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It is classical to approximate the distribution of fractional Brownian motion by a renormalized sum S n of dependent Gaussian random variables. In this paper we consider such a walk Z n that collects random rewards ξ j for j ∈ Z, when the ceiling of the walk S n is located at j. The random reward (or scenery) ξ j is independent of the walk and with heavy tail. We show the convergence of the sum of independent copies of Z n suitably renormalized to a stable motion with integral representation, whose kernel is the local time of a fractional Brownian motion (fBm). This work extends a previous work where the random walk S n had independent increments limits.

Introduction 1.Motivations

Many stochastic processes have been proposed to model communication networks. We can refer to [START_REF] Willinger | Self-similarity through high variability: statistical analysis of ethernet lan traffic at the source level[END_REF][START_REF] Taqqu | Proof of a fundamental result in self similar traffic modeling Computer[END_REF][START_REF] Mikosch | Is network traffic approximated by stable Lévy motion or Fractional Brownian motion[END_REF] for instance, where the limiting processes are either fractional Brownian motion or Lévy β-stable process. More recently, in [START_REF] Cohen | Random rewards, fractional Brownian local times and stable self-similar processes[END_REF] a process named H-fBm local time fractional stable motion was constructed. When H = 1 2 , the so called Random Reward Schema, was also proposed, it is a discrete schema, which could be thought of as a toy model for INTERNET traffic, and which is converging to this process. The aim of this paper is to extend these results to the case H = 1 2 . In the proof of the convergence in [START_REF] Cohen | Random rewards, fractional Brownian local times and stable self-similar processes[END_REF] a strong approximation of the local time of standard Brownian motion was used. As far as we know no strong approximation of the local time of fractional Brownian motion is available and it was one the problems to overcome. In [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF] discrete approximations of local time fractional stable motion have been obtained by Dombry and Guillotin-Plantard [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF] where the fBm local time is replaced by the local time of an α-stable Levy motion. But they did not use strong approximation of the local time. In this paper we use convergence of the local time of a classical walk with dependent increments to the local time of fractional Brownian motion and the technique in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF] to get our result. Please note that other approximations of fBm local time fractional stable motion have been considered in [START_REF] Marouby | Simulation of local time stable motion Preprint available on arXiv[END_REF], but they are not related to walks in random sceneries.

Model and results

Let ξ = (ξ x ) x∈Z denote a sequence of independent, identically distributed, symmetric real-valued random variables. The sequence ξ is called a random scenery. Suppose that it belongs to the normal domain of attraction of a stable symmetric distribution Z β of index β ∈ (0, 2]. This means that the following weak convergence holds:

n -1 β n x=0 ξ x L =⇒ n→∞ Z β , (1) 
where Z β is the symmetric stable law with characteristic function λ given by

λ(u) = E exp(iuZ β ) = exp -σ β |u| β , u ∈ R (2) 
for some constants σ > 0.

Let S = (S k ) k∈N be a random walk on Z independent of the random scenery ξ. We suppose that

S 0 = 0, S n = n k=1 X k , n ≥ 1, (3) 
where X i , i ≥ 1 is a stationary Gaussian sequence with mean 0 and correlations

r(i -j) = E[X i X j ] satisfying n i=1 n j=1 r(i -j) ∼ n 2H , (4) 
as n → ∞, with 0 < H < 1.

We define the random walk in random scenery as the process (Z n ) n≥0 given by

Z n = n k=0 ξ ([S k ]) , (5) 
where [S k ] is the ceiling of S k . Stated simply, a random walk in random scenery is a cumulative sum process whose summands are drawn from the scenery; the order in which the summands are drawn is determined by the path of the random walk. We extend this definition to non-integer time s ≥ 0 by the linear interpolation

Z s = Z [s] + (s -[s])(Z [s]+1 -Z [s] ). ( 6 
)
We now describe the limit theorem for the random walk in random scenery established by Wang [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF] (in the case β = 2). Cumulative sums of the scenery converge in D(R), the space of càd-làg functions:

  n -1 β [nx] k=0 ξ k   x∈R L =⇒ n→∞ (W (x)) x∈R ,
where W is a bilateral β-stable Lévy process such that W (0) = 0, and W (1) and W (-1) are distributed according to Z β . The covariance structure of the sequence X i given by equation ( 4) implies that S n , n ≥ 0 belongs to the domain of attraction of the fractional Brownian motion of Hurst index H, i.e. the following convergence hold in D([0, ∞)) (cf. [START_REF] Taqqu | Weak convergence to fractional Brownian motion and to the Rosenblatt process Z[END_REF].)

