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1 Introduction

Let Ω be the upper half plane {(x, y) ∈ R2, x > 0, y ∈ R}. Define the Laplacian on Ω to be
∆D = ∂2

x + (1 + x)∂2
y , together with Dirichlet boundary conditions on ∂Ω: one may easily

see that Ω, with the metric inherited from ∆D, is a strictly convex domain. We shall prove
that, in such a domain Ω, Strichartz estimates for the wave equation suffer losses when
compared to the usual case Ω = R2, at least for a subset of the usual range of indices. Our
construction is microlocal in nature; in [7] we prove that the same result holds true for
any regular domain Ω ⊂ Rd, d = 2, 3, 4, provided there exists a point in T ∗∂Ω where the
boundary is microlocally strictly convex.

Definition 1.1. Let q, r ≥ 2, (q, r, α) 6= (2,∞, 1). A pair (q, r) is called α-admissible if

1

q
+
α

r
≤ α

2
, (1.1)

and sharp α-admissible whenever equality holds in (1.1). For a given dimension d, a pair
(q, r) will be wave-admissible if d ≥ 2 and (q, r) is d−1

2
-admissible; it will be Schrödinger-

admissible if d ≥ 1 and (q, r) is sharp d
2
-admissible. Finally, notice that the endpoint

(2, 2α
α−1

) is sharp α-admissible when α > 1.
When α = 1 the endpoint pairs are inadmissible and the endpoint estimates for wave

equation (d = 3) and Schrödinger equation (d = 2) are known to fail: one obtains a
logarithmic loss of derivatives which gives Strichartz estimates with ǫ losses.

Our main result reads as follows:

Theorem 1.2. Let (q, r) be a sharp wave-admissible pair in dimension d = 2 with 4 < r <
∞. There exist ψj ∈ C∞

0 (R) and for every small ǫ > 0 there exist cǫ > 0 and sequences
Vh,j,ǫ ∈ C∞(Ω), j = 0, 1 with ψj(hDy)Vh,j,ǫ = Vh,j,ǫ (meaning that Vh,j,ǫ are localized at

1
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frequency 1/h), such that the solution Vh,ǫ to the wave equation with Dirichlet boundary
conditions

(∂2
t − ∆D)Vh,ǫ = 0, Vh,ǫ|[0,1]×∂Ω = 0, Vh,ǫ|t=0 = Vh,0,ǫ, ∂tVh,ǫ|t=0 = Vh,1,ǫ (1.2)

satisfies

sup
h,ǫ>0

(‖Vh,0,ǫ‖
Ḣ

2( 1
2− 1

r )− 1
q +1

6 ( 1
4− 1

r )−2ǫ
(Ω)

+ ‖Vh,1,ǫ‖
Ḣ

2( 1
2− 1

r )− 1
q + 1

6 ( 1
4− 1

r )−2ǫ−1
(Ω)

) ≤ 1 (1.3)

and
lim
h→0

‖Vh,ǫ‖Lq
t ([0,1],Lr(Ω)) = ∞. (1.4)

Moreover Vh,ǫ has compact support for x in (0, h
1−ǫ
2 ] and is well localized at spatial frequency

1/h; hence, the left hand side in (1.3) is equivalent to

h−
3
2
( 1
2
− 1

r
)− 1

6
( 1
4
− 1

r
)+2ǫ(‖Vh,0,ǫ‖L2(Ω) + h‖Vh,1,ǫ‖L2(Ω)).

Remark 1.3. In this paper we are rather interested in negative results: Theorem 1.2 shows
that for r > 4 losses of derivatives are unavoidable for Strichartz estimates, and more
specifically a regularity loss of at least 1

6
(1

4
− 1

r
) occurs when compared to the free case.

Remark 1.4. The key feature of the domain leading to the counterexample is the strict-
convexity of the boundary, i.e. the presence of gliding rays, or highly-multiply reflected
geodesics. The particular manifold studied in this paper is one for which the eigenmodes
are explicitly in terms of Airy’s functions and the phases for the oscillatory integrals to be
evaluated have precise form. In a forthcoming work [7] we construct examples for general
manifolds with a gliding ray, but the heart of the matter is well illustrated by this particular
example which generalizes using Melrose’s equivalence of glancing hypersurfaces theorem.

We now recall known results in R
d. Let ∆d denote the Laplace operator in the flat

space Rd. Strichartz estimates read as follows (see [10]):

Proposition 1.5. Let d ≥ 2, (q, r) be wave-admissible and consider u, solution to the wave
equation

(∂2
t − ∆d)u(t, x) = 0, (t, x) ∈ R × R

d, u|t=0 = u0, ∂tu|t=0 = u1 (1.5)

for u0, u1 ∈ C∞(Rd); then there is a constant C such that

‖u‖Lq(R,Lr(Rd)) ≤ C(‖u0‖
Ḣ

d( 1
2− 1

r )− 1
q (Rd)

+ ‖u1‖
Ḣ

d( 1
2− 1

r )− 1
q −1

(Rd)
). (1.6)

Proposition 1.6. Let d ≥ 1, (q, r) be Schrödinger-admissible pair and u, solution to the
Schrödinger equation

(i∂t + ∆d)u(t, x) = 0, (t, x) ∈ R × R
d, u|t=0 = u0, (1.7)

for u0 ∈ C∞(Rd); then there is a constant C such that

‖u‖Lq
t (R,Lr(Rd)) ≤ C‖u0‖L2(Rd). (1.8)
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Strichartz estimates in the context of the wave and Schrödinger equations have a long
history, beginning with Strichartz pioneering work [17], where he proved the particular
case q = r for the wave and (classical) Schrödinger equations. This was later generalized
to mixed LqtL

r
x norms by Ginibre and Velo [4] for Schrödinger equations, where (q, r) is

sharp admissible and q > 2; the wave estimates were obtained independently by Ginibre-
Velo [5] and Lindblad-Sogge [12], following earlier work by Kapitanski [8]. The remaining
endpoints for both equations were finally settled by Keel and Tao [10].

For a manifold with smooth, strictly geodesically concave boundary, the Melrose and
Taylor parametrix yields the Strichartz estimates for the wave equation with Dirichlet
boundary condition (not including the endpoints) as shown in the paper of Smith and
Sogge [15]. If the concavity assumption is removed, however, the presence of multiply
reflecting geodesic and their limits, gliding rays, prevent the construction of a similar
parametrix!

In [9], Koch, Smith and Tataru obtained ”log-loss” estimates for the spectral clusters on
compact manifolds without boundary. Recently, Burq, Lebeau and Planchon [2] established
Strichartz type inequalities on a manifold with boundary using the Lr(Ω) estimates for the
spectral projectors obtained by Smith and Sogge [16]. The range of indices (q, r) that
can be obtained in this manner, however, is restricted by the allowed range of r in the
squarefunction estimate for the wave equation, which control the norm of u in the space
Lr(Ω, L2(−T, T )), T > 0 (see [16]). In dimension 3, for example, this restricts the indices
to q, r ≥ 5. The work of Blair, Smith and Sogge [1] expands the range of indices q and r
obtained in [2]: specifically, they show that if Ω is a compact manifold with boundary and
(q, r, β) is a triple satisfying

1

q
+
d

r
=
d

2
− β,

together with the restriction

{ 3
q

+ d−1
r

≤ d−1
2
, d ≤ 4

1
q

+ 1
r
≤ 1

2
, d ≥ 4,

then the Strichartz estimates (2.4) hold true for solutions u to the wave equation (1.2)
satisfying Dirichlet or Neumann homogeneous boundary conditions, with a constant C
depending on Ω and T .

Remark 1.7. Notice that Theorem 1.2 states for instance that the scale-invariant Strichartz
estimates fail for 3

q
+ 1

r
> 15

24
, whereas the result of Blair, Smith and Sogge states that such

estimates hold if 3
q
+ 1

r
≤ 1

2
. Of course, the counterexample places a lower bound on the loss

for such indices (q, r), and the work [1] would place some upper bounds, but this concise
statement shows one explicit gap in our knowledge that remains to be filled.

A very interesting and natural question would be to determine the sharp range of
exponents for the Strichartz estimates in any dimension d ≥ 2!

A classical way to prove Strichartz inequalities is to use dispersive estimates (see (2.5)).
The fact that weakened dispersive estimates can still imply optimal (and scale invariant)
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Strichartz estimates for the solution of the wave equation was first noticed by Lebeau:
in [11] he proved dispersive estimates with losses (which turned out to be optimal) for
the wave equation inside a strictly convex domain from which he deduced Strichartz type
estimates without losses but for indices (q, r) satisfying (1.1) with α = 1

4
in dimension 2.

A natural strategy for proving Theorem 1.2 would be to use the Rayleigh whispering
gallery modes which accumulate their energy near the boundary, contributing to large Lr

norms. Applying the semi-classical Schrödinger evolution shows that a loss of 1
6
(1

2
− 1

r
)

derivatives is necessary for the Strichartz estimates. However, when dealing with the wave
operator this strategy fails as the gallery modes satisfy the Strichartz estimates of the free
space:

Theorem 1.8. Let d ≥ 2 and let ∆d−1 denote the Laplace operator in Rd−1. Let

∆D = ∂2
x + (1 + x)∆d−1, where ∆d−1 =

d−1∑

j=1

∂2
yj
. (1.9)

Let ψ ∈ C∞
0 (Rd−1 \ {0}), k ≥ 1 and u0 ∈ Ek(Ω), where Ek(Ω) is to be later defined by

(2.10).

1. Let (q, r) be a Schrödinger-admissible pair in dimension d with q > 2 and consider
the semi-classical Schrödinger equation with Dirichlet boundary condition

(
h

i
∂t − h2∆D)u = 0, u|∂Ω = 0, u|t=0 = ψ(hDy)u0. (1.10)

Then u satisfies the following Strichartz estimates with a loss,

‖u‖Lq([0,T0],Lr(Ω)) . h−(d
2
+ 1

6
)( 1

2
− 1

r
)‖u|t=0‖L2(Ω). (1.11)

Moreover, the bounds (1.11) are optimal.

