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Abstract

We present a new collocated numerical scheme for the approximation of the Navier-

Stokes and energy equations under the Boussinesq assumption for general grids,

using the velocity-pressure unknowns. This scheme is based on a recent scheme

for the diffusion terms. Stability properties are drawn from particular choices for

the pressure gradient and the non-linear terms. Convergence of the approximate

solutions may be proven mathematically. Numerical results show the accuracy of

the scheme on irregular grids.
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1 Introduction

Finite volume methods have been widely used in computational fluid dynamics

for a long time; they are well adapted to the discretization of partial differen-

tial equations under conservative form; one of their attractive features is that

the resulting discretized equation has a clear physical interpretation [9]. In

the framework of incompressible fluid flows, two strategies are often opposed,

namely staggered and collocated schemes. The staggered strategy, which has

become very popular since Patankar’s book [9], remains mainly restricted to

geometrical domains with parallel and orthogonal boundary faces. Therefore,

for computations on complex domains with general meshes, the collocated

strategy which consists in approximating all unknowns on the same set of

points (called collocation points but also cell centers or simply centers), is of-

ten preferred, even though the pressure-velocity coupling demands some cure

for the stabilization of the well-known checkerboard pressure modes; to this

purpose, various pressure stabilization procedures, based on improvements of

the Momentum Interpolation Method proposed by Rhie and Chow [10], are

frequently used [8].

In [3,11], a collocated finite volume scheme for incompressible flows is devel-

oped on so called “admissible” unstructured meshes, that are meshes satisfy-

ing the two following conditions: the straight line joining the centers of two

adjacent control volumes is perpendicular to the common edge, and the neigh-

boring control volumes and the associated centers are arranged in the same

order, with respect to the common edge. Rectangular or orthogonal paral-
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lelepipedic meshes, triangular (2D) or tetrahedral (3D) Delaunay meshes, and

Voronoi meshes fulfill these requirements. Under this assumption, the isotropic

diffusion fluxes can be consistently approximated by a two-point finite differ-

ence scheme. Using this approximation for a pure diffusion problem yields a

symmetric “M-matrix” (which ensures monotony); the stencil is limited to

the control volume itself and its natural neighbors and it leads to the classical

5- and 7-point schemes on rectangles and orthogonal parallelepipeds. Unfor-

tunately, although the use of such grids considerably widens the variety of

geometric shapes which can be gridded, it is far from solving all the critical

needs resulting from actual problems:

• For complex 3D domains, it is well known that the use of a large number of

flat tetrahedra produces high discretization errors; generalized hexahedric

meshes are often preferred: these are made of 3D elevations of quadrangular

meshes, for which the faces of the control volumes may no longer be planar.

• To our knowledge, there is yet no mesh software able to grid any geometrical

shape in 3D using Voronoi or Delaunay tessellations while respecting the

boundaries and the local refinement requirements.

• In compressible flows, the approximation of the full tensor by the usual two

point scheme is no longer consistent even on admissible meshes; multi-point

approximations are therefore required.

• Boundary layers are classically meshed with refined grids, so that the dis-

cretization scheme should be able to deal with non-conforming meshes.

Whereas there is no real difficulty to discretize the convective terms for general

non-conforming grids, writing accurate diffusion approximations, particularly

relevant for low Reynolds (Péclet) flows, is still a challenge on such meshes.

In the early 80’s, Kershaw [7] first proposed a nine-point scheme on structured
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quadrilateral grids by using the restrictive assumption of a smooth mapping

between the logical mesh and the spatial coordinates. Since then, numerous

works have been published to efficiently solve the diffusion equations in general

geometry (see [1] for a review of recent papers). The drawbacks of the actual

schemes for diffusion are often linked with one or several of these key points:

• a non-local stencil (quite dense matrices);

• cell-centered but also face-centered unknowns (large matrices);

• non-symmetric definite positive matrices (loss of the energy balance);

• loss of the convergence or of the accuracy on some particular grids;

• loss of monotony for solutions in purely diffusive problems (the resulting

matrix is not an “M-matrix”).

We focus in this paper on the approximation of the Navier-Stokes and energy

equations under the Boussinesq assumption, using a new scheme for diffusion

terms. This scheme is shown to provide a cell-centered approximation with

a quite reduced stencil, leading to symmetric definite positive matrices and

allowing a mathematical proof of convergence. Although the diffusion matrix

may not be shown to be an M-matrix in the general case, the maximum prin-

ciple is nevertheless preserved in our numerical three-dimensional simulations.

In this scheme, the discrete pressure gradient and the non-linear contributions

are approximated so that the discrete kinetic and energy balances mimic their

continuous counterparts. Indeed, the pressure gradient is chosen as the dual

operator of the discrete divergence, and the discretization is such that there is

no contribution of the non-linear velocity transport in the increase of kinetic

energy. In order to suppress the pressure checkerboard modes, the mass bal-

ance is stabilized by a pressure term which only redistributes the fluid mass

within subsets of control volumes, the characteristic size of which is two or
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three times the local mesh size.

The remainder of this paper is divided into four sections. In Section 2, the con-

tinuous formulation is presented in the framework of free convection. Section 3

presents the discrete scheme for general non-conforming meshes, with illustra-

tions in the simplified case of uniform rectangular grids, and some mathemat-

ical properties. The fourth section is devoted to the numerical validation, first

with analytical solutions and then with a classical natural convection problem.