1 n H (S [nt] ) 0≤t≤1 L =⇒ n→∞ B H (t), (7) 
To describe the limit process known as fractional Brownian motion in stable scenery we suppose that B H and W are two independent processes defined on the same probability space and distributed as above. Let L t (x) the jointly continuous version of the local time of the process B H (cf. [START_REF] Berman | Local nondeterminism and local times of Gaussian processes Indiana[END_REF]).

In the case β = 2 corresponding to the case of a Gaussian scenery, Wang proves the following weak convergence in the space of continuous function

C([0, ∞)) n -δ Z nt t≥0 L =⇒ n→∞ (∆(t)) t≥0 (8) 
where δ = 1 -H + Hβ -1 and ∆ is the process defined by

∆(t) = +∞ -∞ L t (x)dW (x).
The limit process ∆ is a continuous δ-self-similar stationary increments process.

Our results state the convergence of the so called Random Reward Schema to the fBm local time stable fractionnal motion. We begin with a continuous version and consider ∆ (i) , i ≥ 1 independent copies of the process ∆.

Theorem 1.1. The following weak convergence holds in C([0, ∞)):

n -1 β n i=1 ∆ (i) (t) t≥0 L =⇒ n→∞ (Γ(t)) t≥0 , ( 9 
)
where Γ is a H-fBm local time stable fractionnal motion.

Replacing the stable process in random scenery by a random walk in random scenery, we obtain the random rewards schema which yields a discrete approximation of the process Γ. Let ξ (i) = (ξ

(i)
x ) x∈Z , i ≥ 1 be independent copies of ξ. Let S (i) = (S (i) n ) n∈N be independent copies of S and also independent of the ξ (i) , i ≥ 1. Denote by D (i) n the i-th random walk in random scenery defined by

D (i) n (t) = n -δ Z (i) nt (10) 
where the definition of

Z (i)
n is given by equations ( 5) and ( 6) with ξ and S replaced by the i-th random scenery ξ (i) and the i-th random walk S (i) respectively.

Theorem 1.2. Let c n be a sequence of integers such that lim c n = +∞. Then, the following weak convergence holds in C([0, ∞)):

c -1 β n cn i=1 D (i) n (t) t≥0 L =⇒ n→∞ (Γ(t)) t≥0 . ( 11 
)
The limit process Γ is the same as in Theorem 1.1.

2 Sums of stable processes in random scenery Proof of Theorem 1.1

For n ≥ 1, let Γ n the continuous process defined by

Γ n (t) = n -1 β n i=1 ∆ (i) (t) , t ≥ 0.
Theorem 1.1 claims that the sequence Γ n converges weakly in C([0, ∞)). We prove this fact by proving the convergence of the finite dimensional distributions and the tightness of the sequence. Theorem 1.1 is thus a consequence of Propositions 2.1 and 2.2 below.

We first need a Lemma giving the characteristic function of the finite dimensional distribution of ∆:

Lemma 2.1. For any (θ 1 , • • • , θ k ) ∈ R k and (t 1 , • • • , t k ) ∈ [0, +∞) k E exp i k j=1 θ j ∆(t j ) = E exp(-σ β X) with X = R | k j=1 θ j L t j (x)| β dx. ( 12 
)
Proof : This is the analogous of Lemma 5 in Kesten and Spitzer giving the characteristic function of the finite dimensional distribution of the stable Levy-process in stable scenery, for the fractional Brownian motion in stable scenery. The demonstration is the same replacing the local time of a stable Lévy process by the local time of the fractional Brownian motion.

Proposition 2.1. The finite dimensional distributions of (Γ n (t)) t≥0 converge weakly as n → ∞ to those of (Γ(t)) t≥0 .