2. Let (q, r) be a wave-admissible pair in dimension d with q > 2 and consider the wave
equation with Dirichlet boundary conditions

(∂2
t − ∆D)u = 0, u|∂Ω = 0, u|t=0 = ψ(hDy)u0, ∂tu|t=0 = 0. (1.12)

Then the solution u of (1.12) satisfies

‖u‖Lq([0,T0],Lr(Ω) . h−d(
1
2
− 1

r
)+ 1

q ‖u|t=0‖L2(Ω). (1.13)

Remark 1.9. We prove Theorem 1.8 for the model case of the half-space

Ω = {x > 0, y ∈ R
d−1}

where the Laplacian ∆D was defined by (1.9). It is very likely that, using the parametrix
introduced by Eskin [3], we could obtain the same result for general operators.
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Notice that if the initial data u0 belongs to Ek(Ω) for some k ≥ 1 then the solution
u(t, x, y) to (1.10) localized in frequency at the level 1/h is given by

u(t, x, y) =
1

(2πh)d−1

∫
e

iyη
h û(t, x, η/h)dη,

therefor
û(t, x, η/h) = eithλk(η/h)ψ(η)û0(x, η/h),

where λk(η) = |η|2 + ωk|η|4/3 and û0(x, η/h) = Ai(|η|2/3x/h2/3 − ωk) is the eigenfunction
of −∆D,η = −∂2

x + (1 + x)η2 corresponding to the eigenvalue λk.

Theorem 1.8 shows that the method we used for the Schrödinger equation cannot yield
Theorem 1.2. We will proceed in a different manner, using co-normal waves with multiply
reflected cusps at the boundary (see Figure 1).

The paper is organized as follows: in Section 2 we will use gallery modes in order to
prove Theorem 1.8; in Section 3 we prove Theorem 1.2. Finally, the Appendix collects
several useful results.

Acknowledgements

The author would like to thank Gilles Lebeau who gave the initial idea of this work and
guided her from idea to achievement and Nicolas Burq for helpful conversations. The
author is also indebted to the referees for their remarks. The author was supported by the
A.N.R. grant 07-BLAN-0250.

2 Whispering gallery modes

2.1 Strichartz inequalities

Let n ≥ 2, 0 < T0 < ∞, ψ(ξ) ∈ C∞
0 (Rn \ {0}) and let G : Rn → R be a smooth function

G ∈ C∞ near the support of ψ. Let u0 ∈ L2(Rn) and h ∈ (0, 1] and consider the following
semi-classical problem

ih∂tu−G(
h

i
D)u = 0, u|t=0 = ψ(hD)u0. (2.1)

If we denote by e−
it
h
G the linear flow, the solution of (2.1) writes

e−
it
h
Gψ(hD)u0(x) =

1

(2πh)n

∫
e

i
h
(<x,ξ>−tG(ξ))ψ(ξ)û0(

ξ

h
)dξ. (2.2)

Let q ∈ (2,∞], r ∈ [2,∞] and set

1

q
= α(

1

2
− 1

r
), β = (n− α)(

1

2
− 1

r
). (2.3)
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Remark 2.1. Notice that the pair (q, r) is Schrödinger-admissible in dimension n if α = n
2

and wave admissible if α = n−1
2

.

With the notations in (2.3) the Strichartz inequalities for (2.1) read as follows

hβ‖e− it
h
Gψ(hD)u0‖Lq((0,T0],Lr(Rn)) ≤ C‖ψ(hD)u0‖L2(Rn). (2.4)

The classical way to prove (2.4) is to use dispersive inequalities which read as follows

‖e− it
h
Gψ(hD)u0‖L∞(Rn) . (2πh)−nγn,h(

t

h
)‖ψ(hD)u0‖L1(Rn) (2.5)

for t ∈ [0, T0], where we set

γn,h(λ) = sup
z∈Rn

|
∫
eiλ(zξ−G(ξ))ψ(ξ)dξ|. (2.6)

In Section 6.1 of the Appendix we prove the following:

Lemma 2.2. Let α ≥ 0 and (q, r) be an α-admissible pair in dimension n with q > 2. Let β

be given by (2.3). If the solution e−
it
h
G(ψ(hD)u0) of (2.1) satisfies the dispersive estimates

(2.5) for some function γn,h : R → R+, then there exists some C > 0 independent of h
such that the following inequality holds

hβ‖e− it
h
Gψ(hD)u0‖Lq((0,T0],Lr(Rn)) ≤ C

(
sup

s∈(0,
T0
h

)

sαγn,h(s))
) 1

2
− 1

r ‖u0‖L2(Rn). (2.7)

2.2 Gallery modes

Let Ω = {(x, y) ∈ Rd|x > 0, y ∈ Rd−1} denote the half-space Rd
+ with the Laplacian given

by (1.9) with Dirichlet boundary condition on ∂Ω. Taking the Fourier transform in the
y-variable gives

− ∆D,η = −∂2
x + (1 + x)|η|2. (2.8)

For η 6= 0, −∆D,η is a self-adjoint, positive operator on L2(R+) with compact resolvent.
Indeed, the potential V (x, η) = (1 + x)η2 is bounded from below, it is continuous and
limx→∞ V (x, η) = ∞. Thus one can consider the form associated to −∂2

x + V (x, η),

Q(u) =

∫

x>0

|∂xv|2+V (x, η)|v|2dx, D(Q) = H1
0 (R+)∩{v ∈ L2(R+), (1+x)1/2v ∈ L2(R+))},

which is clearly symmetric, closed and bounded from below. If c ≫ 1 is chosen such that
−∆D,η + c is invertible, then (−∆D,η + c)−1 sends L2(R+) in D(Q) and we deduce that
(−∆D,η + c)−1 is also a (self-adjoint) compact operator. The last assertion follows from
the compact inclusion

D(Q) = {v|∂xv, (1 + x)1/2v ∈ L2(R+), v(0) = 0} →֒ L2(R+).
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We deduce that there exists a base of eigenfunctions vk of −∆D,η associated to a sequence
of eigenvalues λk(η) → ∞. From −∆D,ηv = λv we obtain ∂2

xv = (η2−λ+xη2)v, v(0, η) = 0
and after a change of variables we find the eigenfunctions

vk(x, η) = Ai(|η| 23x− ωk), (2.9)

where (−ωk)k are the zeros of Airy’s function in decreasing order. The corresponding

eigenvalues are λk(η) = |η|2 + ωk|η|
4
3 .

Definition 2.3. For x > 0 let Ek(Ω) be the closure in L2(Ω) of

{u(x, y) =
1

(2π)d−1

∫
eiyηAi(|η| 23x− ωk)ϕ̂(η)dη, ϕ ∈ S(Rd−1)}, (2.10)

where S(Rd−1) is the Schwartz space of rapidly decreasing functions,

S(Rd−1) = {f ∈ C∞(Rd−1)|‖zαDβf‖L∞(Rd−1) <∞ ∀α, β ∈ N
d−1}.

For k fixed, a function u ∈ Ek(Ω) is called whispering gallery mode. Moreover, a function
u ∈ Ek(Ω) satisfies

(∂2
x + x∆d−1 − ωk|∆d−1|

2
3 )u = 0. (2.11)

Remark 2.4. We have the decomposition

L2(Ω) =
⊕

⊥
Ek(Ω).

Indeed, from the discussion above one can easily see that (Ek(Ω))k are closed, orthogonal
and that ∪kEk(Ω) is a total family (i.e. that the vector space spanned by ∪kEk(Ω) is dense
in L2(Ω)).

In Section 6.3 of the Appendix we prove the following:

Lemma 2.5. Let ψ, ψ1, ψ2 ∈ C∞
0 (Rd−1 \ {0}) be such that ψ1ψ = ψ1 and ψψ2 = ψ and

let ϕ ∈ C∞(Rd−1). Fix k ≥ 1 and let u ∈ Ek(Ω) be the function associated to ϕ in Ek(Ω).
For r ∈ [1,∞] there exist C1, C2 > 0 such that

C1‖ψ1(hDy)ϕ‖Lr(Rd−1) ≤ h−
2
3r ‖ψ(hDy)u‖Lr(R+×Rd−1) ≤ C2‖ψ2(hDy)ϕ‖Lr(Rd−1). (2.12)

As a consequence of Lemma 2.5 we have

Corollary 2.6. Let ϕ0 ∈ S(Rd−1), k ≥ 1 and u0 ∈ Ek(Ω) be such that

u0(x, y) =
1

(2π)d−1

∫
eiyηAi(|η| 23x− ωk)ϕ̂0(η)dη. (2.13)

In order to prove Theorem 1.8 we shall reduce the problem to the study of Strichartz type es-
timates for a problem with initial data ϕ0. More precisely, from Lemma 2.5 we immediately
deduce the following



2 WHISPERING GALLERY MODES 8

1. if u solves (1.10) with initial data ψ(hDy)u0, where u0 is given by (2.13) then in
order to prove that one can’t do better than (1.11) it is enough to establish that the
solution ϕ to

h

i
∂tϕ− h2(∆d−1 − ωk|∆d−1|

2
3 )ϕ = 0, ϕ|t=0 = ψ(hDy)ϕ0. (2.14)

satisfies the following Strichartz type estimates

‖ϕ‖Lq([0,T0],Lr(Rd−1)) ≤ ch−
(d−1)

2
( 1
2
− 1

r
)‖ψ(hDy)ϕ0‖L2(Rd−1). (2.15)

2. if u solves (1.12) with initial data (ψ(hDy)u0, 0) then in order to show that the gallery
modes give rise to the same Strichartz estimates as in the free case it is sufficient to
prove that the solution to

∂2
t ϕ− (∆d−1 − ωk|∆d−1|

2
3 )ϕ = 0, ϕ|t=0 = ψ(hDy)ϕ0, ∂tϕ|t=0 = 0 (2.16)

satisfies

‖ϕ‖Lq([0,T0],Lr(Rd−1)) ≤ ch−(d
2
− 1

6
)( 1

2
− 1

r
)‖ψ(hDy)ϕ0‖L2(Rd−1). (2.17)

Remark 2.7. Notice that for q̃ ≥ q > 2 and f ∈ C∞([0, T ]) we have

‖f‖Lq([0,T ]) . ‖f‖Lq̃([0,T ]),

thus in order to prove Theorem 1.8 it suffices to prove (2.15) (respective (2.17)) with q
replaced by some q̃ ≥ q.