2 Continuous formulation

Let d be the dimension of the space (d = 2 or 3) and let Ω ⊂ R
d be an

open polygonal connected domain. For x ∈ Ω, our aim is to compute an

approximation of the velocity u(x) =
∑d

i=1 u
(i)(x)ei, the pressure p(x) and

the temperature T (x), solution of the steady and dimensionless Navier-Stokes

and energy equations under the Boussinesq approximation:

−Pr∆u + ∇p + (u · ∇)u − RaPrTe3 = f (x) in Ω, (1a)

−∆T + (u · ∇)T = g(x) in Ω, (1b)

divu = 0 in Ω, (1c)

where e3 indicates the vertical upward direction, f (x) =
∑d

i=1 f
(i)(x)ei and

g(x) are dimensionless regular functions modeling source or sink in the mo-

mentum or heat balances; Pr and Ra denote the Prandtl and Rayleigh num-

bers respectively. We consider the case of the homogeneous Dirichlet boundary

conditions for the velocity and of the mixed Dirichlet-Neumann boundary con-
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ditions for the temperature. These boundary conditions read as follows:






u(x) = 0 x ∈ Γ,

T (x) = Tb(x) x ∈ Γ1,

−∇T (x) · n(x) = qb(x) x ∈ Γ2,

(2)

where Γ1,Γ2 are subsets of the boundary Γ of the domain Ω such that Γ1 ∩

Γ2 = ∅ and Γ1 ∪ Γ2 = Γ, and n(x) is the outward unit normal vector to the

boundary. We assume that Tb is the trace on Γ1 of a function again denoted

Tb such that Tb ∈ H1(Ω), and we define the functional space H1
Γ1,0(Ω) = {T ∈

H1(Ω);T (x) = 0 on Γ1}. Then a weak formulation of equations (1a-1c) with

boundary conditions (2) reads:

Find u ∈ H1
0 (Ω)d, p ∈ L2(Ω) with

∫
Ω p(x)dx = 0, and T with T − Tb ∈

H1
Γ1,0(Ω) such that

Pr
∫

Ω
∇u : ∇vdx −

∫

Ω
p divvdx +

∫

Ω
div(u ⊗ u) · vdx

−Ra Pr
∫

Ω
Te3 · vdx =

∫

Ω
f (x) · vdx, ∀v ∈ H1

0 (Ω)d,

(3a)

∫

Ω
∇T · ∇θdx +

∫

Ω
div(uT )θdx

=
∫

Ω
g(x)θdx −

∫

Γ2

qb(x)θ(x)dx, ∀θ ∈ H1
Γ1,0(Ω).

(3b)

divu(x) = 0 for a.e. x ∈ Ω, (3c)

Although our discretization scheme belongs to the finite volume family, we

shall also be using the weak form (3a-3c) in our discretization. Indeed, the dis-

cretization of the diffusive terms −Pr∆u in (1a) and −∆T in (1b) is obtained
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by the construction of a discrete gradient which is then used to approximate

the term Pr
∫
Ω ∇u : ∇vdx in (3a) and

∫
Ω ∇T · ∇θdx in (3b).

3 Numerical scheme

In this section we present the discretization scheme for Problem (1)-(2) under

its weak form (3). The next paragraph is devoted to the notations for general

discretization meshes and to the description of the discrete degrees of free-

dom. We then describe the approximation of the diffusive terms (Sec. 3.2).

Because of the collocated choice of the unknowns, a stabilization is needed.

The stabilization we choose is imposed on the mass flux (rather than the over-

all balance) and also appears in the momentum and energy equations through

the convective contributions: this is described in Section 3.3. It also involves

the choice of some coefficients which are defined in Section 3.4. The complete

discrete problem is finally given in Section 3.5, and some of its mathematical

properties sketched in Section 3.6.

3.1 Mesh and discrete spaces

We denote by D = (M, E ,P) a space discretization, where (see Fig. 1):

• M is a finite family of “control volumes”, i.e. non empty connected open

disjoint subsets of Ω such that Ω = ∪K∈MK. For any control volume K ∈

M, we denote by ∂K = K \K its boundary, mK > 0 its measure (area if

d = 2, volume if d = 3) and hK its diameter (that is the largest distance

between any two points of K).

• E is a finite family “edges” (d = 2) or “faces” (d = 3) of the mesh; these are
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assumed to be non empty open disjoint subsets of Ω, which are included in

a straight line if d = 2 or in a plane if d = 3, and with non zero measure.

We assume that, for all K ∈ M, there exists a subset EK of E such that

∂K = ∪σ∈EK
σ. The set E is assumed to be partitioned into external and

interior edges (d = 2) or faces (d = 3): E = Eint ∪ Eext, with σ ⊂ ∂Ω for any

σ ∈ Eext and σ ⊂ Ω \ ∂Ω for any σ ∈ Eint. Any boundary edge σ is assumed

to belong to a set EK for one and only one K ∈ M; any interior edge σ

is assumed to belong to exactly two sets EK and EL with K 6= L, and in

this case σ is included in the common boundary of K and L, denoted K/L.

Note that there are cases in which K/L includes two or more edges or faces,

see for instance the third mesh for the unit cube, section 4.1, and Figure

5b. We also assume that, if σ ∈ Eext, then either σ ⊂ Γ1 or σ ⊂ Γ2. For all

σ ∈ E , we denote by xσ and mσ the barycenter and the measure of σ. For

all K ∈ M and σ ∈ EK , we denote by nK,σ the unit vector normal to σ

outward to K.

• P is a family of collocation points P = (xK)K∈M of Ω which is chosen such

that for all K ∈ M and for all x ∈ K, the property [xK ,x] ⊂ K holds.

Note that this choice is possible for quite general polygons, including those

with re-entrant corners, see Fig. 1. The Euclidean distance dK,σ between xK

and the hyperplane including σ is thus positive. We also denote by CK,σ the

cone with vertex xK and basis σ.

Next, for any σ ∈ Eint, we choose some real coefficients (βL
σ )L∈M such that the

barycenter xσ of σ is expressed by

xσ =
∑

L∈M

βL
σ xL,

∑

L∈M

βL
σ = 1. (4)
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In three space dimensions, it is always possible to restrict the number of

nonzero coefficients βL
σ to four (in practice, the scheme has been shown to

be robust with respect to the choice of these four control volumes, taken close

enough to the considered edge).

Note that in the case of an uniform rectangular grid which is depicted in

Figure 2, an obvious choice for the coefficients βL
σ is obtained by noticing

that xi+1/2,j = (xi,j +xi+1,j)/2 and xi,j+1/2 = (xi,j +xi,j+1)/2. Thus for any

edge σ, only two coefficients βL
σ need to be nonzero.