Proof :

Let (θ 1 , • • • , θ k ) ∈ R k and (t 1 , • • • , t k ) ∈ [0, +∞) k . We compute the characteristic functions E exp i k j=1 θ j Γ n (t j ) = E exp in -1 β k j=1 θ j ∆(t j ) n = E exp(-n -1 X) n (13) 
We prove that the following asymptotic holds:

E exp(-n -1 σ β X) = 1 -n -1 σ β E(X) + o(n -1 ). ( 14 
)
Note that the integrability of the random variable X follows from the inequality

|X| ≤ k j=1 |θ j | β R L t (x) β dx
where t = max{t j , 1 ≤ j ≤ k}, and the fact that

E R L t (x) β dx < ∞ which is proved in [3] Theorem 3.1.
We now prove equation [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF]. To this aim, observe that

n E exp(-n -1 σ β X) n -1 = E(f n (X)) -→ n→∞ -σ β E(X)
where

f n is defined on C by f n (x) = n(exp(-n -1 σ β x) -1)
. The convergence follows from the dominated convergence Theorem because f n (X) converges almost surely to -σ β X and |f n (X)| is almost surely bounded from above by σ β |X| which is integrable. Finally, equations ( 13) and ( 14) together yield

E exp i k j=1 θ j Γ n (t j ) -→ n→∞ exp -σ β E(X) .
This proves Proposition 2.1.

Proposition 2.2. The sequence of process Γ n is tight in C([0, ∞)).

Proof : We follow the proof of Proposition 2.2 in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF] and give only the main lines of the proof, the details are to be found in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF]. The difference is that the α-stable Levy motion Y t is replaced by the fBm B H (t) of index H. Hence the local time process of Y is replaced by the local time of B H and denoted in both context by L t (x). Furthermore, the self-similarity index of Y is equal to 1/α and has to be replaced by H. The case β = 2 is straightforward and relies on Itô's isometry: the process Γ n is square integrable and for all 0

≤ t 1 < t 2 E |Γ n (t 2 ) -Γ n (t 1 )| 2 = E |n -1 2 n i=1 ∆ (i) (t 2 ) -∆ (i) (t 1 )| 2 = σ 2 (t 2 -t 1 ) 2-H E R L 1 (x) 2 dx .
Using Kolmogorov criterion, we deduce that the sequence Γ n is tight.

In the case 0 < β < 2, the process Γ n has infinite variance and we use the truncation method. Introduce the Lévy-Itô decomposition of W :

W x = bx + x 0 |u|≤1 u(µ -μ)(du, ds) + x 0 |u|>1 uµ(du, ds) ( 15 
)
where b is the drift and µ is a Poisson random measure on R×R with intensity μ(du, dx) = λ(du) ⊗ dx, and λ is the stable Lévy measure on R:

λ(du) = c -1 {u<0} + c + 1 {u>0} du |u| β+1 , c -, c + ≥ 0, c -+ c + > 0.
For some truncation level R > 1, let W (R -) and W (R + ) be the independent Lévy processes defined by

W (R -) x = x 0 |u|≤R u(µ -μ)(du, ds), W (R + ) x = x 0 |u|>R uµ(du, ds).
The Lévy-Itô decomposition (15) rewrites as

W x = b R x + W (R -) x + W (R + )
x where b R = b+ 1<|y|≤R uλ(du) is a drift depending on R. This decomposition of the stable scenery yields the following decomposition of the stable process in random scenery:

∆(t) = b R t + ∆ (R -) (t) + ∆ (R + ) (t), with ∆ (R -) (t) = R L t (x)dW (R -) x , ∆ (R + ) (t) = R L t (x)dW (R + )
x .

Considering such decomposition for i.i.d. copies of ∆, we have with obvious notations, the following decomposition of Γ n :

Γ n (t) = n 1-1 β b Rn t + Γ (R -) n (t) + Γ n (R + )(t), (16) 
with

Γ (R -) n (t) = n -1 β n i=1 ∆ (i,R - n ) (t), Γ (R + ) n (t) = n -1 β n i=1 ∆ (i,R + n ) (t) with truncation level R n = Rn 1 β . The sequence n 1-1 β b
Rn is known to be bounded (assertion A1 in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF]). Similarly to equation ( 23) in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF], the process Γ (R -) n (t) is square integrable and for any 0 ≤ t 1 < t 2 ,

E (Γ (R -) n (t 2 ) -Γ (R -) n (t 1 )) 2 = c -+ c + 2 -β R 2-β (t 2 -t 1 ) 2-H E R L 1 (x) 2 dx .
Using Kolmogorov criterion, this estimate implies that the sequence of process Γ (R -) n is tight. On the other hand, similarly to assertion (A3) in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF], the probability that Γ

(R + ) n ≡ 0 on [0, T ] satisfies P Γ (R + ) n ≡ 0 on [0, T ] ≥ P ∆ (R + n ) ≡ 0 on [0, T ] n ≥ 1 -2 c + + c - β R -β n E sup 0≤t≤T |B H (t)| n .
and hence lim

R→∞ lim sup n→∞ P Γ (R + ) n ≡ 0 on [0, T ] = 1.
These facts imply the tightness of the sequence Γ n .