2.3 Proof of Theorem 1.8

Let ϕ0 ∈ S(Rd−1), k ≥ 1, ω = ωk > 0 and u0 ∈ Ek(Ω) be such that

u0(x, y) =
1

(2π)d−1

∫
eiyηAi(|η| 23x− ωk)ϕ̂0(η)dη. (2.18)

1. Schrödinger equation

Let q̃ be given by
1

q̃
=

(d− 1)

2
(
1

2
− 1

r
). (2.19)

Let Gs(η) = |η|2 + ωh
2
3 |η| 43 . Using Corollary 2.6 and Remark 2.7 we are reduced

to prove (2.15), with q replaced by q̃, i.e. in order to prove Theorem 1.8 for the
Schrödinger operator it will be enough to establish

‖e− it
h
Gs(ψ(hDy)ϕ0)‖Lq̃([0,T ],Lr(Rd−1)) ≤ ch−

(d−1)
2

( 1
2
− 1

r
)‖ψ(hDy)ϕ0‖L2(Rd−1), (2.20)
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where

e−
it
h
Gs(ψ(hDy)ϕ0)(t, y) =

1

(2πh)d−1

∫
e

i
h
(<y,η>−t(|η|2+ωh

2
3 |η|

4
3 ))ψ(η)ϕ̂0(

η

h
)dη.

Let ω = ωk and set

J(z,
t

h
) :=

∫
ei

t
h
(<z,η>−Gs(η))ψ(η)dη. (2.21)

Recall that 0 6∈ supp(ψ), thus the phase function is smooth everywhere on the support
of ψ. With the notations in (2.6) we have to determine γd−1,h(

t
h
) = supz∈Rd−1|J(z, t

h
)|.

Note that if |t|
h

is bounded we get immediately that |J(z, t
h
)| is bounded, thus we can

consider the quotient t
h

to be large. Let λ = t
h
≫ 1 and apply the stationary phase

method. There is one critical point

z(η) = 2η +
4

3
ωh

2
3
η

|η| 23
,

non-degenerate since G′′
s(η) = 2Id + O(h

2
3 ) for η away from 0 and h small enough,

and we can also write η = η(z). We obtain

J(z, λ) ≃
( 2π√

λ

)d−1 e−
iπ
4

signG′′
s (η(z))

√
detG′′

s(η(z))
eiλΦ(z,η(z))σ(z, λ), (2.22)

where
Φ(z, η) =< z, η > −Gs(η), Φ(z, η(z)) = |η(z)|2 +

ω

3
h

2
3 |η(z)| 43 ,

σ(z;λ) ≃
∑

k≥0

λ−kσk(z), σ0(z) = ψ(η(z)).

From the definition (2.6) we deduce that we have γd−1,h(λ) ≃ λ−
(d−1)

2 . Consequently,
for λ = t

h
≫ 1 there exists some constant C > 0 such that the following dispersive

estimate holds

‖e− it
h
Gsψ(hDy)ϕ0‖L∞

y (Rd−1) ≤ Ch−(d−1)(
|t|
h

)−
(d−1)

2 ‖ψ(hDy)ϕ0‖L1
y(Rd−1). (2.23)

Interpolation between (2.23) and the energy estimate gives

‖e− it
h
Gsψ(hDy)ϕ0‖Lr

y(Rd−1) ≤ Ch−
(d−1)

2
(1− 2

r
)|t|− (d−1)

2
(1− 2

r
)‖ψ(hDy)ϕ0‖Lr′

y (Rd−1). (2.24)

Let q̃′ be such that 1
q̃

+ 1
q̃′

= 1 and let T be the operator

T : L2(Rd−1) → Lq̃([0, T0], L
r
y(R

d−1))
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which to a given ϕ0 ∈ L2(Rd−1) associates e−
it
h
Gsψ(hDy)ϕ0 ∈ Lq̃([0, T0], L

r
y(R

d−1)).

Then inequality (2.24) implies that for every g ∈ Lq̃
′
([0, T0], L

r′

y (Rd−1)) we have

‖TT ∗g‖Lq̃(0,T0]Lr
y

= ‖
∫ T

0

e−
i(t−s)

h
Gsψψ∗g(s)ds‖Lq̃((0,T0],Lr

y) ≤ (2.25)

≤ Ch−
(d−1)

2
(1− 2

r
)‖

∫ T

0

|t− s|−
(d−1)

2
(1− 2

r
)‖g(s)‖Lr′

y
ds‖Lq̃((0,T0]).

If q̃ > 2 the application |t|− 2
q̃ ∗ : Lq̃

′ → Lq̃ is bounded by the Hardy-Littlewood-
Sobolev theorem and we deduce that the Lq̃((0, T0], L

r
y(R

d−1)) norm of the operator

TT∗ is bounded from above by h−
(d−1)

2
(1− 2

r
), thus the norm ‖T‖L2→Lq̃((0,T0],Lr

y(Rd−1)) is

bounded from above by h−
(d−1)

2
( 1
2
− 1

r
).

• Optimality:

Let η0 ∈ Rd−1 \ {0} and for y ∈ Rd−1 set

ϕ0,h(y, η0) = h−(d−1)/4e
iΦ0(y,η0)

h , Φ0(y, η0) =< y, η0 > +
i|y|2

2
(2.26)

that satisfies
‖ϕ0,h‖L2

y
= π(d−1)/4, ‖ϕ0,h‖L∞

y
= h−(d−1)/4.

Proposition 2.8. Let T0 > 0 be small enough and let t ∈ [−T0, T0]. Then the
(local, holomorphic) solution ϕh(t, y, η0) of (2.14) with initial data ϕ0,h(y, η0)
has the form

ϕh(t, y, η0) ≃ h−(d−1)/4e
iΦ(t,y,η0)

h σ(t, y, η0, h),

where the phase function Φ(t, y, η0) satisfies the eikonal equation (2.27) lo-
cally in time t and for y in a neighborhood of 0, and where σ(t, y, η0, h) ≃∑

k≥0 h
kσk(t, y, η0) is a classical analytic symbol (see [14, Chps.1,9; Thm.9.1]

for the definition and for a complete proof).

Proof. For t ∈ [−T0, T0] small enough we can construct approximatively

ϕh(t, y, η0) = exp(−i t
h
Gs)ϕ0,h(y, η0)

to be the local solution to (2.14) with initial data ϕ0,h(y, η0). In order to solve
explicitly (2.14) we use geometric optic’s arguments: let first Φ(t, y, η0) be the
(local) solution to the eikonal equation

{
∂tΦ + |∇yΦ|2 + ω|∇yΦ|4/3 = 0,
Φ|t=0 = Φ0(y, η0).

(2.27)
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The associated complex Lagrangian manifold is given by

ΛΦ = {(t, y, τ, η)|τ = ∂tΦ, η = ∇yΦ}.
Let q(t, y, τ, η) = τ+|η|2+ω|η|4/3 and letHq denote the Hamilton field associated
to q. Then ΛΦ is generated by the integral curves of Hq which satisfy

{
(ṫ, ẏ, τ̇ , η̇) = (1,∇ηq, 0, 0),
(t, y, τ, η)|0 = (0, y0,−|∇yΦ0|2 − ω|∇yΦ0|4/3,∇yΦ0 = η0 + iy0).

(2.28)

We parametrize them by t and write the solution

(y(t, y0, η0), η(t, y0, η0)) = exp (tHq(y0, η0)).

The intersection

ΛR

Φ := {exp tHq(y0, η0)|t ∈ R} ∩ T ∗
R
d \ {0}

is empty unless y0 = 0, since it is so at t = 0 and since d exp (tHq) preserves
the positivity of the C-Lagrangian ΛΦ (see Definition 6.1 of the Appendix and
Lemma 6.4). Thus on the bicharacteristic starting from y0 = 0 the imaginary
part of the phase Φ(t, y(t, 0, η0), η0) vanishes. Moreover, the following holds:

Proposition 2.9. The phase Φ satisfies, for y in a neighborhood of 0,

Φ(t, y, η0) = Φ(t, y(t, 0, η0), η0) + (y − y(t, 0, η0))η(t, 0, η0)

+(y − y(t, 0, η0))B(t, y, η0)(y − y(t, 0, η0)),

where the phase Φ(t, y(t, 0, η0), η0) and its derivative η(t, 0, η0) with respect to the
y variable are real and the imaginary part of B(t, y, η0) ∈ Md−1(C) is positive
definite.

Proof. Indeed, the initial function Φ0 is complex valued with Hessian Im∇2
yΦ0

positive definite. Then it follows from [6, Prop.21.5.9] that the complexified
tangent plane of ΛΦ0 is a strictly positive Lagrangian plane (see [6, Def.21.5.5]).
The tangent plane at (y(t, 0, η0), η(t, 0, η0)) is the image of the complexified tan-
gent plane of ΛR

Φ0
at (y0 = 0, η0) under the complexification of a real symplectic

map, hence strictly positive. More details for these arguments are given in
Section 6.2 of the Appendix.

We look now for ϕh(t, y, η0) of the form h−(d−1)/4e
i
h
Φ(t,y,η0)σ(t, y, η0, h) where

σ =
∑
hkσk must be an analytic classical symbol. Substitution in (2.14) yields

the following system of transport equations




Lσ0 = 0, σ0|t=0 = 1,
Lσ1 + f1(σ0) = 0, σ1|t=0 = 0,
.
.
Lσk + fk(σ0, .., σk−1) = 0, σk|t=0 = 0,
.



2 WHISPERING GALLERY MODES 12

where L = ∂
∂t

+
∑d−1

j=1 q
j(y,∇yΦ)+s(y, η0) with s(y, η0) analytic and fk(σ0, .., σk−1)

a linear expression with analytic coefficients of derivatives of σ0,.., σk−1. It is
clear that we can solve this system for y in some complex domain O, inde-
pendently of k; in [14, Chps. 9,10] it is shown that in this way σ becomes an
analytic symbol there.

Let us define σk(t, y, η0) = σk(t, y, η0) for (t, y) ∈ (−T0, T0)×O and σk(t, y, η0) =
0 otherwise and let σ(t, y, η0, h) :=

∑
k≥0 h

kσk(t, y, η0). Set also

ϕ
h
(t, y, η0) = h−(d−1)/4e

i
h
Φ(t,y,η0)σ(t, y, η0, h),

thus ϕ
h

solves (2.14) for t ∈ [−T0, T0] and y ∈ Rd−1 and we can compute the

Lr(Rd−1) norm of ϕ
h
(t, y, η0) globally in y:

‖ϕ
h
(t, ., η0)‖Lr(Rd−1) =

h−(d−1)/4(

∫
e−

r
h
(y−y(t,0,η0))ImB(t,y,η0)(y−y(t,0,η0))|σ(t, y, η0, h)|rdy)1/r ≃

h−(d−1)/4+(d−1)/2r(1 +O(h−1))

and consequently for T0 small enough we have

‖ϕ
h
‖Lq((0,T0],Lr(Rd−1)) = h−

d−1
2

( 1
2
− 1

r
)(1 +O(h−1))

and we conclude using Corollary 2.6.