We now define the finite dimensional space R
M × R

E (where an element v ∈

R
M × R

E is defined by the family of real values ((vK)K∈M, (vσ)σ∈E)) and the

following subspaces:

• XD =
{
u ∈ R

M × R
E , ∀σ ∈ Eint, uσ =

∑
L∈M βL

σ uL

}
(the dimension of XD

is the number of control volumes plus that of boundary edges),

• XD
0 =

{
u ∈ XD, ∀σ ∈ Eext, uσ = 0

}
(the dimension of XD

0 is the number of

control volumes),

• XD
Γ1,0 =

{
θ ∈ XD, ∀σ ∈ Eext ∩ Γ1, θσ = 0

}
(the dimension of XD

Γ1,0 is the

number of control volumes plus that of boundary edges on Γ2).

3.2 Discretization of diffusive terms

Let us first define a discrete gradient for the elements of XD on cell K ∈ M.

We set, for any u ∈ XD and K ∈ M:

∇Ku =
1

mK

∑

σ∈EK

mσ(uσ − uK)nK,σ. (5)

Note that this is a centered gradient.
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As an illustration, consider the case of the two dimensional uniform rect-

angular grid depicted in Fig. 2, let u ∈ XD, and choose the natural choice

βL
σ = 1/2 if σ is a side of L and 0 otherwise. Then with the (natural)

notations of Fig. 2, one has:

∇Ki,j
u =




1

2hx
(ui+1,j − ui−1,j)

1

2hy
(ui,j+1 − ui,j−1)




;

if we apply this formula to the element 1Ki,j
∈ XD with all of components

equal to zero except for the one associated with Ki,j which is equal to 1, we

get that the vector ∇L1Ki,j
is zero for all control volumes L except those

neighboring Ki,j, as shown on Fig. 3a. Considering the checkerboard so-

lutions on uniform rectangular grids, the above expression shows that this

discrete gradient may vanish for some non-constant functions.

An approximation of the diffusive terms Pr
∫
Ω ∇u : ∇vdx in (3a) and

∫
Ω ∇T ·

∇θdx in (3b) using this discrete gradient (5) would yield a non-coercive form.

Thus, we shall work with a modified gradient, defined in (6)-(7) below.

To this end, for all σ ∈ EK we first define RK,σu ∈ R which may be seen as a

consistency error on the normal flux, by:

RK,σu =

√
d

dK,σ

(uσ − uK − ∇Ku · (xσ − xK)) .

One may note that RK,σu = 0 if uK and uσ are the exact values of a linear

function at points xK and xσ, for allK and σ ∈ EK . We then give the following

expression for a stabilized discrete gradient of u ∈ XD in each cone CK,σ:

∇K,σu = ∇Ku+RK,σunK,σ. (6)
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In the case of the uniform rectangular grid given in Fig. 2 and for K = Ki,j

and σ = σi+1/2,j, we find:

RKi,j ,σi+1/2,j
=

√
2

2hx

(ui+1,j + ui−1,j − 2ui,j).

The stabilized discrete gradient (6) applied to the above defined element 1Ki,j

of XD provides nonzero contributions on the triangular subcells CK,σ of the

cell Ki,j and of its neighbors (Fig. 3b).

The global discrete gradient is chosen as the function ∇Du:

∇Du(x) = ∇K,σu, for a.e. x ∈ CK,σ, ∀K ∈ M, ∀σ ∈ EK . (7)

We then plan to approximate the term
∫
Ω ∇u(x) · ∇v(x)dx by:

∫

Ω
∇Du(x) ·∇Dv(x)dx =

∑

K∈M

∑

σ∈EK

mσdK,σ

d
∇K,σu ·∇K,σv, ∀u, v ∈ XD. (8)

In fact, it is shown in [4,5] that this expression defines a symmetric inner prod-

uct on XD, and provides a good approximation for
∫
Ω ∇u(x) ·∇v(x)dx; this

approximation may be seen as a low degree discontinuous Galerkin method.

If one seeks a finite volume interpretation of this scheme, it is possible, ex-

pressing uσ and vσ for all σ ∈ Eint thanks to the relations (4), to show that

∫

Ω
∇Du(x) · ∇Dv(x)dx =

∑

K∈M




∑

L∈NK

FK,L(u)vK +
∑

σ∈EK∩Eext

FK,σ(u)(vK − vσ)



 ,

(9)

where for anyK ∈ M, NK is the subset of cells playing a part in the barycenter

expression of xσ, for all edges of the cell K and of the neighbors of K, i.e.

NK = {M ∈ M; βM
σ′ 6= 0, ∀σ′ ∈ EL, ∀L ∈ Mσ, ∀σ ∈ EK}; FK,L(u) is a linear

function of the unknowns (uL)L∈M which is such that FK,L(u) = −FL,K(u).

In the general case, the expression of FK,L(u) is rather complicated (see [5]).
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In the case of the uniform rectangular grid of Fig. 3, this expression simpli-

fies into the usual two point flux; for instance, the flux from Ki,j to Ki+1,j

reads:

FKi,j ,Ki+1,j
(u) = hy

ui,j − ui+1,j

hx
.

More generally, a two point flux is also obtained in the two or three di-

mensional non uniform rectangular cases. Indeed, locating xK at the cen-

ter of gravity of the cell K, the relation (xσ − xK)/dK,σ = nK,σ holds.

It is then possible to write xσ = (dL,σxK + dK,σxL)/(dL,σ + dK,σ) and

uσ(v) = (dL,σuK + dK,σuL)/(dL,σ + dK,σ) for all σ such that σ ⊂ K/L,

and for all u ∈ XD. Using the identity

∑

σ∈EK

mσ(xσ − xK)nt
K,σ = mKI

where t designates the transposition and I the identity matrix, we obtain [5,

Lemma 2.1]:

∫

Ω
∇Du(x) · ∇Dv(x)dx =

∑

σ∈Eint,σ⊂K/L

mσ

dK,σ + dL,σ
(uL − uK)(vL − vK)

+
∑

σ∈Eext∩EK

mσ

dK,σ
(uσ − uK)(vσ − vK).