3 Fractional Random Reward Schema Proof of Theorem 1.2

We define the process G n by

G n (t) = c -1 β n cn i=1 D (i) n (t), t ≥ 0, (17) 
where

D (i)
n is the i-th random walk in random scenery properly rescaled and defined by [START_REF] Samorodnitsky | Stable Non-Gaussian Random Processes[END_REF]. Theorem 1.2 states that G n converges weakly to Γ in C([0, ∞)). The key tool in the proof is the local time of the strongly correlated random walk (S k ) k≥0 (we omit the superscript (i)).

Let x ∈ Z and n ≥ 1. The local time N n (x) of the random walk (S k ) k≥0 at point x up to time n is defined by

N n (x) = n k=0 1 {[S k ]=x} .
It represents the amount of time the walk spends in the interval [x, x + 1[ up to time n. We extend this definition to non-integer time s ≥ 0 by linear interpolation:

N s (x) = N [s] (x) + (s -[s])(N [s]+1 (x) -N [s] (x)).
The random walk in random scenery writes for all s ≥ 0

D n (t) = n -δ x∈Z N nt (x)ξ x ( 18 
)
where the collection of random variables {N s (x), x ∈ Z} and {ξ x , x ∈ Z} are independent.

We collect in the next subsection different results about the local times of the strongly correlated random walks that will be of great use in the sequel. Although the results are analogous to the ones in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF] for independent increments random walks, some difficulties arise from the strong correlations of the increments. However in [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF], Wang shows how to use the Gaussian structure to get some estimates on the local times of the strongly correlated random walk.

Then the proof of Theorem 1.2 is quite analogous to the proof of Theorem 2 in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF]. Proposition 3.1 states the convergence of the finite dimensional distribution. The tightness of the sequence is stated in Proposition 3.2. We give the main lines of the proof and omit some details that are to be found in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF]. The maximum local time L n of the random walk up to time n is defined by

L n = sup x∈Z N n (x).
The number of self-intersections V n of the random walk up to time n is defined by

V n = 0≤i,j≤n 1 {[S i ]=[S j ]} = x∈Z N n (x) 2 .
The range R n of the random walk up to time n is defined by

R n = x∈Z 1 {Nn(x) =0} .
These definitions extend obviously to non-integer time s ≥ 0.

Our results rely on different estimations of these quantities that we gather in the following Lemma: Lemma 3.1.

• The following convergence in probability holds

n -δ L n P -→ n→∞ 0. ( 19 
)
• For any p ∈ [1, +∞), there exists some constant C such that for all n ≥ 1,

E (V p n ) ≤ Cn p(2-H) . (20) 
• For any p ∈ [1, +∞), there exists some constant C such that for all

n ≥ 1 E (R p n ) ≤ Cn pH . (21) 
Proof: • We follow the lines of Lemma 4 in Kesten and Spitzer. Let ε > 0, we have,

P(n -δ L n > ε) ≤ P(N n (x) > 0 for some |x| > An H ) + |x|≤An H P(N n (x) > n δ ε) ≤ P( sup 0≤k≤n n -H |[S k ]| > A) + |x|≤An H E(N n (x) p )n -pδ ε -p
We now use the following estimation from [14] lemma 4.4: there exists some

C > 0 such that E(N n (x) p ) ≤ Cn p(1-H) ,
and hence we have for all A > 0 and ε > 0

|x|≤An H E(N n (x) p )n -pδ ε -p ≤ 2An H Cn p(1-H) n -pδ ε -p ,
and this quantity goes to 0 as n → ∞ if we choose p large enough such that H + p(1 -H) -pδ = H(1 -p/β) < 0. At last, the term

P( sup 0≤k≤n n -H |[S k ]| > A) converges to P(sup 0≤t≤1 |B H (t)| > A)
as n → ∞, and this last term goes to zero as A → ∞.