2. Wave equation Let (q, r) be a sharp wave-admissible pair in dimension d ≥ 2,
q > 2, and let q̃ be given by (2.19). Using Corollary 2.6 and Remark 2.7 and since
q̃ ≥ q, we are reduced to prove (2.17) with q replace by q̃, i.e.

‖ei t
h
Gw(ψ(hDy)ϕ0)‖Lq̃([0,T0],Lr(Rd−1)) . h−(d

2
− 1

6
)( 1

2
− 1

r
)‖ψ(hDy)ϕ0‖L2(Rd−1),

where Gw(η) =

√
|η|2 + ωh

2
3 |η| 43 and

ei
t
h
Gw(ψ(hDy)ϕ0)(t, y) =

1

(2πh)d−1

∫
e

i
h
(<y,η>−t

q

|η|2+ωh
2
3 |η|

4
3 )ψ(η)ϕ̂0(

η

h
)dη.

In order to obtain dispersive estimates we need the following

Proposition 2.10. Let λ = t
h

and set as before

J(z, λ) :=

∫
eiλ(zη−Gw(η))ψ(η)dη, γd−1,h(λ) = sup

z∈Rd−1

|J(z, λ)|. (2.29)

Then the function γd−1,h satisfies

γd−1,h(λ) ≃ h−1/3λ−(d−1)/2.
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We postpone the proof of Proposition 2.10 for the end of this section and proceed.

End of the proof of Theorem 1.8

From (2.5) the dispersive estimates read as follows

‖e− it
h
Gwψ(hDy)ϕ0‖L∞(Rd−1) . h−d+1− 1

3 (
t

h
)−

(d−1)
2 ‖ψ(hDy)ϕ0‖L1(Rd−1). (2.30)

Lemma 2.2 can be applied at this point of the proof for the d−1
2

wave-admissible pair
in dimension d− 1, (q̃, r), in order to obtain

‖e− it
h
Gwψ(hDy)ϕ0‖L2→Lq̃(0,T0],Lr(Rd−1) . h−(d

2
− 1

6
)( 1

2
− 1

r
). (2.31)

We conclude using again Corollary 2.6. It remains to prove Proposition 2.10.

Proof. of Proposition 2.10

As before, the case of most interest in the study of supz∈Rd−1 |J(z, λ)| will be the one
for which λ ≫ 1, since when t

h
remains bounded good estimates are found imme-

diately. We shall thus concentrate on the case λ ≫ 1 and we apply the stationary
phase lemma. Notice that on the support of ψ the phase function of J is smooth.
On the other hand, since η stays away from a neighborhood of 0, the critical point
of J(z, λ) satisfies

z = G′
w(η) =

η

|η| +O(h
2
3 ).

In order to estimate |J(z, λ)| it will be thus enough to localize in a h2/3 neighborhood
of |z| = 1. We shall assume without loss of generality that ψ is radial and set
ψ̃(|η|) = ψ(η) in which case J(., λ) depends also only on |z| and it is enough to
estimate

J(|z|e1, λ) =

∫ ∞

0

∫

Sd−2

eiλ(|z|ρθ1−
√
ρ2+ωh2/3ρ4/3)ψ̃(ρ)ρd−2dθdρ, (2.32)

where e1 = (1, 0, .., 0) ∈ Rd−1 and Sd−2 is the unit sphere in Rd−1. The derivative
with respect to ρ gives |z|θ1 = ρ√

ρ2+ωh2/3ρ4/3
≃ 1 and making integrations by parts

with respect to ρ one sees that the contribution in the integral in η in (2.29) is
O(λ−∞) if |z| ≪ 1. Consequently, one may assume |z| ≥ c > 0. As a consequence
θ1 can be taken close to 1, and since on the sphere Sd−2 one has θ1 = ±

√
1 − θ′2,

θ = (θ1, θ
′) ∈ R

d−1, we can introduce a cutoff function b(θ′) supported near 0 such
that the right hand side in (2.32) writes, modulo O((λ|z|)−∞)

∑

±

∫ ∞

0

∫

θ′
eiλ(±ρ|z|

√
1−θ′2−

√
ρ2+ωh2/3ρ4/3)b(θ′)ψ̃(ρ)ρd−2dθ′dρ.
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The term corresponding to the critical point −1 gives a contribution O(λ−∞) in the
integral with respect to ρ by non-stationary phase theorem. Using the stationary
phase theorem for the integral in θ′ we find

J(|z|e1, λ) ≃
∫ ∞

0

eiλ(|z|ρ−
√
ρ2+ωh2/3ρ4/3)ψ̃(ρ)σ+(λ|z|ρ)dρ+O(λ−∞),

where σ+ is a symbol of order −(d − 2)/2. In order to estimate this term we write
its phase function as follows

|z|ρ−
√
ρ2 + ωh2/3ρ4/3 = (|z| − 1)ρ− (

√
ρ2 + ωh2/3ρ4/3 − ρ)

and set |z| − 1 = h2/3x. Hence J(|z|e1, λ) can be estimated by

J((1 + h2/3x)e1, λ) ≃
∫ ∞

0

e
iµ(ρx− ωρ1/3

1+

√
1+ωh2/3ρ1/3

)

ψ̃(ρ)σ+(λρ(1 + h2/3x))dρ. (2.33)

We distinguish two cases, weather 1 ≪ λ = t/h . h−2/3 or 1 ≪ µ = λh2/3 = h−1/3t.

• In the first case µ . 1 and formula (2.33) give us bounds from above for
supz |J(z, λ)| of the form λ−(d−2)/2 (recall that for |z| away from a h2/3-neighborhood
of 1 the problem was trivial by non-stationary lemma).

• If 1 ≪ µ = h−1/3t and x 6= 0 we apply the stationary phase lemma in dimension
one with phase Φ(ρ) = ρx − ω

2
ρ1/3 which is smooth since ρ 6= 0 and has one

critical, non-degenerate (Φ′′(ρ) = ω
9
ρ−5/3 6= 0) point satisfying

ρ = (6x/ω)−3/2.

For values of x for which (6x/ω)−3/2 belongs to the support of ψ̃ we find

J((1 + h2/3x)e1, λ) ≃ C(x)λ−
d−2
2 µ− 1

2 +O(λ−
d−2
2 µ−3/2) (2.34)

≃ C(x)λ−
d−1
2 h−

1
3 +O(λ−

d−2
2 µ−3/2),

with C(x) bounded and consequently we can determine γd−1,h defined by (2.6)
where n = d− 1 and G = Gw. We find

γd−1,h(
t

h
) ≃ h−

1
3

( t
h

)− d−1
2
, (2.35)

thus the proof is complete.



3 CONORMAL WAVES WITH CUSP IN DIMENSION D = 2 15

3 Conormal waves with cusp in dimension d = 2

In what follows let 0 < ǫ≪ 1 be small. We shall construct a sequence Wh,ǫ of approximate
solutions of the wave equation

(∂2
t − ∆D)V (t, x, y) = 0 for (t, x, y) ∈ R × R

2, V |[0,1]×∂Ω = 0, (3.1)

which contradicts the Strichartz estimates of the free space (see Proposition 1.5). Using the
approximate solutions Wh,ǫ we shall conclude Theorem 1.2 by showing that one can find
(exact) solutions Vh,ǫ of (3.1) which provide losses of derivatives for the Lq([0, 1], Lr(Ω))
norms of at least 1

6
(1

4
− 1

r
) − ǫ for r > 4 when compared to the free space, (q, r) being a

wave-admissible pair in dimension 2.

3.1 Motivation for the choice of the approximate solution

Let the wave operator be given by � = ∂2
t − ∂2

x − (1 + x)∂2
y and let p(t, x, y, τ, ξ, η) =

ξ2 + (1 + x)η2 − τ 2 denote its (homogeneous) symbol. The characteristic set of � is the
closed conic set {(t, x, y, τ, ξ, η)|p(t, x, y, τ, ξ, η) = 0}, denoted Char(p). We define the
semi-classical wave front set WFh(u) of a distribution u on R3 to be the complement of
the set of points (ρ = (t, x, y), ζ = (τ, ξ, η)) ∈ R3 × (R3 \ 0) for which there exists a symbol
a(ρ, ζ) ∈ S(R6) such that a(ρ, ζ) 6= 0 and for all integers m ≥ 0 the following holds

‖a(ρ, hDρ)u‖L2 ≤ cmh
m.

Let ρ = ρ(σ), ζ = ζ(σ) be a bicharacteristic of p(ρ, ζ), i.e. such that (ρ, ζ) satisfies

dρ

dσ
=
∂p

∂ζ
,

dζ

dσ
= −∂p

∂ρ
, p(ρ(0), ζ(0)) = 0. (3.2)

Assume that the interior of Ω is given by the inequality γ(ρ) > 0, in this case γ(ρ =
(t, x, y)) = x. Then ρ = ρ(σ), ζ = ζ(σ) is tangential to R × ∂Ω if

γ(ρ(0)) = 0,
d

dσ
γ(ρ(0)) = 0. (3.3)

We say that a point (ρ, ζ) on the boundary is a gliding point if it is a tangential point and
if in addition

d2

dσ2
γ(ρ(0)) < 0. (3.4)

This is equivalent (see for example [3]) to saying that (ρ, ζ) ∈ T ∗(R × ∂Ω) \ 0 is a gliding
point if

p(ρ, ζ) = 0, {p, γ}|(ρ,ζ) = 0, {{p, γ}, p}|(ρ,ζ) > 0, (3.5)

where {., .} denotes the Poisson braket. We say that a point (ρ, ζ) is hyperbolic if x = 0
and τ 2 > η2, so that there are two distinct nonzero real solutions ξ to ξ2+(1+x)η2−τ 2 = 0.
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Consider an approximate solution for (3.1) of the form
∫
e

i
h
(yη+tτ+(x+1− τ2

η2 )ξ+ ξ3

3η2 )
g(t, ξ/η, τ, h)Ψ(η)/ηdξdηdτ (3.6)

where the symbol g is a smooth function independent of x, y and where Ψ ∈ C∞
0 (R∗) is

supported for η in a small neighborhood of 1, 0 ≤ Ψ(η) ≤ 1, Ψ(η) = 1 for η near 1. This
choice is motivated by the following: if v(t, x, y) satisfies (∂2

t − ∂2
x − (1 + x)∂2

y)v = 0, then
taking the Fourier transform in time t and space y we get ∂2

xv̂ = ((1 + x)η2 − τ 2)v̂, thus v̂
can be expressed using Airy’s function (given in Section 6.3) and its derivative. After the
change of variables ξ = ηs, the Lagrangian manifold associated to the phase function Φ of
(3.6) will be given by

ΛΦ = {(t, x, y, τ = ∂tΦ, ξ = ∂xΦ = ηs, η = ∂yΦ)|∂sΦ = 0, ∂ηΦ = 0} ⊂ T ∗
R

3 \ 0. (3.7)

Let π : ΛΦ → R3 be the natural projection and let Σ denote the set of its singular points.
The points where the Jacobian of dπ vanishes lie over the caustic set, thus the fold set is
given by Σ = {s = 0} and the caustic is defined by π(Σ) = {x+ (1 − τ2

η2
) = 0}.

