′ℓ). (56)

As in the one-dimensional case, in order to prove the inhomogeneous Boltzmann
equation (54), we need an additional condition on the initial distribution in the
unpinned case (α̂(0) = 0), which ensures that there is no initial concentration of
energy at k = 0:
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(c4) In the unpinned case we require

lim
R→0

lim
ε→0

(ε/2)d

∫

|k|<R

dk
〈
|ψ̂(k)|2

〉
ε
= 0.

Now we state the precise theorem. The proof is analogous to the one-dimensional
case.

Theorem 9. Let Assumptions (c1-c4) hold and assume that W ε(0) converges to
a positive vector valued measure µ0. Then, for all t ∈ [0, T ], W ε(t) converges
to a positive (vector-valued) measure µ0(t) which is the unique solution of the
Boltzmann equation

∂t

〈
J, µ(t)

〉
=

1

2π

〈
∇ω · ∇xJ, µ(t)

〉
+ γ

〈
CJ, µ(t)

〉
(57)

with initial condition µ0(t).

As in the one-dimensional case, the Boltzmann equation has a probabilistic
interpretation as the forward equation of a Markov process. We consider the
Markov process (

X(t),K(t), i(t)
)
.

By (55), the jump rate from (i,k) to (j, dk′) is given by

νk,i(j, dk
′) =

1

d− 1
(1 − δi,j)R(k,k′)dk′, ∀i, j = 1, ..., d.

Transitions between states with the same index i are forbidden. The total collision
rate is

φi(k) =
d∑

j=1

∫

Td

νk,i(j, dk
′) =

∫

Td

dk′ R(k,k′),

i = 1, ..., d, which does not depend on i. Explicitly

φi(k) = φ(k) = 8
d∑

ℓ=1

sin2(πkℓ). (58)

Given a state (k, i) at t = 0, it jumps at time τ to the state (dk′, j) with a prob-
ability νk,i(dk

′, j)/φ(k), where τ is an exponentially distributed random variable
of mean φ(k)−1. As before the position process X(t) is defined through

X(t) = X(0) +
1

2π

∫ t

0

ds ∇ω(K(s)). (59)

6. Homogeneous case: correlations, energy current and
conductivity

6.1. Translation invariant measures. We consider a situation where the ini-
tial measure on phase space is invariant under space translations. For simplicity
we work in the one-dimensional setting. Using the methods from section 5, the
generalization to d ≥ 2 is straightforward.
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Since energy will be now a.s. infinite, the results of section 3 do not apply. Let
us denote with

〈
·
〉

the expectation value with respect to this initial translation
invariant measure, and assume that it has the following properties:

(d1)
〈
ψ(y)

〉
= 0, ∀y ∈ Z,

(d2)
〈
ψ(y)ψ(0)

〉
= 0, ∀y ∈ Z,

(d3)
∑

z∈Z

∣∣〈ψ(0)∗ψ(z)
〉∣∣ <∞.

The Wigner distribution is still well defined for every function J ∈ S(R × T).
Using translation invariance

〈
J,W ε

〉
=
ε

2

∑

y,y′∈Z

〈
ψ(y′)∗ψ(y)

〉∫

T

dke2πik(y′−y)J(ε(y′ + y)/2, k)∗

=
ε

2

∑

y,y′∈Z

〈
ψ(0)∗ψ(y − y′)

〉 ∫

T

dke2πik(y′−y)J(ε(y′ + y)/2, k)∗

=
∑

z∈Z

〈
ψ(0)∗ψ(z)

〉 ∫

T

dke−2πikz
[ε
2

∑

y∈Z

J(ε(2y + z)/2, k)∗
]
,

which is finite by condition (d3) and by the fast decay of J . In Fourier space the
previous expression becomes

〈
J,W ε

〉

=
ε

2

∑

y,y′∈Z

∫

R

dp

∫

T

dk e2πi(k−εp/2)y′〈
ψ(y′)∗ψ(y)

〉
e−2πi(k+εp/2)yĴ(p, k)∗

and using translation invariance

〈
J,W ε

〉
=

1

2

∫

R

dp

∫

T

dk δ(p)W(k)Ĵ(p, k)∗ =
1

2

∫

T

dk W(k)Ĵ(0, k)∗,

where W(k) is the Fourier transform of the correlation function
〈
ψ(0)∗ψ(z)

〉
,

W(k) =
∑

z∈Z

e−2πikz
〈
ψ(0)∗ψ(z)

〉
. (60)

By condition (d3), W(k) is well defined and in L1(T). Moreover, by translation
invariance, W(k) is a real positive function.