• First notice that we can suppose without restriction that p ≥ 1 is an integer, because the bound for p ′ ≥ 1 is a consequence of the case p ≥ p ′ . The number of self-intersections up to time n is bounded from above by

V n ≤ 0≤i≤j≤n 21 {[S i ]=[S j ]} .
Using Minkowski inequality,

||V n || p ≤ 2 n i=0 || n j=i 1 {[S i ]=[S j ]} || p , (22) 
where ||X|| p = E(|X| p ) 1/p . For fixed i, the stationarity of the random walk's increments implies that the distribution of

n j=i 1 {[S i ]=[S j ]} and n-i j=0 1 {[S i ]=0} = N n-i (0) are equal. Since N n-i (0) ≤ N n (0), equation (22) yields E(V p n ) ≤ 2 p n p E (N n (0) p ) . (23) 
We now refer to lemma 4.4 in [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF] which states that there is some

C > 0 such that E (N n (0) p ) ≤ Cn p(1-H) (24) 
Equations ( 23) and ( 24) together yield equation (20). be the continuous process defined by

S n (t) = n -H S [nt] + (nt -[nt])n -H (S [nt]+1 -S[nt]).
By equation ( 4), the sequence of process S n converges weakly to B H in C([0, 1]) furnished with the uniform norm ||.|| ∞ . Furthermore,

sup 0≤k≤n n -H |S k | = ||S n || ∞ .
Hence we need to show that ||S n || ∞ is bounded in L p for all p ≥ 1. Using a concentration result (see e.g. [START_REF] Ledoux | Probability in Banach spaces[END_REF] p. 60), a sequence of Gaussian random variables which is bounded in probability is bounded in all L p spaces. Since the sequence S n converges in distribution to B H , it is bounded in probability, and hence bounded in all L p spaces.

Convergence of functional of local times

The following lemma is an analogous of Lemma 6 in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] when the random walk in the domain of attraction of a stable Levy motion is replaced by a random walk in the domain of attraction of a fractional Brownian motion Note that the case of walks in a L 2 scenery was considered by Wang. We here generalize Wang's result (Proposition 3.2 in [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF]) to the case of an heavy tailed scenery.

Lemma 3.2. For all (θ 1 , • • • , θ k ) ∈ R k , (t 1 , • • • , t k ) ∈ [0, +∞) k , σ > 0, β ∈ (0, 2], the distribution of X n = n -δβ x∈Z k j=1 θ j N nt j (x)
β converges weakly as n → ∞ to X defined by equation [START_REF] Taqqu | Proof of a fundamental result in self similar traffic modeling Computer[END_REF]. Furthermore, X n is bounded in L p for all p ≥ 1.

Proof: Following Kesten and Spitzer [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] and Wang [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF], we introduce for small τ > 0 and large N,

U(τ, N, n) = n -βδ |x|≤N τ n H k j=1 θ j N nt j (x) β d(l, n) = n -1 k j=1 θ j lτ n H ≤y<(l+1)τ n H N nt j (y) V (τ, N, n) = τ 1-β |l|≤N |d(l, n)| β .
Then,

X n -U(τ, N, n) -V (τ, N, n) = |l|≤N lτ n H ≤x<(l+1)τ n H n -δβ k j=1 θ j N nt j (x) β -n β [τ n H ] -β |d(l, n)| β + |l|≤M (n β-δβ [τ n H ] 1-β -τ 1-β )|d(l, n)| β . ( 25 
) By Lemma 3.1 in [14] d(l, n) converges in distribution to k j=1 θ j (l+1)τ lτ L t j (x)dx. Since n β-δβ [τ n H ] 1-β -τ 1-β → 0,
the second sum over l in the right hand side of (25) tends to zero in probability as n → ∞. We now show that the first sum over l in the right hand side of (25) is small in probability when τ is small. We use the following inequality, valid for any a ≥ 0, b ≥ 0

|a β -b β | ≤ |a -b| β if β ≤ 1 β|a -b|(a β-1 + b β-1 ) if β < 1,
to estimate the sum over x. In the case β ≤ 1,

E |l|≤N lτ n H ≤x<(l+1)τ n H n -δβ k j=1 θ j N nt j (x) β -n β [τ n H ] -β |d(l, n)| β ≤ n -δβ |l|≤N lτ n H ≤x<(l+1)τ n H   E k j=1 θ j N nt j (x) -n[τ n H ] -1 d(l, n) 2   β/2 and E k j=1 θ j N nt j (x) -n[τ n H ] -1 d(l, n) 2 ≤ [τ n H ] -1 k i=1 θ 2 i k j=1 lτ n H ≤y<(l+1)τ n H E|N nt j (x) -N nt j (y)| 2 .
Now from Lemma 4.6 in [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF], there exist C and r > 0 such that for large n, large N and small τ (with A = Nτ large enough), and any |x| ≤ A and y such that |x -y| ≤ τ n H , the following holds :