Then the previous relation leads to define NK as simply the set of the natural

neighbors of K, and to define the fluxes by the natural two-point difference

scheme, in the same manner as in [3,11]:

FK,L(u) =
mσ

dK,σ + dL,σ

(uK − uL) for σ ∈ Eint, σ ⊂ K/L

FK,σ(u) =
mσ

dK,σ

(uK − uσ) for σ ∈ Eext ∩ EK .

(10)

The classical and cheap 5- and 7-point schemes on rectangular or orthogonal

parallelepipedic meshes is then recovered. An advantage can then be taken
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from this property, by using meshes which consist in orthogonal parallelepi-

pedic control volumes in the main part of the interior of the domain, as

illustrated by the cone-shaped cavity (Fig. 5c) in Section 4.1.

Note that the approximation of − ∫K ∆udx is obtained by letting vK = 1,

vL = 0 for L 6= K and vσ = 0 for σ ∈ Eext in (9):

−
∫

K
∆udx ≃

∑

L∈NK

FK,L(u) +
∑

σ∈EK∩Eext

FK,σ(u),

so that we may define an approximate Laplace operator ∆D by the constant

values ∆Ku on the cells K:

−∆Ku =
1

mK




∑

L∈NK

FK,L(u) +
∑

σ∈EK∩Eext

FK,σ(u)



 . (11)

In the case of the uniform rectangular grid of Fig. 3, this discrete Laplacian

leads to the usual five point formula:

−∆Ki,j
u =

1

hx
2 (2ui,j − ui+1,j − ui−1,j) +

1

hy
2 (2ui,j − ui,j+1 − ui,j−1) .

In the general case, the stencil of the discrete operator on cell K is defined by

NK (see relation (11)) and therefore depends on the way the barycenters xσ

are computed. For general grids, the equation for a given cell usually concerns

the unknowns associated to itself, its neighbors, the neighbors of its neighbors

and possibly some additional adjacent cells. The resulting matrix is usually not

an “M-matrix”, except on particular meshes such as conforming orthogonal

parallelepipeds, in which case we obtain the usual two point flux scheme, as

previously pointed out.

13



3.3 Pressure-velocity coupling, mass balance and convective contributions

For all u ∈ (XD
0 )d, we define a discrete divergence operator by:

divKu =
1

mK

∑

σ∈EK

mσuσ · nK,σ, ∀K ∈ M. (12)

where uσ =
∑d

i=1 u
(i)
σ ei. Notice that

divKu =
d∑

i=1

(∇Ku
(i))(i),

with ∇Ku
(i) defined by (5).

In the case of the uniform rectangular mesh of Fig. 2, this operator reads:

divKi,j
u =

1

2hx

(
u

(1)
i+1,j − u

(1)
i−1,j

)
+

1

2hy

(
u

(2)
i,j+1 − u

(2)
i,j−1

)
.

We then define the function divDu by the relation

divDu(x) = divKu, for a.e. x ∈ K, ∀K ∈ M.

The discrete gradient operator used for the pressure gradient is defined as the

dual of this divergence operator. More precisely, we mimic at the discrete level

the (formal) equality
∫
Ω p divv dx = − ∫Ω ∇p · v dx. The discrete equivalent

of
∫
Ω p divv dx reads

∑
L∈MmL pL divLv with v ∈ (XD)d and p ∈ XD; we

then define the discrete pressure gradient which we denote ∇̂Kp (on cell K) ,

such that

∑

L∈M

mL∇̂Lp · vL = −
∑

L∈M

mLpLdivLv, ∀ v ∈ (XD)d.
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¿From the definition of the divergence (12) and ofXD, we thus seek (∇̂Lp)L∈M

such that:

∑

L∈M

mL∇̂Lp · vL = −
∑

L∈M

pL

∑

σ∈EL∩Eint

mσ

∑

M∈M

βM
σ vM · nL,σ. (13)

Taking for v the element of (XD)d with components v
(j)
L = 1 if j = i and

L = K, and 0 otherwise , we thus get:

mK∇̂Kp = −
∑

L∈M

pL

∑

σ∈EL∩Eint

mσβ
K
σ nL,σ

=
∑

σ∈Eint,σ⊂L/M

mσβ
K
σ (pM − pL)nL,σ. (14)

Remark that ∇̂Kp is neither constructed with the discrete gradient (5) nor

with the stabilized one (6); its expression is the dual form of the divergence

(12).

In the case of non uniform rectangles (d = 2) or parallelepipeds (d = 3)

with collocated points at the gravity center of the cells, and for all σ ∈ Eint

with σ ⊂ K/L, we only need two non-zero coefficients βM
σ : βK

σ =
dL,σ

dK,σ+dL,σ

and βL
σ =

dK,σ

dK,σ+dL,σ
. Therefore, relation (14) reduces to

mK∇̂Kp =
∑

σ∈EK ,σ⊂K/L

mσ
dL,σ

dK,σ + dL,σ

(pL − pK)nK,σ.

Using pK
∑

σ∈EK
mσnK,σ = 0,

mK∇̂Kp =
∑

σ∈EK ,σ⊂K/L

mσ
dL,σpL + dK,σpK

dK,σ + dL,σ
nK,σ +

∑

σ∈EK∩Eext

mσpKnK,σ

For a uniform grid and a control volume without boundary faces, the above

expression resumes to

mK∇̂Kp =
∑

σ∈EK ,σ⊂K/L

mσ
pL + pK

2
nK,σ,
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which provides, in the particular case of Figure 2, the usual formulation

hxhy∇̂Kp = hy
pi+1,j − pi−1,j

2
+ hx

pi,j+1 − pi,j−1

2
.