If we consider the deterministic dynamics only, then W is preserved by the
dynamics, i.e. ∂tW(t) = 0. This follows from eq. (9) for γ = 0. Such property
is no longer true if the system evolves according to the full dynamics, defined
trough the generator L = A+ εγS. In order to observe an effective change of the
covariance, hence of the function W, we have to consider the time scale of order
ε−1. Denoting by Wε(t) = W(t/ε), we obtain the following evolution equation,

∂tWε(k, t) = γ(CWε)(k, t) − γ

2
[C(Yε + Yε∗)](k, t), (61)
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where C is the collision operator defined in (19), while Yε(k, t) is the Fourier
transform of the correlation function

〈
ψ(0)ψ(z)

〉
at the rescaled time t/ε,

Yε(k, t) =
∑

z∈Z

e−2πikz
〈
ψ(t/ε, 0)ψ(t/ε, z)

〉
.

As before, we prove that in the limit ε → 0 one obtains a closed equation for
Wε(t), as stated in the next theorem.

Theorem 10. Assume that the initial state satisfies the above conditions and
that Wε(k, 0) = W0(k) is continuous on T. Then, ∀k ∈ T, t ∈ [0, T ],

lim
ε→0

Wε(k, t) = W(k, t),

where W(k, t) satisfies the homogeneous Boltzmann equation

∂tW(k, t) = γ(CW)(k, t),

W(k, 0) = W0(k)
(62)

with C defined in (19).

The proof of this theorem will be given in section 6.5.

6.2. Equilibrium time correlations. We consider the system in equilibrium
and we denote by

〈
·
〉

T
the average at respect to the equilibrium measure with

temperature T . This is a translation invariant Gaussian centered measure with
zero mean, uniquely characterised through its covariance

W(k) = T,
〈
ψ(y)ψ(0)

〉
T

= 0, ∀y ∈ Z. (63)
〈
·
〉

T
is a stationary measure for the SDE (9).

Consider a function g ∈ ℓ1(Z) antisymmetric, g(z) = −g(−z), and such that
‖ĝ/ω‖∞ <∞ and define the function

Φ =
∑

x∈Z

g(x)pxq0.

The total time covariance is defined as

F ε(t) =
∑

z∈Z

〈
Φ(t/ε)τzΦ(0)

〉
T
. (64)

We want to compute F ε(t) in the kinetic limit ε→ 0.
Consider the centered translation invariant Gaussian measure defined by the

following covariance,

W(T,τ)(k) =
ω(k)

T−1ω(k) + iτ ĝ(k)
, Y (T,τ)(k) = 0 (65)

with τ > 0. Observe that W(β,τ) is a real, continuous function which is positive
for τ small enough. Formally (65) corresponds to the perturbed measure

Z−1 exp
[
− T−1H + τ

∑

z∈Z

τzΦ
]
.
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We denote by
〈
·
〉
(T,τ)

its expectation.

Lemma 11. For every ε > 0,

∑

z∈Z

〈
Φ(t/ε)τzΦ(0)

〉
T

= lim
τ→0

〈
Φ(t/ε)

〉
(T,τ)

. (66)

The proof of this lemma is given in section 6.6 below.
By direct computation, at the rescaled time t/ε,

〈
Φ(t/ε)

〉
(T,τ)

= −1

2

∑

z∈Z

g(z)
〈
qzp0 − q0pz

〉
(T,τ)

= −i
∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, t/ε).

By Theorem 10, W(T,τ)(k, t/ε) → W(k, t) for ε → 0, where W(k, t) satisfies
the homogeneous Boltzmann equation (62) with initial condition W(k, 0) =
ω(k)(T−1ω(k) + iτ ĝ(k))−1. It is easy to verify that for any bounded antisym-
metric function f on T

∫

T

dk (Cf)(k)W(k, t) = −
∫

T

dk φ(k)W(k, t),

with φ = −β̂(k) = 4
3
sin2(πk)[1 + 2 cos2(πk)], see (27). Then

−i
∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, t) = −i

∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, 0)e−γφ(k)t

and finally, for t ≥ 0,

lim
ε→0

F ε(t) = lim
τ→0

− i

τ

∫

T

dk
ĝ(k)

ω(k)
W(T,τ)(k, 0)e−γφ(k)t

= T 2

∫

T

dk
|ĝ(k)|2
ω(k)2

e−γφ(k)t.