E|N nt j (x) -N nt j (y)| 2 ≤ CAτ r n 2-2H .
Combining these estimates,

E |l|≤N lτ n H ≤x<(l+1)τ n H n -δβ k j=1 θ j N nt j (x) β -n β [τ n H ] -β |d(l, n)| β ≤ n -δβ (2N + 1)[n H τ ] [n H τ ] -1 [n H τ ]CAτ r n 2-2H β/2 ≤ CNτ 1+rβ/2
This completes the estimate of (25) in the case β ≤ 1.

In the case β > 1, we have

E |l|≤N lτ n H ≤x<(l+1)τ n H n -δβ k j=1 θ j N nt j (x) β -n β [τ n H ] -β |d(l, n)| β ≤ n -δβ |l|≤N lτ n H ≤x<(l+1)τ n H βE k j=1 θ j N nt j (x) -n[τ n H ] -1 d(l, n) × | k j=1 θ j N nt j (x)| β-1 + |n[τ n H ] -1 d(l, n)| β-1 ≤ βn -δβ   |l|≤N lτ n H ≤x<(l+1)τ n H E k j=1 θ j N nt j (x) -n[τ n H ] -1 d(l, n) 2   1/2 ×   |l|≤N lτ n H ≤x<(l+1)τ n H E | k j=1 θ j N nt j (x)| β-1 + |n[τ n H ] -1 d(l, n)| β-1 2   1/2
.

With the same techniques as above, the first factor is shown to be bounded from above by

βn -δβ [(2N + 1)τ n H CAτ r n 2-2H ] 1/2
In order to upper-bound the second factor, introduce T = sup{t j ; j = 1...k}, and note that

| k j=1 θ j N nt j (x)| ≤ CN nT (x) and also n[τ n H ] -1 d(l, n) ≤ C[τ n H ] -1
lτ n H ≤y<(l+1)τ n H N nT (y). Using Hölder and Minkowski's inequalities, the second factor is bounded from above by

  |l|≤N lτ n H ≤x<(l+1)τ n H E | k j=1 θ j N nt j (x)| β-1 + |n[τ n H ] -1 d(l, n)| β-1 2   1/2 ≤ C   |l|≤N lτ n H ≤x<(l+1)τ n H E (N nT (x)) 2β-2   1/2 +C    |l|≤N lτ n H ≤x<(l+1)τ n H E   [τ n H ] -1 lτ n H ≤y<(l+1)τ n H N nT (y)   2β-2    1/2 ≤ C   |l|≤N lτ n H ≤x<(l+1)τ n H EN nT (x) 2 β-1   1/2 +C    |l|≤N lτ n H ≤x<(l+1)τ n H [τ n H ] 2-2β   lτ n H ≤y<(l+1)τ n H EN nT (y) 2 1/2   2β-2    1/2 ≤ C (2N + 1)τ n H n (2-2H)(β-1) 1/2
where the last line follows from Lemma 4.4 in [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF] stating that there is some

C > 0 such that sup x∈Z E(N nT (x)) 2 ≤ Cn 2-2H .
Combining these estimates,

E |l|≤N lτ n H ≤x<(l+1)τ n H n -δβ k j=1 θ j N nt j (x) β -n β [τ n H ] -β |d(l, n)| β ≤ Cn -δβ [(2N + 1)τ n H τ r n 2-2H ] 1/2 (2N + 1)τ n H n (2-2H)(β-1) 1/2 ≤ CNτ 1+r/2
Then the proof of Lemma 3.2 follows from equation (25) and from the above estimates as in [START_REF] Kesten | A limit theorem related to a new class of self-similar processes[END_REF] or [START_REF] Wang | Weak convergence to fractional Brownian motion in Brownian[END_REF]: the idea is to show that for large N, n and small τ , X n -V (τ, n, N) → 0 in probability and that V (τ, n, N) → X in distribution. We omit the details.