As recalled in the introduction of this paper, a pressure stabilization method

is implemented in the mass conservation equation in order to prevent from

oscillations of the pressure, as for instance in [2] in the finite element setting,

[8,10] in the finite volume setting. The originality of our approach is that we

directly include the stabilizing diffusive pressure flux in the approximated mass

flux, so that it will appear not only (as usual) in the mass equation, but also

in the momentum equation through the non-linear convective term. From the

mathematical point of view, this helps in obtaining simple estimates on the

velocity and pressure, but more importantly, it ensures that the contribution

of the discrete non-linear convective term to the kinetic (and thermal) energy

balance is zero, just as in the continuous case. Let us define the stabilized

mass flux across σ ⊂ K/L by

Φλ
K,σ(u, p) = mσ (uσ · nK,σ + λσ(pK − pL)) , (15)

where (λσ)σ∈Eint
is a given family of positive real numbers, the choice of which

is discussed below. Note that the quantity λσ(pK − pL) may be seen as a

numerical pressure diffusion flux, and that the overall numerical flux remains

conservative, that is, if σ ⊂ K/L then Φλ
K,σ(u, p) + Φλ

L,σ(u, p) = 0.

In the case of the uniform rectangular mesh of Fig. 2, the expression of this

flux through a vertical edge σi+1/2,j reads:

Φλ
Ki,j ,σi+1/2,j

u =
hy

2

(
u

(1)
i+1,j + u

(1)
i,j

)
+ hyλi+1/2,j(pi,j − pi+1,j).
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We then use the modified flux, in order to define a stabilized centered transport

operator which is defined, for all u ∈ (XD
0 )d, w ∈ XD and K ∈ M, by

divλ
K(w,u, p) =

1

mK

∑

σ∈EK ,σ⊂K/L

Φλ
K,σ(u, p)

wK + wL

2
.

An interesting remark is that, in the case where the mass balance equation in

the control volume K is satisfied, that is:

divλ
K(1,u, p) =

1

mK

∑

σ∈EK∩Eint

Φλ
K,σ(u, p) = 0,

then

∑

σ∈EK∩Eint

Φλ
K,σ(u, p)wK = 0,

so that the following relation also holds:

divλ
K(w,u, p) =

1

mK

∑

σ∈EK ,σ⊂K/L

Φλ
K,σ(u, p)

wL − wK

2
.

We shall use this latter form in the practical implementation, in particular

in the discretization of the non-linear convection term. Indeed, it is more

efficient when computing the Jacobian matrix of the momentum equation,

since it avoids summing up values of the same amplitude.

In the particular case of the uniform rectangular grid of Fig. 2, the sum-

mation
∑

σ∈EK ,σ⊂K/L involves the four edges between the control volume

K = Ki,j and its neighbors L = Ki+1,j, Ki−1,j, Ki,j+1, Ki,j−1. If L = Ki−1,j

the expression which appears in the summation reads:

hy



−u
(1)
i,j + u

(1)
i−1,j

2
+ λi−1/2,j(pi,j − pi−1,j)



 wi,j + wi−1,j

2
.
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When the local grid Reynolds (or Péclet) number is much larger than 1, an

upwind scheme must be applied that consists in substituting divλ
K(w,u, p) by

divλ,up
K (w,u, p) =

1

mK

∑

σ∈EK ,σ⊂K/L

(
max(Φλ

K,σ(u, p), 0)wK + min(Φλ
K,σ(u, p), 0)wL

)
.

In both the centered or upwind cases, the functions divλ
D(w,u, p) and divλ,up

D (w,u, p)

are defined by their constant values in each control volume. For u,w ∈ (XD
0 )d,

we also define the centered vector divergence operator divλ
D(w,u, p) such

that the i-th component of divλ
D(w,u, p) is equal to divλ

D(w(i),u, p), for i =

1, . . . , d; a similar expression applies for the upwind vector divergence operator

div
λ,up
D (w,u, p).

3.4 Choice for the parameters (λσ)σ∈Eint

Different strategies can be applied to define the parameters (λσ)σ∈Eint
. Amongst

all of them we applied the ”cluster stabilization method” [3,11]; it consists in

constructing a partition of M, denoted G, and setting λσ = λ > 0 if there

exists G ∈ G (such G ⊂ M is called a cluster) with σ ⊂ K/L, K and L

belonging to G, and λσ = 0 otherwise. Here is an example of an algorithm

creating a cluster partition:

(1) for all cells K ∈ M, initialize a new cluster if K and its neighboring cells

do not already belong to a cluster;

(2) for any remaining isolated cell L, connect it to the closest cluster having

the largest number of common edges with L.
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This algorithm is now applied to the mesh of figure (4a), the cells being de-

scribed from left to right, from the lower to the upper row. Figures (4b) and

(4c) illustrate the first cluster and the set of the clusters at the end of the first

step of the algorithm. Figure 4d shows the clusters after the isolated (unnum-

bered) cells of figure 4c have been connected. The choice of the value λ depends

on the physical problem and it must be chosen both large to avoid the ap-

pearance of spurious modes and small to preserve an accurate approximation

of the mass equation. In [11], comparisons with other stabilization methods

were performed and the results showed that solutions are little sensitive to

the value of λ. For the natural convection example presented in section 4.2,

λ = 10−8.

3.5 Resulting discrete equations

We denote by Tb,D the element T ∈ XD such that TK = 0 for all K ∈ M,

Tσ = 0 for all σ ∈ Eint and all σ ∈ Eext with σ ⊂ Γ2, and, for all σ ∈ Eext with

σ ⊂ Γ1,

Tσ =
1

mσ

∫

σ
Tb(x)ds(x). (16)

Let HM(Ω) ⊂ L2(Ω) denote the set of functions which are constant in each

K ∈ M; for any function q ∈ HM(Ω), we shall denote by qK its constant

value on K ∈ M. We then define the mapping PM : XD → HM(Ω) by

v ∈ XD 7→ PMv with PMv(x) = vK for a.e. x ∈ K and all K ∈ M. We also

define the mapping PE : XD → L2(Γ) by v ∈ XD 7→ PEv with PEv(x) = vσ

for a.e. x ∈ σ and all σ ∈ Eext.