If on the boundary we are localized away from the caustic set π(Σ), ΛΦ|x=0
is the

graph of a pair of canonical transformations, the billiard ball maps δ±. Roughly speaking,
the billiard ball maps δ± : T ∗(R × ∂Ω) → T ∗(R × ∂Ω), defined on the hyperbolic region,
continuous up to the boundary, smooth in the interior, are defined at a point of T ∗(R×∂Ω)
by taking the two rays that lie over this point, in the hypersurface Char(p), and following
the null bicharacteristic through these points until you pass over {x = 0} again, projecting
such a point onto T ∗(R × ∂Ω) (a gliding point being ”a diffractive point viewed from the
other side of the boundary”, there is no bicharacteristic in T ∗(R × ∂Ω) through it, but in
any neighborhood of a gliding point there are hyperbolic points).

In our model case the analysis is simplified by the presence of a large commutative
group of symmetries, the translations in (y, t), and the billiard ball maps have specific
formulas

δ±(y, t, η, τ) =
(
y ± 4(

τ 2

η2
− 1)1/2 ± 8

3
(
τ 2

η2
− 1)3/2, t∓ 4(

τ 2

η2
− 1)1/2 τ

η
, η, τ

)
. (3.8)

Away from π(Σ) these maps have no recurrent points, since under iteration t((δ±)n) → ±∞
as n→ ∞. The composite relation with n factors

ΛΦ|x=0 ◦ ... ◦ ΛΦ|x=0

has, always away from π(Σ), n + 1 components, obtained namely using the graphs of the
iterates (δ+)n, (δ+)n−2, .., (δ−)n,

(δ±)n(y, t, η, τ) =
(
y ± 4n(

τ 2

η2
− 1)1/2 ± 8

3
n(
τ 2

η2
− 1)3/2, t∓ 4n(

τ 2

η2
− 1)1/2 τ

η
, η, τ

)
. (3.9)

All these graphs, of the powers of δ±, are disjoint away from π(Σ) and locally finite, in the
sense that only a finite number of components meet any compact subset of { τ2

η2
− 1 > 0}.
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Since (δ±)n are all immersed canonical relations, it is necessary to find a parametrization of
each to get at least microlocal representations of the associated Fourier integral operators.
We see that

yη + tτ +
4

3
η(
τ 2

η2
− 1)3/2,

are parametrizations of ΛΦ|x=0
, thus the iterated Lagrangians (ΛΦ|x=0

)◦n are parametrized
by

yη + tτ +
4

3
nη(

τ 2

η2
− 1)3/2,

and the corresponding phase functions associated to (ΛΦ)◦n will be given by

Φn = Φ +
4

3
nη(

τ 2

η2
− 1)3/2.

Let us come back to the wave equation (3.1) and describe the approximate solution we
want to chose. The domain Ω being strictly convex, at each point on the boundary there
exists a bicharacteristic that intersects the boundary R × ∂Ω tangentially having exactly
second order contact with the boundary and remaining in the complement of R× Ω̄. Here
we deal with γ(ρ) = x and (3.5) translates into x = ξ = 0, |τ | = |η| > 0. Let

(ρ0, ζ0) = (0, 0, 0, 0, 1,−1) ∈ T ∗(R × ∂Ω).

We shall place ourself in the region Va near (ρ0, ζ0),

Va = {(ρ, ζ)|ξ2 + (1 + x)η2 − τ 2 = 0, x = 0, τ 2 = (1 + a)η2},

where a = hδ, 0 < δ < 2/3 will be chosen later and η belongs to a neighborhood of 1.
Notice that, in some sense, a measures the ”distance” to the gliding point (ρ0, ζ0).

Let uh be defined by

uh(t, x, y) =

∫
e

i
h
(yη−t(1+a)1/2η+(x−a)ξ+ ξ3

3η2 )
g(t, ξ/η, h)Ψ(η)/ηdξdη, (3.10)

where the symbol g is a smooth function independent of x, y and where Ψ ∈ C∞
0 (R∗) is

supported for η in a small neighborhood of 1, 0 ≤ Ψ(η) ≤ 1, Ψ(η) = 1 for η near 1. We
consider the sum

Uh(t, x, y) =

N∑

n=0

unh(t, x, y), unh(t, x, y) =

∫
e

i
h
Φngn(t, s, η, h)Ψ(η)dηds,

where Φn = Φ+ 4
3
nηa3/2 are the phase functions defined above such that ΛΦn = (ΛΦ)◦n and

where the symbols gn will be chosen such that on the boundary the Dirichlet condition to be
satisfied. At x = 0 the phases have two critical, non-degenerate points, thus each unh writes
as a sum of two trace operators, Tr±(unh), localized respectively for y− (1+a)1/2t+ 4

3
na3/2

near ±2
3
na3/2, and in order to obtain a contribution OL2(h∞) on the boundary we define
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A

Figure 1: Propagation of the cusp. A caustic is defined as the envelope of the rays which
appear in a given problem: each ray is tangent to the caustic at a given point. If one
assigns a direction on the caustic, it induces a direction on each ray. Each point outside
the caustic lies on a ray which has left the caustic and also lies on a ray approaching the
caustic. Each curve of constant phase has a cusp where it meets the caustic.

the symbols such that Tr−(gn) + Tr+(gn+1) = OL2(h∞). This will be possible by Egorov
theorem, as long asN ≪ a3/2/h. This last condition, together with the assumption of finite
time (which implies 0 < N( τ

2

η2
− 1)1/2 < ∞) allows to estimate the number of reflections

N .
The motivation of this construction comes from the fact that near the caustic set

π(Σ) one notices a singularity of cusp type for which one can estimate the Lr(Ω) norms.
Moreover, if at t = 0 one considers symbols localized in a small neighborhood of the caustic
set, then one can show that the respective ”pieces of cusps” propagate until they reach the
boundary but short after that their contribution becomes OL2(h∞), since as t increases, s
takes greater values too and thus one quickly quits a neighborhood of the Lagrangian ΛΦ

which contains the semi-classical wave front set WFh(uh) of uh. This argument is valid
for all unh, thus the approximate solutions unh will have almost disjoints supports and the
Lq([0, 1], Lr(Ω)) norms of the sum Uh will be computed as the sum of the norms of each
unh on small intervals of time of size a1/2.
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3.2 Choice of the symbol

Let a = hδ, 0 < δ < 2/3 to be chosen and let uh be given by the formula (3.10). Applying
the wave operator � to uh gives:

h2
2uh =

∫
e

i
h
Φ
(
h2∂2

t g − 2ihη(1 + a)1/2∂tg + η2(x− a+ s2)g
)
Ψ(η)dsdη

=

∫
e

iη
h

(y−t(1+a)1/2+s(x−a)+ s3

3
)
(
h2∂2

t g + ihη(∂sg − 2(1 + a)1/2∂tg)
)
ηΨ(η)dsdη. (3.11)

Definition 3.1. Let λ ≥ 1. For a given compact K ⊂ R we define the space SK(λ),
consisting of functions ̺(z, λ) ∈ C∞(R) which satisfy

1. supz∈R,λ≥1 |∂αz ̺(z, λ)| ≤ Cα, where Cα are constants independent of λ,

2. If ψ(z) ∈ C∞
0 is a smooth function equal to 1 in a neighborhood of K, 0 ≤ ψ ≤ 1

then (1 − ψ)̺ ∈ OS(R)(λ
−∞).

An example of function ̺(z, λ) ∈ SK(λ), K ⊂ R is the following: let k(z) be the smooth
function on R defined by

k(z) =

{
c exp (−1/(1 − |z|2)), if |z| < 1,
0, if |z| ≥ 1,

where c is a constant chosen such that
∫

R
k(z)dz = 1. Define a mollifier kλ(z) := λk(λz)

and let ˜̺ ∈ C∞
0 (K) be a smooth function with compact support included in K. If we set

̺(z, λ) = (˜̺∗ kλ)(z), then one can easily check that ̺ belongs to SK(λ).

Let λ = λ(h) = h3δ/2−1, K0 = [−c0, c0] for some small 0 < c0 < 1 and let ̺(., λ) ∈
SK0(λ) be a smooth function. We define

g(t, s, h) = ̺(
t+ 2(1 + a)1/2s

2(1 + a)1/2a1/2
, λ). (3.12)

Notice that t+ 2(1 + a)1/2s is an integral curve of the vector field ∂s − 2(1 + a)1/2∂t, thus
inserting (3.12) in (3.11) gives

2uh = h−δ(4(1 + a))−1

∫
e

i
h
Φ∂2

1̺(
t+ 2(1 + a)1/2s

2(1 + a)1/2a1/2
, λ)Ψ(η)dsdη. (3.13)
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3.3 The boundary condition

We compute uh on the boundary. We make the change of variables s = a1/2v in the integral
defining uh(t, 0, y) and set z = t

2(1+a)1/2a1/2 . Then

uh(t, 0, y) = a1/2

∫

η

ηλ

2π
e

iη
h

(y−t(1+a)1/2)×

×
(∫

ζ

∫

v

eiηλ( v3

3
−v(1−ζ))dv

∫

z′
eiηλ(z−z′)ζ̺(z′, λ)dz′dζ

)
Ψ(η)dη

= a1/2

∫

η

(ηλ)2/3e
iη
h

(y−t(1+a)1/2)Ψ(η)×

×
∫

ζ,z′
eiηλ(z−z′)ζAi(−(ηλ)2/3(1 − ζ))̺(z′, λ)dz′dζdη. (3.14)

For η ∈ supp(Ψ) we introduce

I(̺(., λ))η(z, λ) :=
(ηλ)7/6

2π

∫

ζ,z′
eiηλ(z−z′)ζAi(−(ηλ)2/3(1 − ζ))̺(z′, λ)dz′dζ, (3.15)

then

Ψ(η)(I(̺(., λ))η)
∧(ηλζ, λ) = (ηλ)1/6Ψ(η)Ai(−(ηλ)2/3(1 − ζ))ˆ̺(ηλζ, λ). (3.16)

The next Lemma shows that the symbol of the operator defined in (3.15) is localized for ζ
as close as we want to 0.