Next we prove that (X n ) n≥1 is bounded

L p bound. Let T = sup(t 1 , • • • , t n ) and Θ = k j=1 |θ j |. The random variables |X n | is bounded above by Θ β n -δβ x∈Z N β [nT ]+1 (x).
In the case β = 2, this quantity is equal to Θ 2 n H-2 V [nT ]+1 , and in this case the L p bound is a consequence of equation ( 20).

In the case β < 2, Hölder inequality yields

x∈Z N β [nT ]+1 (x) ≤ x∈Z 1 {N [nT ]+1 (x) =0} 1-β 2 x∈Z N 2 [nT ]+1 (x) β 2 = R 1-β 2 [nT ]+1 V β 2
[nT ]+1 .

Hence, up to a multiplicative constant, the expectation

E(|X n | p ) is overesti- mated by E n -δβ x∈Z N β [nT ]+1 (x) p ≤ E n -H R [nT ]+1 p(1-β 2 ) n H-2 V [nT ]+1 p β 2
We now apply Cauchy-Schwartz inequality,

E n -δβ x∈Z N β [nT ]+1 (x) p ≤ E n -H R [nT ]+1 p(2-β) 1 2 E n H-2 V [nT ]+1 pβ 1 2 .
Now the L p bound follows from equation ( 20) and (21) together.

Convergence of the finite-dimensional distributions.

We study the asymptotic behaviour of the characteristic function of the marginals of G n . Let λ be the characteristic function of the variables ξ

(i) k defined by λ(u) = E exp(iuξ (1) 
1 ) .

Since the random variables ξ

(i)
k are in the domain of attraction of Z β ,

λ(u) = λ(u) + o(|u| β ) , as u → 0, ( 26 
)
where λ is the characteristic function of Z β given by equation ( 2).

Proposition 3.1. The finite dimensional distributions of (G n (t)) t≥0 converge weakly as n → ∞ to those of (Γ(t)) t≥0 defined in equation [START_REF] Marouby | Simulation of local time stable motion Preprint available on arXiv[END_REF].

Proof: [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF] show that the characteristic function of Γ n (t) writes

Let (θ 1 , • • • , θ k ) ∈ R k , (t 1 , • • • , t k ) ∈ [0, +∞) k . Computations as in
E exp i k j=1 θ j G n (t j ) = E x∈Z λ c -1 β n U n (x) cn ( 27 
)
where

U n (x) = n -δ k j=1 θ j N nt j (x) , x ∈ Z.
We show that the following asymptotic holds as n → ∞:

E x∈Z λ c -1 β n U n (x) = E x∈Z λ c -1 β n U n (x) + o(c -1 n ) ( 28 
)
To see this, note that

c n x∈Z λ c -1 β n U n (x) - x∈Z λ c -1 β n U n (x) ≤ c n x∈Z λ c -1 β n U n (x) -λ c -1 β n U n (x) ≤ g(c -1 β n U n ) x∈Z |U n (x)| β . ( 29 
) with U n = sup x∈Z |U n (x)|,
and g the bounded continuous vanishing at zero function defined by

g(u) = sup |v|≤u |v| -β λ(v) -λ(v) , v = 0.
(The properties of g follow from equation (26).) From Lemma 3.1, U n converge in probability to 0 as n → ∞. Since g is bounded continuous and vanishes at 0, g(c -1 β n U n ) converges also in probability to 0 and is bounded in L ∞ . From Lemma 3.2, x∈Z |U n (x)| β converges in distribution and is bounded in L p . As a consequence, the right hand side of (29) converges to zero in probability and is bounded in L p , and hence its expectation has limit 0. This proves equation (28).

We now prove the following estimation

E x∈Z λ c -1 β n U n (x) = 1 -c -1 n σ β E [X] + o(c -1 n ) ( 30 
)
where X is defined in Lemma 3.2.To see this, recall the definition of the random variable X n from Lemma 3.2 and of the characteristic function λ from equation [START_REF] Billingsley | Convergence of Probability Measures[END_REF]. With these notations, equation ( 30) is equivalent to

lim n→+∞ E (f n (X n )) = σ β E(X),
where f n is the function defined on C by

f n (x) = c n 1 -exp(-c -1 n σ β x) .
It is easy to verify that the sequence of functions f n satisfies the following property: for every x, for every sequence (x n ) n≥1 converging to x,

lim n→∞ f n (x n ) = σ β x.
Furthermore Lemma 3.2 states that the sequence (X n ) n≥1 converges in distribution to X when n → ∞. Using the diagonal mapping Theorem (Theorem 5.5 of [START_REF] Billingsley | Convergence of Probability Measures[END_REF]), we prove the weak convergence of the sequence of random variables

f n (X n ) to σ β X. Furthermore, using Lemma 3.2, |f n (X n )| ≤ |X n | is bounded in L p for any p ≥ 1. Hence E(f n (X n )) has limit σ β E(X)
and equation ( 30) is proved. Finally, combining equations ( 27), ( 28) and (30) we prove easily that