Let us then use the previously defined discrete operators to formulate a discrete

approximation to problem (3):
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Find u = (u(i))i=1,d ∈ (XD
0 )d, p ∈ HM(Ω) with

∫
Ω p(x)dx =

∑
K∈M mKpK = 0

and T − Tb,D ∈ XD
Γ1,0 such that:

Pr
∫

Ω
∇Du : ∇Dv dx −

∫

Ω
p divDv dx +

∫

Ω
divλ

D(u,u, p) · PMv dx

−Ra Pr
∫

Ω
PMT e3 · PMv dx =

∫

Ω
f · PMv dx, ∀v ∈ (XD

0 )d,

(17)

∫

Ω
∇DT · ∇Dθ dx +

∫

Ω
divλ

D(T,u, p)PMθ dx

=
∫

Ω
g PMθ dx −

∫

Γ2

qbPEθ ds, ∀θ ∈ XD
Γ1,0,

(18)

divλ
D(1,u, p) = 0 a.e. in Ω. (19)

We then deduce from (17) the d discrete momentum balances over the control

volume K, letting v(i) = 1 in K, and 0 otherwise; these equations read, in

vector form:

−Pr mK∆Ku +
∑

σ∈Eint,σ⊂M/L

mσβ
K
σ (pM − pL) nL,σ

+
∑

σ∈EK ,σ⊂K/L

Φλ
K,σ(u, p)

uK + uL

2
− Ra Pr mKTKe3 =

∫

K
f dx

(20)

(where −∆Ku is the vector valued discrete Laplace operator defined by (11)

for each of its components). Similarly, we deduce from (18) the discrete energy

balance over the control volume K, letting θ = 1 in K, and 0 otherwise; this

equation reads:

−mK∆KT +
∑

σ∈EK ,σ⊂K/L

Φλ
K,σ(u, p)

TK + TL

2
=
∫

K
gdx. (21)
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Recall that, for all K ∈ M, and all σ ∈ EK such that σ ⊂ Γ1, the Dirichlet

boundary condition (16) is given. We deduce from (18) the relation imposed

by the Neumann boundary condition for the thermal flux, letting θσ = 1 and

0 otherwise, for some σ ∈ EK with σ ⊂ Γ2:

FK,σ(T ) =
∫

σ
qb(x)ds(x). (22)

Note that the above relation is natural, accounting for the fact that FK,σ(T )

approximates the heat flux at the edge σ. Finally, we write (19) in a given

control volume K:

∑

σ∈EK∩Eint

Φλ
K,σ(u, p) = 0. (23)

The stencil of the scheme (20-23) is always determined by that of the diffusion

operator.

As previously mentioned, in the case of orthogonal quadrilateral or par-

allelepiped grids, the diffusion flux through an edge σ gives the classical

two-point difference scheme (10) and the barycenter coordinates are simply

calculated by an arithmetic average, xσ = (dL,σxK + dK,σxL)/(dL,σ + dK,σ).

Hence, in this case, equations (20)-(23) then read, for a given K ∈ M:

Q
(K)
∆u + Q

(K)
∇p + Q

(K)
u·∇u + Q

(K)
T =

∫

K
f dx,

E
(K)
∆T + E

(K)
u·∇T =

∫

K
gdx,

M
(K)
divu = 0,
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with:

Q
(K)
∆u = Pr




∑

σ∈EK ,σ⊂K/L

mσ
uL − uK

dK,σ + dL,σ

+
∑

σ∈EK∩Eext

mσ
0 − uK

dK,σ





Q
(K)
∇p =

∑

σ∈EK ,σ⊂K/L

mσ
dL,σ

dK,σ + dL,σ
(pL − pK)nK,σ

Q
(K)
u·∇u =

∑

σ∈EK ,σ⊂K/L

mσ

(
dL,σuK + dK,σuL

dK,σ + dL,σ
· nK,σ + λσ(pK − pL)

)
uK + uL

2

Q
(K)
T = −Ra Pr mKTKe3,

E
(K)
∆T =

∑

σ∈EK ,σ⊂K/L

mσ
TL − TK

dK,σ + dL,σ
+

∑

σ∈EK∩Eext

mσ
Tσ − TK

dK,σ

E
(K)
u·∇T =

∑

σ∈EK ,σ⊂K/L

mσ

(
dL,σuK + dK,σuL

dK,σ + dL,σ
· nK,σ + λσ(pK − pL)

)
TK + TL

2
,

M
(K)
divu =

∑

σ∈EK ,σ⊂K/L

mσ

(
nK,σ

dL,σuK + dK,σuL

dK,σ + dL,σ
+ λσ(pK − pL)

)
,

and with the Dirichlet boundary (16) applied to σ ⊂ Γ1 and the Neu-

mann boundary condition on σ ⊂ Γ2 being reduced to mσ(Tσ − TK)/dK,σ =

− ∫σ qb(x)ds(x).

3.6 Some mathematical properties

The system of discrete equations (20-23) is a system of non-linear equations.

The mathematical proof of the existence of at least one solution can be shown

in the particular case Tb = 0 and qb = 0, which we consider in this section.

Indeed, in this case, we can show some a priori bounds on T and u. We first

let θ = T in (18). Using the relation

∫

Ω
divλ

D(T,u, p) PMT dx = 0,
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which results from (19), we get

‖∇DT‖2
L2(Ω)d =

∫

Ω
g PMT dx.

Thanks to a discrete Poincaré inequality which follows from [5, Lemma 5.3],

we get that there exists CT , only depending on the regularity of the mesh and

on g, but not on the size of the mesh, such that

‖∇DT‖L2(Ω)d ≤ CT .

We then let v = u in (17). We get, thanks to (15) and (19),

Pr‖∇Du‖2
(L2(Ω)d)d +

∑

σ∈Eint,σ⊂K/L

mσλσ(pL − pK)2

=
∫

Ω
(f + Ra Pr PMTe3) · PMu dx.

Again using the Poincaré inequality, we conclude that there exists Cu, only

depending on the regularity of the mesh, on Ra, Pr, f and g, but not on the

size of the mesh, such that

‖∇Du‖(L2(Ω)d)d ≤ Cu.