(67)

6.3. Energy current time correlation. The Hamiltonian energy current J is
implicitly defined through the conservation law

Aex = τx−1J − τxJ.

By direct computation J =
∑

z>0 j0,z with

j0,z = −1

2
α(z)

z−1∑

y=0

(qz−yp−y − q−ypz−y).
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Denoting by
〈
·
〉

the expectation value with respect to a translation invariant
centered Gaussian measure, it is easy to see that

〈
J
〉

= −1

2

∑

z>0

z α(z)
〈
qzp0 − q0pz

〉

=
1

4π

∫

T

dk
α̂′(k)

ω(k)
W(k)

=
1

2π

∫

T

dk ω′(k)W(k).

Let us denote by Cε(t) the energy time correlation function on the kinetic time
scale t/ε at temperature T ,

Cε(t) =
∑

x∈Z

〈
J(t/ε)τxJ(0)

〉
T
.

Using the translation invariance of the Gaussian measure
〈
·
〉

T
we have

Cε(t) =
∑

x∈Z

∑

z∈Z

z

4
α(z)

∑

z′∈Z

z′

4
α(z′)

〈
(qzp0 − q0pz)(t/ε)

(qx+z′px − qxpx+z′)(0)
〉

T
=

∑

x∈Z

〈
J̃(t/ε)τxJ̃(0)

〉
T
,

where

J̃ = −1

4

∑

z∈Z

z α(z)(qzp0 − q0pz).

Using the results of the previous subsection we arrive at

lim
ε→0

Cε(t) =
T 2

(4π)2

∫

T

dk
|α̂′(k)|2
ω(k)2

e−γφ(k)|t|

=
T 2

4π2

∫

T

dk |ω′(k)|2e−γφ(k)|t|

(68)

for all t ∈ R.

6.4. Thermal Conductivity. A standard definition of the thermal conductiv-
ity, κ(ε), is by means of the Green-Kubo formula as

κ(ε) =
1

T 2

∫ ∞

0

dt Cε(εt). (69)

We refer to [2, 4] for details. In general, the kinetic limit provides the lowest
order approximation in ε as

κ(ε) = ε−1κ(0) + O(1).

Inserting in (69) the limit (68) thus yields

κ(0) =
1

4π2

∫

π

dk
|ω′(k)|2
γφ(k)

. (70)
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For the pinned case κ(0) <∞. κ(ε) has been computed in [2] with the result

κ(ε) = ε−1κ(0) + εγ.

Thus, somewhat unexpectedly, the kinetic theory captures already the main de-
tails of the conductivity.

For the unpinned case κ(0) = ∞, hence κ(ε) = ∞, for d = 1, 2. The Boltzmann
equation (21) provides a simple explanation. For small k, ω(k) = 2πc|k|. Thus
small k phonons travel with speed c. On the other hand, the collision rate vanishes
as k2 for small k, see (27). Thus at small k there are only very few collisions which,
together with c > 0, is responsible for the divergent conductivity. The positional
part X(t) of the process consists mostly of very long stretches of uniform motion.
In fact on a large scale X(t) is governed by a symmetric Levy process of index
α = 3/2, see [6] for details.

6.5. Proof of theorem 10. The proof of the theorem 10 is analogous to the
proof above. We only have to control that Wε(t) and Yε(t) are well defined for
every t ∈ [0, T ]. This is stated in the next lemma.

Lemma 12. Let the conditions (d1-d3) hold. Then Wε(t),Yε(t) ∈ L1(T) for
every t ∈ [0, T ].

Proof. By similar computations as above we find that Wε(t),Yε(t) satisfy the
following evolution equations,

∂tWε(k, t) = γ(CWε)(k, t) − γ

2
(C(Yε + Yε∗))(k, t),

∂tYε(k, t) = −2iω(k)

ε
Yε(k, t) +

γ

2
β̂(k)(Yε + Yε∗)(k, t)

+
γ

2
(C(Yε + Yε∗))(k, t) − γ

2
C(Wε(k, t) + Wε(−k, t)).

In particular by Duhamel’s formula we can rewrite the second equation as

Yε(k, t) =γ

∫ t

0

ds e−2iω(k)(t−s)/ε
(1

2
β̂(k)(Yε + Yε∗)(k, s)

+
1

2
(C(Yε + Yε∗))(k, s) − 1

2
C(Wε(k, s) + Wε(−k, s))

)
.