Lemma 3.2. For ̺(., λ) ∈ SK(λ) for some compact K then (I(̺)η)
∧(., λ) defined by (3.15),

(3.16) is localized near ζ = 0, more precisely, if χ is a smooth function with support included
in a small neighborhood (−2c, 2c) of 0, 0 < c ≤ 1/4, χ|[−c,c] = 1, 0 ≤ χ ≤ 1, then we have
for η ∈ supp(Ψ)

I(̺(., λ))η(z, λ) =
(ηλ)7/6

2π

∫

ζ,z′
eiηλ(z−z′)ζAi(−(ηλ)2/3(1 − ζ))×

× χ(ζ)̺(z′, λ)dz′dζ +OS(R)((ηλ)−∞). (3.17)

Proof. Let ̺(., λ) ∈ SK(λ). If we set, for η ∈ supp(Ψ)

J(̺(., λ))η(z, λ) :=
(ηλ)7/6

2π

∫

ζ,z′
eiηλ(z−z′)ζAi(−(ηλ)2/3(1 − ζ))(1 − χ(ζ))̺(z′, λ)dz′dζ

we need to prove the following

Ψ(η)J(̺(., λ))η(z, λ) ∈ Ψ(η)OS(Rz)((ηλ)−∞) = OS(Rz)(λ
−∞),
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which is the same as to show that (J(̺))∧η (ξ, λ) ∈ OS(Rξ)(λ
−∞) or equivalently that

Ψ(η)J(̺)∧η (ηλζ, λ) ∈ Ψ(η)OS(Rζ)((ηλ)−∞). (3.18)

In order to prove (3.18) we first compute (J(̺))∧η (ηλζ, λ) explicitly:

Ψ(η)(J(̺(., λ)))∧η (ηλζ, λ) =

= (ηλ)1/6Ψ(η)Ai(−(ηλ)2/3(1 − ζ))(1− χ(ζ))ˆ̺(ηλζ, λ) (3.19)

It remains to show that the right hand side of (3.19) belongs to Ψ(η)OS(Rz)((ηλ)−∞).
Notice that this will conclude the proof of the Lemma 3.2. If χ(ζ) 6= 1 then ζ lies outside
a neighborhood of 0, |ζ | ≥ c and for η ∈ supp(Ψ) we can perform integrations by parts in
the integral defining ˆ̺(ηλζ, λ):

Ψ(η)ˆ̺(ηλζ, λ) = Ψ(η)

∫

z′
e−iηλζz

′

̺(z′, λ)dz′ =

=
Ψ(η)

(iηλζ)m

∫

z′
e−iηλζz

′

∂mz′ ̺(z
′, λ)dz′. (3.20)

Writing ̺(z′, λ) = ψ(z′)̺(z′, λ)+(1−ψ(z′))̺(z′, λ) for some smooth cutoff function ψ equal
to 1 on K and using that ‖∂mz′ (ψ̺)(., λ)‖L∞(R) ≤ C ′

m for some constants C ′
m independent

of λ and that, on the other hand ∂mz′ ((1 − ψ)̺(., λ)) ∈ OS(R)(λ
−∞), we deduce the desired

result.

In what follows we use the results in Section 6.3 of the Appendix in order to write, for
ζ close to 0

Ai(−(ηλ)2/3(1 − ζ)) = A+(−(ηλ)2/3(1 − ζ)) + A−(−(ηλ)2/3(1 − ζ))

where A± have the following asymptotic expansions

A±(−(ηλ)2/3(1 − ζ)) ≃ (ηλ)−1/6(1 − ζ)−1/4×

× e∓
2i
3
ηλ(1−ζ)3/2± iπ

2
− iπ

4 (
∑

j≥0

a±,j(−1)−j/2(1 − ζ)−3j/2

(ηλ)j
). (3.21)

We obtain two contributions in I(̺(., λ))η(., λ) which we denoted

(ηλ)7/6

2π

∫

ζ,z′
eiηλ(z−z′)ζA±(−(ηλ)2/3(1 − ζ))χ(ζ)̺(z′, λ)dz′dζ. (3.22)

We can summarize the preceding results as follows:

Proposition 3.3. On the boundary uh|x=0 writes (modulo OS(R)(λ
−∞)) as a sum of two

trace operators,
uh(t, 0, y) = Tr+(uh)(t, y; h) + Tr−(uh)(t, y; h), (3.23)
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where, for z = t
2(1+a)1/2a1/2 ,

Tr±(uh)(t, y; h) = 2π

√
a

λ

∫
e

iη
h

(y−t(1+a)1/2∓ 2
3
a3/2)η−1/2Ψ(η)I±(̺)η(z, λ)dη, (3.24)

I±(̺(., λ))η(z, λ) = e±iπ/2−iπ/4
ηλ

2π

∫

ζ,z′
eiηλ(ζ(z−z′)∓ 2

3
((1−ζ)3/2−1))×

× χ(ζ)a±(ζ, ηλ)̺(z′, λ)dz′dζ, (3.25)

and where a± are the symbols of the Airy functions A±

a±(ζ, ηλ) ≃ (1 − ζ)−1/4(
∑

j≥0

a±,j(−1)−j/2(1 − ζ)−3j/2

(ηλ)j
), (3.26)

where a±,j are given in (6.11).

We also need the next Lemma:

Lemma 3.4. Let p ∈ Z and for some 0 < c0 < 1 set Kp = [−c0 + p, c0 + p]. Then for η
belonging to the support of Ψ we have I±,η : SKp(λ) → SKp∓1(λ).

Proof. The phase functions in I±(̺(., λ))η(z, λ) are given by

ηφ±(z, z′, ζ) = η((z − z′)ζ ∓ 2

3
((1 − ζ)3/2 − 1)),

with critical points satisfying

∂ζφ±(z, z′, ζ) = z − z′ ± (1 − ζ)1/2 = 0, ∂z′φ±(z, z′, ζ) = −ζ = 0.

Outside small neighborhoods of ζ = 0 and z′ = z ± (1 − ζ)1/2 we make integrations by
parts in order to obtain a small contribution Ψ(η)OS(R)((ηλ)−∞). Indeed, if we write

Ψ(η)I±(̺(., λ))η(z, λ) = (3.27)

= e±iπ/2−iπ/4Ψ(η)
ηλ

2π

∫

ζ,z′
eiηλ((z−z′)ζ∓ 2

3
((1−ζ)3/2−1))a±(ζ, ηλ)χ(ζ)̺(z′, λ)dz′dζ,

where a± are given in (3.26), we have to check that the conditions of Definition 3.1 are
satisfied for I±(̺(., λ))η(z, λ) and SKp∓1(λ):

• First we prove that for η ∈ supp(Ψ)

sup
z∈R,λ≥1

|∂αz I±(̺)η(z, λ)| ≤ C1
α. (3.28)
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For η ∈ supp(Ψ) we have

Ψ(η)∂αz I±(̺)η(z, λ) = e±iπ/2−iπ/4Ψ(η)
ηλ

2π

∫

ζ,z′
eiηλ((z−z′)ζ∓ 2

3
((1−ζ)3/2−1))×

× (iηλζ)αa±(ζ, λ)χ(ζ)̺(z′, λ)dz′dζ, (3.29)

and we shall split the integral in ζ in two parts, according to λζ ≤ 2 or λζ > 2
for η on the support of Ψ: in the first case there is nothing to do, the change of
variables ξ = ηλζ allowing to obtain bounds of type (3.28). In case λζ > 2 we
make integrations by parts in the integral defining ˆ̺(ηλζ, λ) like in (3.20) in order to
conclude.

• Secondly, let ψ± be smooth cutoff functions equal to 1 in small neighborhoods of
Kp∓1 and such that 0 ≤ ψ± ≤ 1. We prove that

(1 − ψ±(z))Ψ(η)I±(̺)η(z, λ) = Ψ(η)OS(R)((ηλ)−∞).

Since ψ± equal to 1 on some neighborhoods of Kp∓1 there exist c′ > 0 small enough
such that ψ±|[−c0+p∓1−5c′,c0+p∓1+5c′] = 1. Since (I(̺)η)

∧ is localized as close as we
want to ζ = 0 then from the proof of Lemma 3.2 we can find some (other) smooth
function χ̃ with support included in (−2c′, 2c′), equal to 1 on [−c′, c′] so that

Ψ(η)(I(̺)η)
∧(ηλζ, λ) = Ψ(η)(I(̺)η)

∧(ηλζ, λ)χ̃(ζ) + Ψ(η)OS(R)((ηλ)−∞).