Hence, using the topological degree method, we can prove the existence of

at least one solution. Moreover, these inequalities are then sufficient to get

compactness properties, which show that, from a sequence of discrete solutions

with the space step tending to zero, we can extract a converging subsequence,

for suitable norms. Then we can prove that the limit of this subsequence has a

sufficient regularity, in relation with the weak sense provided by (3). It is then

possible to pass to the limit on (18), (17) and (19), using test functions which

are interpolation of regular ones. We then get that the limit of the converging

subsequence satisfies (3).
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4 Numerical validation

Numerical implementation is performed for three dimensional domains. We

first validate our results on known analytical solutions which allow us to com-

pute the scheme’s order of convergence. We then turn to a natural convection

case which is referenced in the literature.

The domains considered are either the unit cube or a circular centered cone.

In both cases, we use structured (rectangular and non rectangular) meshes,

and we denote by N the number of cells in each of the three space directions.

The set of non-linear equations (20-23) is solved by an under-relaxed Newton

method where the unknowns are the velocity uK , the pressure pK and the

temperature TK and Tσ for all K ∈ M and σ ∈ Eext ∩Γ2. The solutions of the

linear systems are computed with a parallel Generalized Minimal RESidual

method provided by the scalable linear solvers package HYPRE with a pre-

conditioning based on the block Jacobi iLU factorization carried out by the

Euclid library [6].

4.1 Analytical solutions

We consider two closed cavities, cubic or cone-shaped, in which the fluid flow

and the heat transfer are known a priori. Let pref , uref and Tref be some known

pressure, divergence free velocity and temperature fields; we then compute f

and g by Eqs. (1a,1b) where we have set u ≡ uref , p ≡ pref and T ≡ Tref .

For any regular function ψ (ψ = (u(i), i = 1, · · · , 3, p or T ), the scheme’s
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relative accuracy for the usual L∞, L2 and H1 norms is measured by

ǫ∞(ψ) =
maxK∈M |ψK − ψref(xK)|

maxK∈M |ψref(xK)| ,

ǫ2(ψ) =

(∑
K∈M mK(ψK − ψref(xK))2

∑
K∈M mK(ψref(xK))2

)1/2

,

ǫH1
(ψ) =

(∑
K∈M mK |∇Kψ − ∇ψref(xK)|2
∑

K∈M mK |∇ψref(xK)|2
)1/2

,

(24)

where | · | denotes the usual Euclidean inner product in R
3. For each of the

above relative error, the scheme’s order of convergence is defined by the mean

slope of the logarithm of the relative error as a function of the logarithm of

the largest cell diameter maxK∈M hK , the slope being calculated by a least

square method.

Three different meshes are studied for the unit cubic enclosure. Except for the

last mesh, the points xK are located at the gravity center of the cells.

(1) The first mesh is an uniform mesh consisting of orthogonal parallelepipeds

of size 1/N3.

(2) The second one (Fig. 5a) is constructed by a smooth mapping between the

uniform mesh and the spatial coordinates [1]. The vertices xs(i, j, k) =
(
x(l)

s (i, j, k)
)

l=1,··· ,3
of the elementary distorted cubes are defined by:

∀(i, j, k) ∈ N([1, n1 + 1]) ×N([1, n2 + 1]) ×N([1, n3 + 1]),

x(1)
s (i, j, k) = 1 − cos

(
π(i− 1)

2N

)

x(2)
s (i, j, k) =

(j − 1)

N
+ 0.1 sin

(
2π(j − 1)

N

)
sin

(
2π(k − 1)

N

)

x(3)
s (i, j, k) =

(k − 1)

N
+ 0.1 sin

(
2π(j − 1)

N

)
sin

(
2π(k − 1)

N

)
.

(3) The third mesh (Fig. 5b) is constructed from the first one in the follow-
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ing way: the points xK remains at the gravity centers of the basic mesh

whereas the vertices xs of the cells are randomly displaced in each space

direction at most of 0.45/N . Unlike the previous mesh, which consists in

hexahedra with plane faces, the four edges of a face are now not included

in a same plane, with the exception of edges which belong to the bound-

aries of the cubic domain. Since the consistency of the discrete gradient

defined in (5) (and therefore of that defined in (7)) holds if the faces σ

are plane, we replace each of the non planar faces by two triangular faces.

The second enclosure, the cone-shaped cavity, is bounded by the lateral surface

((x(1) − 0.5)2 + (x(2) − 0.5)2 = ((6 − 5x(3))/12)2 for x(3) ∈ [0, 1] and by two

plane discs (x(1) − 0.5)2 + (x(2) − 0.5)2 ≤ 1/4 for x(3) = 0 and (x(1) − 0.5)2 +

(x(2) − 0.5)2 ≤ 1/122 for x(3) = 1. To make the most of the scheme which

locally reduces into a 7-point difference scheme on parallelepiped cells, the

mesh consists of cubes which were cut to match the lateral curved boundary.

Thus, the mesh error tends quadratically to zero with respect to the mesh

size. To avoid too large differences of volume sizes between adjacent cells that

may deteriorate the numerical accuracy, the boundary cells having a volume

less than 0.1/(ni)
d are merged into adjacent cells.

We are first interested in the Poisson problem for a scalar variable (Eq. (21)

with u = 0) where Γ1 = Γ and Γ2 = ∅. It was first checked that the er-

rors obtained with a linear analytical solution on the different meshes and

cavities are of the order of the computer accuracy, even for the coarsest

grids. The next analytical test consists in choosing the reference solution

Tref(x
(1), x(2), x(3)) = sin(πx(1)) cos(πx(2)) cos(πx(3)) with appropriate Dirich-

let boundary conditions (Fig. 6a-c). The orders of convergence are reported

in table (1). The accuracy of the scheme is close to 2 when considering the
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L2-norm and it slightly decreases with the L∞-norm but always remains larger

than 1.50. The order of convergence for the gradients (H1-norm) is larger than

1.

Next, we examine the convergence behavior of the isothermal Navier-Stokes

equations by setting uref(x) = ∇ ∧ ∑d
i=1(4x

(1)(x(1) − 1))3(4x(2)(x(2) − 1))4

(4x(3)(x(3) − 1))5ei and pref(x) = cos(πx(1)) cos(πx(2)) cos(πx(3)) in (Eq. 1a)

with Pr = 1 and Ra = 0 (note that the dimensionless writing of the equa-

tions is meaningless because the current reference velocity is related to the

thermal diffusivity which has no reason to appear for isothermal problems.