Then we get the following bounds

|Wε(k, t)| ≤ W(k) + γc1

∫ t

0

ds
[
|Wε(k, s)| + |Yε(k, s)|

]

+ γc2

∫ t

0

ds

∫

T

dk
(
|Wε(k, s)| + |Yε(k, s)|

)

|Yε(k, t)| ≤ +γc3

∫ t

0

ds
[
|Wε(k, s)| + |Wε(−k, s)| + |Yε(k, s)|

]

+ γc4

∫ t

0

ds

∫

T

dk
(
|Wε(k, s)| + |Yε(k, s)|

)
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and finally
∫

T

dk
[
|Wε(k, t)| + |Yε(k, t)|

]
≤

∫

T

dk W(k)+

γc5

∫ t

0

ds

∫

T

dk
(
|Wε(k, s)| + |Yε(k, s)|

)
.

By Gronwall’s lemma
∫

T

dk
[
|Wε(k, t)| + |Yε(k, t)|

]
≤ eγc5t

∫

T

dk W(k).

�

6.6. Proof of (66). We define the generator of the speeded up process as

Lε = ε−1L = ε−1A+ S.

Let us denote by
〈
·
〉

T
the average with respect to the Gaussian measure with

zero mean and covariance (63), and by
〈
·
〉
(β,τ)

the Gaussian measure with zero

mean and covariance (65). We consider the Laplace transforms of
〈
Φ(t/ε)

〉
(T,τ)

and
∑

x∈Z

〈
Φ(t/ε)τxΦ(0)

〉
T
,

∫ ∞

0

dt e−λt
〈
Φ(t/ε)

〉
(T,τ)

=
〈
(λ− Lε)

−1Φ
〉
(T,τ)

=
〈
uλ

〉
(T,τ)

,

∫ ∞

0

dt e−λt
∑

x

〈
Φ(t/ε)τxΦ(0)

〉
T

=
∑

x∈Z

〈
[(λ− Lε)

−1Φ]τxΦ
〉

T

=
∑

x∈Z

〈
uλτxΦ

〉
T
,

(71)

where uλ =
∑

z∈Z
fλ(z) q0pz with fλ the solution of the equation

λ fλ(z) −
γ

6
∆(4fλ(z) + fλ(z + 1) + fλ(z − 1)) = g(z).

Observe that uλ does not depend on ε, because Lεuλ = ε−1∇F + γSuλ with F
some non-local function. Since fλ is antisymmetric, and by translation invariance
of the measure, the gradient term does not contribute. We have

〈
uλ

〉
T,τ

=
∑

z∈Z

fλ(z)
〈
q0pz

〉
T,τ

= −1

2

∑

z∈Z

fλ(z)
〈
qzp0 − q0pz

〉
T,τ

= −i
∫

T

dk f̂λ(k)
1

ω(k)
W(T,τ)(k)

= −i
∫

T

dk
ĝ(k)

λ+ γφ(k)

1

T−1ω(k) + iτ ĝ(k)
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with φ(k) = −β̂(k). For every positive λ, the right hand side is finite for every
τ . In particular

lim
τ→0

1

τ

〈
uλ

〉
T,τ

= T 2

∫

T

dk
|ĝ(k)|2

ω(k)2(λ+ γφ(k))
.

In the same way
∑

x∈Z

〈
uλ τxΦ

〉
T

= T
∑

y∈Z

∑

z∈Z

fλ(y)g(z)
〈
q0qy−z)

〉
T

= T

∫

T

dk f̂λ(k)
∗ ĝ(k)

ω(k)2
W(β)(k) = T 2

∫

T

dk
|ĝ(k)|2

ω(k)2(λ+ φ(k))
,

where Parseval’s identity is used. �

7. Appendix

Proposition 13. Under the assumption (b3),
∣∣〈J,W ε

〉∣∣ ≤ CJ (72)

for every test function J ∈ S(Rd × Td) and for every ε > 0.