E exp i k j=1 θ j G n (t j ) = 1 -c -1 n σ β E(X) + o(c -1 n ) cn -→ n→∞ exp(-σ β E(X))
and Proposition 3.1 is proved.

Tightness

Proposition 3.2. The family of processes (G n (t)) t≥0 is tight in C([0, ∞)).

Proof: As in the continuous case, we prove the tightness using truncations in order to deal with finite variance processes. We decompose the scenery (ξ

(i) x ) x∈Z,i≥1 into two parts ξ (i) x = ξ(i) a,x + ξ(i) a,x ,
where ( ξ(i) a,x ) denote the i-th truncated scenery defined by ξ(i) a,x = ξ (i)

x 1 {|ξ (i)

x |≤a} , and ξ(i) a,x the remainder scenery ξ(i) a,x = ξ (i)

x 1 {|ξ (i)

x |>a} . We recall the following estimates from Lemma 3.3 in [START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF]: there exists some C > 0 such that

|E ξ(i) a,x | ≤ Ca 1-β , E | ξ(i) a,x | 2 ≤ Ca 2-β , P ξ(i) a,x = 0 ≤ Ca -β . (31) 
For a > 0, we use truncations with a n = an 

nt 2 (x) -N

(1)

nt 1 (x)) = n(t 2 -t 1 ) E   x =y∈Z (N (1) 
nt 2 (x) -N

(1)

nt 1 (x))(N (1) 
nt 2 (y) -N

nt 1 (y))

  = n 2 (t 2 -t 1 ) 2 -E x∈Z (N (1) 
nt 2 (x) -N

(1) 

nt 1 (x)) 2 E x∈Z (N (i) nt 2 (x) -N (i) nt 1 (x)) 2 ≤ E(V [nt 2 ]-[nt 1 ]+1 ) ≤ C([nt 2 ] -[nt 1 ] + 1)

3. 1

 1 Some results about local times 3.1.1 Maximum local time, self intersection local time and range.

≥ E 1 -| 2 ≤ n -2δ c - 2 β n c n (c n - 1 nt 1

 12211 nt (x) ξ(i)an,x , Γn,a (t) = n -δ c nt (x) ξ(i) an,x .Now, with the same techniques as in the proof of Proposition 3.2 in[START_REF] Dombry | Discrete approximation of a stable self-similar stationary increments process[END_REF], we compute:Ca -β n R [nT ]+1 cn ≥ 1 + log(1 -Ca -β n )E(R [nT ]+1 ) cnUsing the asymptotic for a n and Lemma 3.1 to estimate the range, the above inequality Γn,a (t)| > 0 = 0 (33)On the other hand, the variance of the truncated process Γ n,a is overestimated byE Γn,a (t 2 ) -Γn,a (t 1 ) (x)) 2 E | ξ(1) an,0 | 2Using equation (31) and the following estimations,

  • We only have to notice that R n ≤ 1+2 sup 0≤k≤n |S k | and hence it is enough to prove that sup 0≤k≤n n -H |S k | is bounded in L p for all p ≥ 1. Let S n (t) t∈[01]

  2-H we prove that there exists someC such that if |t 2 -t 1 | ≥ 1 n , then E Γn,a (t 2 ) -Γn,a (t 1 ) 2 ≤ C|t 2 -t 1 | 2-H .In the case |t 2 -t 1 | ≤ 1/n, we can see thatnt 1 (x)) 2 ≤ 2(nt 2 -nt 1 ) 2 ,since in the sum, at most two terms are not zero and those terms are bounded by (nt 2 -nt 1 ) 2 . Using theorem 12.3 in Billingsley, these estimates prove the

	E	(N nt 2 (x) -N (1)	(1)
	x∈Z		

tightness of the family of processes Γn,a (t) t≥0 . This together with equations (33) and (32) implies the tightness of the sequence G n , and hence Proposition 3.2.