Another velocity reference should be used, based on the viscous diffusivity).

Table (2) indicates that the convergence rates of the velocity components are

larger than 1.90 on the three finer meshes when the relative error is based on

the L2-norm and first order accurate for the pressure for distorted meshes. In

accordance with the diffusion problem when the L∞-norm is used, the orders

of convergence slightly decrease for the velocity but a convergence rate larger

than 1.60 is still measured. The convergence rates of the gradients are better

than the expected first order. Unsurprisingly, the L∞ and H1-norms of the

pressure do not tend to zero with the mesh size because it simply appears in

the momentum equation as Lagrangian multiplier of the mass equation. Thus

the only guaranteed convergence for the pressure is based on the L2-norm.

4.2 Natural convection problem

We consider an air filled unit-cubic enclosure with isolated walls except the two

face to face vertical isothermal surfaces at x(1) = 0 and 1. The governing fluid

flow equations are solution of system (1) and (2) with f (x) = 0, g(x) = 0,
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qb(x) = 0, T (0, x(2), x(3)) = −0.5 and T (1, x(2), x(3)) = 0.5. The Prandtl and

Rayleigh numbers are fixed to Pr = 0.71 and Ra = 107 and the stabilization

parameter is chosen equal to λ = 10−8 in the mass equation. Because very

small boundary layers take place along the walls, the vertices are located at

the Gauss-Lobatto points and the collocation points xK at the gravity centers

of the cells. To also study the effect of non-cubic meshes, the coordinates of

the previous defined vertices are randomly moved, for each direction, of a

magnitude at most equal to 0.45 the size of the cell in this direction.

Table (5) presents the maxima of the velocity components, the average Nusselt

number on the isothermal walls and their relative differences with respect to

reference data [12]. For the cubic meshes, the relative differences with respect

to reference data seem to tend to zero: for the finer mesh, our results depart

from less than 1% with respect to the reference values. Although the solutions

are less accurate for the shaken meshes, a convergent behavior is also observed.

The relatively large differences measured on u(2)
∞ , in comparison with the other

velocity components, are probably the result of the flow shape in which the

main motion occurs in the (e1, e3)-planes with a small secondary flow in the

transverse planes. It is also interesting to note the good accuracy of the average

Nusselt numbers. This accuracy is essentially obtained thanks to the use of the

stabilized mass flux Φλ
K,σ(u, p) in the heat transport expression which ensures

the conservation of the average heat flux balance on the boundaries of the

cavity.
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5 Conclusion

In this paper we presented a new scheme which is well suited for the simu-

lation of incompressible viscous flows on irregular and non-conforming grids.

This possibility seems to open a large field of new applications (grid refinement

as a function of an a posteriori error computation, free boundaries, . . . ). We

emphasize that the convergence of the scheme may be proven mathematically,

and that the obtained numerical results are accurate. Although we presented

this scheme in the steady case, its extension to transient regimes is straight-

forward. In this latter case, one should consider optimizing the linear solving

step by using suitable projection algorithms.
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5 Example of meshes applied for convergence analysis, N = 20

and x ≡ x(1), y ≡ x(2), z ≡ x(3); (a) Smooth mapping, (b)

Random meshes, (c) Truncated cone mesh. 41
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Cubic enclosure Truncated conic

cubic meshes smooth meshes random meshes enclosure

L2-norm 2 (2) 1.96 (1.97) 1.87 (1.93) 2.09 (2.03)

L∞-norm 1.99 (2) 1.81 (1.68) 1.74 (1.88) 1.92 (1.58)

H1-norm 2 (2) 1.50 (1.28) 1.16 (1.07) 1.55 (1.46)

Table 1
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Cubic meshes Smooth meshes Random meshes

L2 u(1) 2 (2) 1.94 (1.99) 1.82 (1.95)

u(2) 1.99 (2) 1.96 (1.99) 1.84 (1.94)

u(3) 2 (2) 1.95 (1.98) 1.87 (1.94)

p 2 (2) 1.09 (0.76) 0.85 (0.93)

L∞ u(1) 2 (2) 1.67 (2.02) 1.61 (1.84)

u(2) 1.75 (1.78) 1.39 (1.64) 1.66 (1.72)

u(3) 1.88 (1.74) 1.55 (1.59) 1.73 (1.86)

p 1.72 (1.93) −− −−

H1 u(1) 1.98 (2) 1.80 (1.85) 1.43 (1.31)

u(2) 2 (2) 1.81 (1.84) 1.41 (1.27)

u(3) 1.95 (1.99) 1.76 (1.83) 1.40 (1.25)

p 1.91 (1.97) −− −−

Table 2
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Mesh types N u
(1)
∞ e(u

(1)
∞ ) u

(2)
∞ e(u

(2)
∞ ) u

(3)
∞ e(u

(3)
∞ ) Nu e(Nu)

20 333, 23 −13% 70, 959 −15% 767, 01 −0.15% 16, 380 0.23%

30 371, 89 −3.1% 79, 105 −5.1% 761, 11 −0.91% 16, 366 0.14%

cubic 40 377, 71 −1.6% 81, 097 −2.7% 761, 15 −0.91% 16, 361 0.11%

50 380, 19 −0.95% 82, 234 −1.4% 767, 25 −0.11% 16, 357 0.086%

60 380, 47 −0.88% 82, 615 −0.93% 767, 90 −0.031% 16, 353 0.065%

20 497, 85 30% 363, 48 340% 869, 95 13% 16, 023 −2.0%

Random 30 419, 43 9.3% 276, 63 230% 777, 25 1.2% 16, 198 −0.88%

40 400, 18 4.3% 151, 27 81% 779, 93 1.5% 16, 259 −0.51%

[12] 383, 8357 0% 83, 3885 0% 768, 1393 0% 16, 3427 0%

Table 3
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