Proof. For any test function J ∈ S(Rd×Td) we denote by ‖J‖n,∞ the following
norm,

‖J‖n,∞ = sup
i,j∈{1,...,d}

sup
r∈Rd,k∈Td

∣∣
d∑

i1=1

. . .
d∑

in=1

∂ki1
. . . ∂kin

Ji,j(r,k)
∣∣.

Let us define

Wε[J ](y,y′, i, j) =

∫

Td

dk e2πik·(y′−y)Jj,iε(y
′ + y)/2,k)∗,

for every y,y′ ∈ Zd, i, j = 1, . . . , d. Integrating by part in k for (d+ 1) times, we
get

|Wε[J ](y,y′, i, j)| ≤ 1

(2π)d+1

1

|(y′1 − y1) + . . .+ (y′d − yd)|d+1
‖J‖d+1,∞,

where yi denotes the i-th component of the vector y. We denote by
〈
y′ − y

〉d+1
= |(y′1 − y1) + . . .+ (y′d − yd)|d+1.

By Schwarz inequality
∣∣〈J,W ε

〉∣∣

≤ (ε/2)d
∑

y,y′∈Zd

d∑

i,j=1

[
〈
|ψi(y)|2

〉
ε
]1/2[

〈
|ψj(y

′)|2
〉

ε
]1/2|Wε[J ](y,y′, i, j)|

≤ (ε/2)d
〈
‖ψ‖2

〉
ε

∑

z∈Zd

1
〈
z
〉d+1

c0‖J‖d+1,∞ ≤ c‖J‖d+1,∞,

where in the last inequality we used εd
〈
‖ψ‖2

〉
≤ K with K positive. �
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Lemma 14. Let Assumption 1 hold with α̂(0) = 0 (unpinned case). The following
assertions hold.

(i) There are constants C1, C2, C3 such that ∀k ∈ Td

|∇α̂(k)| ≤ C1|k|, C2|k| ≤ ω(k) ≤ C3|k|. (73)

In addition, ‖∇ω‖∞ <∞.
(ii) For all k ∈ T

d and p ∈ R
d, there is a positive constant C such that

ε−1
∣∣ω(k + εp/2) − ω(k − εp/2)

∣∣ ≤ C|p| (74)

for every ε > 0.
(iii) For p ∈ Rd, there is a positive constant C4 such that for all k ∈ Td,

|k| > ε|p|, with ε > 0 one has

∣∣ε−1[ω(k + εp/2) − ω(k − εp/2)] − p · ∇ω(k)
∣∣ ≤ εC4

|p|2
|k| . (75)

Proof. The first inequality of item (i) follows from a Taylor expansion of α̂
around zero, using the fact that ∇α̂(0) = 0 and ‖D2α̂‖∞ < ∞. Using the same
argument we have ω(k) ≤ C3|k|, since ω(k) = α̂(k)1/2 and α̂(k) ≤ C|k|2, with
C > 0. Let us denote with A0 the Hessian of α̂ at k = 0. By assumption
(a4), k · A0k > c|k|2. Moreover, there is a δ > 0 such that for every |k| < δ,
(|α̂(k)− 1

2
k ·A0k|)2 < 1

4
k ·A0k. Then ω(k) = ((α̂(k)− 1

2
k ·A0k)+ 1

2
k ·A0k)1/2 ≥

c
2
|k|2 if |k| < δ. For |k| ≥ δ, ω is strictly positive and there is a constant c′ such

that ω(k) ≥ c′|k| if |k| ≥ δ, which proves the second inequality. To prove the last
one it is enough to observe that for all k 6= 0,

|∇ω(k)| =
1

2

|∇α̂(k)|
ω(k)

≤ 1

2

C1

C2
<∞.

Hence ‖ω‖∞ <∞.
Let us prove item (iii). We observe that the function on the left hand side

of (75) is zero if |p| = 0 and we have to consider only the case |p| > 0. Since
we are assuming |k| > ε|p|, it follows that we need to discuss the case |k| > 0.
Observe that for any s ∈ (0, ε], |k± 1

2
sp| ≥ 1

2
|k| > 0 if |k| > ε|p| and the function

ω(k + 1
2
εp) − ω(k − 1

2
εp) is C∞ in this range. In particular

ε−1ω(k + εp/2) − ω(k− εp/2) − p · ∇ω(k)

= ε
(p

2
· ∇

)2

ω(k + sp/2) − ε
(p

2
· ∇

)2

ω(k − s̃p/2)

with s, s̃ ∈ (0, ε), where, denoting k± = k ± 1
2
sp,

(p · ∇)2 ω(k±) =
1

2

1

ω(k±)
(p · ∇)2 α̂(k±) − 1

4

1

ω(k±)3
(p · ∇α̂(k±))2

and, using item (i),
∣∣(p · ∇)2 ω(k±)

∣∣ ≤ 4C4
|p|2
|k| .