Let ψ ∈ C∞
0 with support included in (−c0+p−c′, c0+p+c′). We split ̺ = ψ̺+(1−

ψ)̺ and since (1−ψ)̺(., λ) belongs to OS(R)(λ
−∞) it is enough to prove the preceding

assertion with ̺ replaced by ψ̺. On the support of ψ̺ we have |z′ − p| ≤ c0 + c′ and
on the support of 1 − ψ± we have |z − p± 1| > c0 + 5c′. On the other hand, if c′ is
chosen small enough then on the support of ψ we have 1− 3c′ ≤ (1− ζ)1/2 ≤ 1 + 3c′,
thus we can make integrations by parts in the integral in ζ since in the region we
consider we have |∂ζφ±| ≥ p ∓ 1 + c0 + c′ − p − c0 − c′ ± 1 − 3c′ ≥ c′. From the
discussion above and

(1 − ψ±(z))I±(̺)η(z, λ) = e±iπ/2−iπ/4(1 − ψ±(z))×

× Ψ(η)
ηλ

2π

∫

ζ,z′
eiηλ((z−z′)ζ∓ 2

3
((1−ζ)3/2−1))a±(ζ, ηλ)χ̃(ζ)ψ(z′)̺(z′, λ)dz′dζ (3.30)

we conclude by performing integrations by parts in ζ . In fact, we could have noticed
from the beginning that, inserting under the integral (3.30) a cut-off localized close
to ζ = 0, z′ = z and performing integrations by parts, one makes appear a factor
bounded by (1 + λ|η||ζ |)−N for all N ≥ 0.
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3.3.1 Construction of the approximate solution

Let p ∈ Z and Kp = [−c0 + p, c0 + p]. For η ∈ supp(Ψ), some λ̃ ≥ 1 and ̺(., λ̃) ∈ SK0(λ̃)
write

I±(̺(., λ̃))η(z, λ) = e±iπ/2−iπ/4
ηλ

2π

∫
eiηλ(zζ−ψ±(z′,ζ))χ(ζ)a±(ζ, ηλ)̺(z′, λ̃)dz′dζ, (3.31)

where we set

ψ±(z′, ζ) = z′ζ ± 2

3
((1 − ζ)3/2 − 1). (3.32)

We want to apply the Egorov theorem in order to invert the operators I±,η. The symbols
χ(ζ)a±(ζ, ηλ) are elliptic at ζ = 0, consequently (eventually shrinking the support of χ)
there exists symbols b±(ζ, ηλ) which are asymptotic expansions in (ηλ)−1 for η belonging to
the support of Ψ, such that, if one denotes by J±(.)η the operators defined for ˘̺ ∈ SK∓1(λ̃)
by

J±(˘̺(., λ̃))η(z
′, λ) = e∓iπ/2+iπ/4

ηλ

2π

∫
eiηλ(ψ±(z′,ζ)−zζ)b±(ζ, ηλ)˘̺(z, λ̃)dzdζ, (3.33)

then one has

˘̺(., λ̃) = I+(J+(˘̺(., λ̃))η(., λ))η(., λ) +OS(R)(λ
−∞) + OS(R)(λ̃

−∞),

̺(., λ̃) = J+(I+(̺(., λ̃))η(., λ))η(., λ) +OS(R)(λ
−∞) + OS(R)(λ̃

−∞),

and also

˘̺(., λ̃) = I−(J−(˘̺(., λ̃))η(., λ))η(., λ) +OS(R)(λ
−∞) + OS(R)(λ̃

−∞),

̺(., λ̃) = J−(I−(̺(., λ̃))η(., λ))η(., λ) +OS(R)(λ
−∞) + OS(R)(λ̃

−∞).

Remark 3.5. A direct computation shows that, for instance

J±(I±(̺(., λ̃))η(., λ))η(z, λ) =
ηλ

2π

∫
eiηλ(z−z′)ζχ(ζ)a±(ζ, ηλ)b±(ζ, ηλ)̺(z′, λ̃)dz′dζ

and consequently (since the coefficients do not depend on z′ and because of the expression

of the phase functions ψ±(z′, ζ)) one can take b±(ζ, ηλ) = χ(ζ)
a±(ζ,ηλ)

.

Proposition 3.6. Let N ≃ λhǫ for some small ǫ > 0 and 1 ≤ n ≤ N . Let Tk be the
translation operator which to a given ̺(z) associates ̺(z + k). Then for η ∈ supp(Ψ)

(T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
n : SK0(λ) → SK0(λ/n) uniformly in n. (3.34)

Notice that since λ/n ≥ h−ǫ ≫ 1, then one has

OS(R)(λ
−∞) = OS(R)((λ/n)−∞) = OS(R)(h

∞). (3.35)
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Remark 3.7. Notice that at this point we have a restriction on the number of reflections
N which should be much smaller when compared to λ = a3/2/h. In fact, in the proof of
Proposition 3.6 we apply the stationary phase with parameter λ/n which should be large
enough, more precisely it should be larger than some (positive) power of h−1. Using (3.35),
this would imply that away from the critical points the contributions of the oscillatory
integrals are O(h∞).

Proof. We start by determining the explicit form of the operator in (3.34).
For ζ on the support of χ, |ζ | ≤ 2c < 1 for c small enough, set

f(ζ) = 2ζ − 4

3
(1 − (1 − ζ)

3
2 ) =

ζ2

2
+O(ζ3). (3.36)

Let ̺(., λ) ∈ SK0(λ). Then for η on the support of Ψ we have

T1(J+(I−(T1(̺(., λ)))η)η)(z) =
ηλ

2π

∫

z′,ζ

eiηλ((z−z′)ζ+f(ζ))c(ζ, ηλ)̺(z′, λ)dz′dζ

= (Fηλ ∗ ̺(., λ))(z), (3.37)

where we set, for η on the support of Ψ

Fηλ(z) =
ηλ

2π

∫

ζ

eiηλ(zζ+f(ζ))c(ζ, ηλ)dζ, (3.38)

c(ζ, ηλ) = χ(ζ)a+(ζ, ηλ)b−(ζ, ηλ) = χ2(ζ)
∑

j≥0

cj(1 − ζ)−3j/2(ηλ)−j, c0 = 1, (3.39)

thus for each n we can write

(T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
n(̺(., λ))(z) = (Fηλ)

∗n ∗ ̺(., λ)(z). (3.40)

We can explicitly compute (Fηλ)
∗n

(Fηλ)
∗n(z) =

ηλ

2π

∫

ζ

eiηλzζF̂ n
ηλ(ηλζ)dζ =

ηλ

2π

∫

ζ

eiηλ(zζ+nf(ζ))cn(ζ, ηλ)dζ. (3.41)

Set ζ̃ = nζ and λ̃ = λ
n
. The choice we made for N allows to write the right hand side of

(3.41) as

(Fηλ)
∗n(z) =

ηλ̃

2π

∫

ζ̃

eiηλ̃(zζ̃+n2f( ζ̃
n

))cn(
ζ̃

n
, nηλ̃)dζ̃, (3.42)

therefor we obtain

(T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
n(̺(., λ))(z) =

=
ηλ̃

2π

∫

ζ̃

eiηλ̃((z−z′)ζ̃+n2f( ζ̃
n

))cn(
ζ̃

n
, nηλ̃)̺(z′, λ)dζ̃dz′. (3.43)
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The phase function in (3.43) is given by

ηφn(z, z
′, ζ̃) = η((z − z′)ζ̃ + n2f(

ζ̃

n
)),

and its critical points satisfy

∂ζ̃φn = z − z′ + nf ′(
ζ̃

n
) = 0, ∂z′φn = −ζ̃ = 0. (3.44)

• In order to show that for all α ≥ 0 there exists constants C2
α independent of n, λ,

such that

sup
z∈R,λ̃=λ/n≥1

|∂αz (T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
n(̺(., λ))(z)| ≤ C2

α

we write

∂αz (T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
n(̺(., λ))(z) = (Fηλ)

∗n ∗ ∂αz ̺(., λ)(z).

For ζ̃ outside a small neighborhood of 0, |ζ̃| ≥ c, we perform integrations by parts
in z′ in the integral (3.42) defining (Fηλ)

∗n(z) and obtain a contribution arbitrarily
small. For |ζ̃| < 2c small, let ψ be a smooth function with support included in
a c-neighborhood of K0 and such that (1 − ψ)̺(., λ) = OS(R)(λ

−∞). For z away
from a 5c-neighborhood of K0 we saw in the proof of Lemma 3.4 that we have
|∂ζ̃φn(z, z′, ζ̃)| ≥ c and we conclude again by integrations by parts in ζ̃. Near the

critical points ζ̃ = 0 and z = z′ − nf ′( ζ̃
n
) we can apply the stationary method lemma

in both variables z′, ζ̃, uniformly in n: it is crucial here that f(0) = f ′(0) = 0,

f ′′(0) = 1 which gives, setting gn(ζ̃) = n2f( ζ̃
n
),

|gn(ζ̃)| ≤ d0|ζ̃|2, |g′n(ζ̃)| ≤ d1|ζ̃|, |g(k)
n (ζ̃)| ≤ dk, ∀k ≥ 2,

with constants dk independent of n (we deal with Fourier multipliers), |g′′n| ≥ d′2 > 0

and that, on the other hand, from (3.39) we have |∂m
ζ̃
χ2n( ζ̃

n
)| ≤ em for all m ≥ 0 with

constants em independent of n and

|∂ζ̃cn(
ζ̃

n
, nηλ̃)| ≤ e1|cn(

ζ̃

n
, nηλ̃| + e0|

∑

j≥0

cj
3j

2

(1 − ζ̃
n
)−(3j+2)/2

(nηλ̃)j
|.

• To check that for a smooth function ψ̃ equal to 1 in a neighborhood of K0 we have

(1 − ψ̃)(T1 ◦ J+(.)η ◦ I−(.)η ◦ T1)
n(̺(., λ)) = OS(R)(λ̃

−∞)

we use the same arguments as in the second part of the proof of Lemma 3.4.
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Definition 3.8. Let ̺(., λ) ∈ SK0(λ) and η ∈ supp(Ψ). For 1 ≤ n ≤ N , N ≃ λhǫ set

̺n(z, η, λ) = (−1)nΨ(η)(T1 ◦ J+(.)η ◦ I−(.)ηT1)
n(̺(., λ))(z),

̺0(z, η, λ) = ̺(z, λ)Ψ(η).

From Proposition 3.6 it follows that ̺n(z, η, λ) ∈ SK0(λ/n). Let

gn(t, s, η, h) = ̺n(
t+ 2(1 + a)1/2s

2(1 + a)1/2a1/2
− 2n, η, λ), (3.45)

Φn(t, x, y, s, η) = η(y − t(1 + a)1/2 + (x− a)s +
s3

3
+

4

3
na3/2), (3.46)

and set

Uh =
N∑

n=0

unh, unh(t, x, y) =

∫
e

i
h
Φngn(t, s, η, h)dsdη. (3.47)

Proposition 3.9. With this choice of the symbols gn we have for all 0 ≤ n ≤ N − 1

Tr−(unh)(t, y; h) + Tr+(un+1
h )(t, y; h) = OL2(λ−∞). (3.48)

Proof. The proof follows from Propositions 3.3, 3.6 and the definition of the symbols gn,
since we have

e
iπ
2 I−(T1(̺

n(., η, λ)))η + e−
iπ
2 I+(T−1(̺

n+1(., η, λ)))η = OS(R)(λ
−∞),

where T±1 are the translation operators which to a given ̺(z) associate ̺(z ± 1) and since
the operators I±,η are of convolution type so they commute with translations.