This prove item (iii).



WIGNER FUNCTIONS AND STOCHASTICALLY PERTURBED LATTICE DYNAMICS 29

Item (ii) follows from (iii) if |k| > ε|p|. If |k| ≤ ε|p| we use the bound

ε−1|ω(k + εp/2) − ω(k− εp/2)| ≤ C3ε
−1(|k + εp/2| + |k − εp/2|) ≤ C|p|.

7.1. Proof of (34). First of all we observe that

∑

z∈Z

[Yzψ(y′)∗][Yzψ(y)] = [Yy+1ψ(y′)∗][Yy+1ψ(y)]

+ [Yyψ(y′)∗][Yyψ(y)] + [Yy−1ψ(y′)∗][Yy−1ψ(y)],

(76)

where

Yy+1ψ(y) =
i√
2
(py+1 − py+2), Yyψ(y) =

i√
2
(py+1 − py−1),

Yy−1ψ(y) =
i√
2
(py−2 − py−1).

Then (76) is equal to

(py+1 − py+2)
[
(py+1 − py+2)δy′,y + (py+2 − py)δy′,y+1

+ (py − py+1)δy′,y+2

]
+ (py+1 − py−1)

[
(py − py+1)δy′,y−1

+ (py+1 − py−1)δy′,y + (py−1 − py)δy′,y+1

]
+ (py−2 − py−1)

×
[
(py−1 − py)δy′,y−2 + (py − py−2)δy′,y−1 + (py−2 − py−1)δy′,y

]

= (py+1 − py+2)(py − py+1)δy′,y+2 + (py−2 − py−1)(py−1 − py)δy′,y−2

+ [(py+1 − py+2)(py+2 − py) + (py+1 − py−1)(py−1 − py)] δy′,y+1

+ [(py+1 − py−1)(py − py+1) + (py−2 − py−1)(py − py−2)] δy′,y−1

+
[
(py+1 − py+2)

2 + (py+1 − py−1)
2 + (py−2 − py−1)

2
]
δy′,y

= 2

2∑

r=−2

Ay,rδy′,y+r

(77)

and we can write

1

3
(ε/2)

∑

y,y′,z∈Z

〈
[Yzψ(y′)∗][Yzψ(y)]

〉
ε
J̃(ε(y′ + y)/2, y − y′)∗

=
1

3
(ε/2)

∑

y∈Z

2∑

r=−2

Ay,rJ̃(ε(y + r/2),−r)∗.
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Expanding the Ay,r and identifying terms that differ by translations, we arrive at

1

3
(ε/2)

∑

y,y′,z∈Z

〈
[Yzψ(y′)∗][Yzψ(y)]

〉
ε
J̃(ε(y′ + y)/2, y − y′)∗

=
ε

6

∑

y∈Z

[〈
2pypy+1 − pypy+2 − p2

y

〉
ε
(J̃(εy, 2)∗ + J̃(εy,−2)∗)

+
〈
2pypy+2 − 2p2

y

〉
ε
(J̃(εy, 1)∗ + J̃(εy,−1)∗)

+
〈
− 4pypy+1 − 2pypy+2 + 6p2

y

〉
ε
J̃(εy, 0)∗

]
+ O(ε),

where we have used the smoothness of J̃ in x ∈ R. We can rewrite the last
expression as

(ε/2)
∑

y∈Z

2∑

z,u=−2

α(z, u)
〈
pypy+z

〉
ε
J̃(εy, u)∗ + O(ε),

where α(z, u) = α(z,−u) = α(u, z) = α(−u, z) and is given by

α(0, 0) = 1, α(0, 1) = −1/3, α(0, 2) = −1/6
α(1, 1) = 0, α(1, 2) = 1/6

α(2, 2) = −1/12.
(78)
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