4 Strichartz estimates for the approximate solution

Let Uh be given by (3.47) and let (q, r) a sharp wave-admissible pair in dimension 2, i.e.
such that 1

q
= 1

2
(1

2
− 1

r
). The ”cusp” is reflected with period a1/2, a = hδ and in order to

compute the norm of Uh on a finite interval of time we will take δ = 1−ǫ
2

in order to obtain

1 ≃ Na1/2 ≃ λhǫhδ/2. (4.1)

We prove the following

Proposition 4.1. Let r > 4, β(r) = 3
2
(1

2
− 1

r
) + 1

6
(1

4
− 1

r
) and let β ≤ β(r) − ǫ for ǫ > 0

small enough like before. Then the approximate solution of the wave equation (1.2) satisfies

hβ‖Uh‖Lq([0,1],Lr(Ω)) ≫ ‖Uh|t=0‖L2(Ω). (4.2)

In particular, the restriction on β shows that the Strichartz inequalities of the free case are
not valid, there is a loss of at least 1

6
(1

4
− 1

r
) derivatives.
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Proof. In the construction of Uh we considered an initial ”cusp” u0
h of the form (3.10), with

symbol g given by (3.12), with ̺0 ∈ S[−c0,c0](a
3/2/h) depending only on the integral curves

of the vector field Z and η, supported for η in a small neighborhood of 1. We introduce
the Lagrangian manifold associated to unh, with phase function Φn = Φ + 4

3
nηa3/2

ΛΦn := {(t, x, y, τ = −(1 + a)1/2η, ξ = sη, η),

a− x = s2, y − t(1 + a)1/2 +
4

3
na3/2 =

2

3
s3} ⊂ T ∗

R
3. (4.3)

Lemma 4.2. Let unh be given by (3.47), then WFh(u
n
h) ⊂ ΛΦn.

Proof. If |∂sΦn| ≥ c > 0 we use the operator L1 = h
i|s2+a−x|∂s in order to gain a power of

h1− δ
2 at each integration by parts with respect to s, thus the contribution we get in this

case is OL2(h∞). Let now |∂ηΦn| ≥ c > 0 for some positive constant c: before making

(repeated) integrations by parts using this time the operator L2 = h∂ηΦn

i|∂ηΦn|2∂η we need to

estimate the derivatives with respect to η for each gn defined in (3.45). We have

unh(t, x, y) = (−1)m
∫
e

i
h
ΦnL∗m

2 (̺n(
t+ 2(1 + a)1/2s

2(1 + a)1/2a1/2
+ 2n, η, λ))dηds

= (−1)m+nhm
∫
e

i
h
Φn

(∂ηΦn)
m

|∂ηΦn|2m
( m∑

k=0

∂m−k
η Ψ(η)∂kη (Fηλ)

∗n
)
∗

∗ ̺(, λ)(
t+ 2(1 + a)1/2s

2(1 + a)1/2a1/2
+ 2n)dηds, (4.4)

where ∗ denotes the convolution product. The derivatives of (Fηλ)
∗n with respect to η

are easily computed using the explicit form of (Fηλ)
∗n that we recall (see the proof of

Proposition 3.6):

(Fηλ)
∗n(z) =

ηλ̃

2π

∫

ζ̃

eiηλ̃(zζ̃+n2f( ζ̃
n

))cn(
ζ̃

λ
, ηnλ̃)dζ̃,

with c(ζ, ω) = χ2(ζ)
∑

j≥0 cj(1−ζ)−3j/2ω−j and where we have made the change of variable

ζ̃ = nζ and set λ̃ = λ/n ≥ h−ǫ ≫ 1. Hence one η-derivative yields

∂η(Fηλ)
∗n(z) =

1

η
(Fηλ)

∗n(z) +
ηλ̃

2π

∫

ζ̃

eiηλ̃(zζ̃+n2f( ζ̃
n

))iλ̃(zζ̃ + n2f(
ζ̃

n
))cn(

ζ̃

n
, ηnλ̃)dζ̃

+
ηλ̃

2π

∫

ζ̃

eiηλ̃(zζ̃+n2f( ζ̃
n

))n∂ηc(
ζ̃

n
, ηnλ̃)cn−1(

ζ̃

n
, ηnλ̃)dζ̃. (4.5)

The symbol of the third term in the right hand side of (4.5) is n∂ηc(ζ, ηλ)cn−1(ζ, ηλ) and
we have

∂ηc(ζ, ηλ) = −η−2λ−1
∑

j≥1

jcj(1 − ζ)−3j/2(ηλ)−(j−1),
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and since n≪ λ, the contribution from this term is easily handled with.
The symbol in the second term in the right hand side of (4.5) equals the symbol of

(Fηλ)
∗n multiplied by the factor iλ̃(zζ̃+λnf( ζ̃

n
)). Recall that on the support of c(ζ, ηλ) we

have ζ = ζ̃/n ∈ supp(χ) is as close to zero as we want and there f(ζ) = ζ2/2+O(ζ3), hence

n2f( ζ̃
n
) = ζ̃2/2+O(ζ̃3/n). On the other hand, when we take the convolution product of the

second term in (4.5) with ̺0(., λ) we obtain in the same way as in the proof of Proposition
3.6 that the critical points of the phase in the oscillatory integral obtained in this way,

ηλ̃

2π

∫

ζ̃,z′
eiηλ̃((z−z′)ζ̃+n2f( ζ̃

n
))iλ̃((z − z′)ζ̃ + n2f(

ζ̃

n
))cn(

ζ̃

n
, ηnλ̃)̺0(z′, λ)dζ̃dz′,

are given by ζ̃ = 0 and z = z′. The phase function which will be denoted again by
φn(z, z

′, ζ̃) as before satisfies φn(z, z, 0) = 0, ∂z′φn(z, z, 0) = 0 and ∂ζ̃φn(z, z, 0) = 0. Ap-

plying the stationary phase theorem in ζ̃ and z′, the first term in the asymptotic expansion
obtained in this way vanishes, and the next ones are multiplied by strictly negative, integer
powers of λ̃, hence the contribution from this term will is also bounded.

Notice that when we take higher order derivatives in η of ̺n, we obtain symbols which
are products of λ̃j(φn)

j∂k−jη (cn(ζ̃/n, ηnλ̃)) and can be dealt with in the same way, taking
into account this time that the first j terms in the asymptotic expansion obtained after
applying the stationary phase vanish. As a consequence, after each integration by parts
in η using the operator L2 we gain a factor h, meaning that the contribution of unh is
OL2(h∞).

We also need the next results:

Lemma 4.3. If ̺(., λ) ∈ S[−c0,c0](λ) with 0 < c0 < 1 sufficiently small, then unh have almost
disjoint supports in the time variable t.

Proof. Let µ ∈ (0, 1) and |t − 4n(1 + a)1/2a1/2| ≥ 2(1 + a)1/2a1/2(1 + µ). Then on the

essential support of ̺n( t+2(1+a)1/2s

2(1+a)1/2a1/2 − 2n, η, λ) we must have |s| ≥ a1/2(1 + µ− c0) while on

the Lagrangian ΛΦn defined in (4.3) we have |a− x| = s2 ≤ a. Consequently, if µ ≥ c0 + ǫ0
for some ǫ0 > 0 as small as we want, we are not anymore on the Lagrangian ΛΦn. Since
outside any neighborhood of ΛΦn the contribution in the integral defining unh is OL2(h∞),
we conclude that unh ”lives” essentially on a time interval

[4n(1 + a)1/2a1/2 − 2(1 + a)1/2a1/2(1 + c0), 4n(1 + a)1/2a1/2 + 2(1 + a)1/2a1/2(1 + c0)].

Since a = hδ ≪ 1 and therefor (1 + a)1/2 ≃ 1 we claim that unh is in fact essentially
supported for t in the time interval

[4na1/2 − 2a1/2(1 + c0), 4na
1/2 + 2a1/2(1 + c0)]
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Lemma 4.4. Let 0 < c0 < 1/3 and let Ik be small neighborhoods of 4a1/2k of size a1/2,

Ik = [4ka1/2 − a1/2c0, 4ka
1/2 + a1/2c0].

If t ∈ Ik then in the sum Uh(t, .) there is only one cusp that appears, ukh(t, .), the contribution
from all the others unh(t, .) with n 6= k being OL2(h∞).

Proof. On the essential support of ̺n(., η, λ) one has

|t+ 2(1 + a)1/2s− 4n(1 + a)1/2a1/2| ≤ 2(1 + a)1/2a1/2c0.

Suppose n 6= k: we have to show that the contribution from unh is OL2(h∞). Write

2(1 + a)1/2a1/2c0 ≥ 4|n− k|(1 + a)1/2a1/2 − |t− 4k(1 + a)1/2a1/2| − 2(1 + a)1/2|s|

≥ 4(1 + a)1/2a1/2 − (1 + a)1/2a1/2c0 − 2(1 + a)1/2|s|,
which yields |s| ≥ 3a1/2/2 since c0 < 1/3 and as in the proof of Lemma 4.3 we see that we
are localized away from a neighborhood of ΛΦn (on which |s| ≤ a1/2), thus the contribution
is OL2(h∞). Consequently, the only nontrivial part comes from n = k in which case we
find |s| ≤ 3c0a

1/2/2 ≤ a1/2/2, thus the k-th ”piece of cusp” does not reach the boundary
{x = 0} (since on the Lagrangian ΛΦk

we have a − x = s2 and outside any neighborhood
of ΛΦk

the contribution is OL2(h∞)).

We turn to the proof of Proposition 4.1. We use Lemma 4.4 and Proposition 6.6 from
the Appendix to estimate from below the Lq([0, 1], Lr(Ω)) norm of Uh:

‖Uh‖qLq([0,1],Lr(Ω)) =

∫ 1

0

‖Uh‖qLr(Ω)dt =

∫ 1

0

‖
N∑

n=0

unh‖qLr(Ω)dt (4.6)

≥
∑

k≤N/5

∫

t∈Ik
‖

N∑

n=0

unh‖qLr(Ω)dt+O(h∞) (4.7)

≃
∑

k≤N/5
|Ik|‖u0

h‖qLr(Ω) +O(h∞) (4.8)

≃ ‖u0
h‖qLr(Ω) +O(h∞). (4.9)

Indeed, we have shown in Lemma 4.4 that for t belonging to sufficiently small intervals
of time Ik there is only ukh to be considered in the sum since the supports of unh will be
disjoints. On the other hand, for t ∈ Ik, u

k
h(t, .) admits a cusp singularity at x = a which

guarantees that the piece of cusp does not ”live” enough to reach the boundary. Moreover,
we see from Proposition 6.6 that for t ∈ Ik the Lr(Ω) norms of ukh(t, .) are equivalent to the
Lr(Ω) norms of u0

h. Using Corollary 6.7 we deduce that there are constants C independent
of h such that for r = 2

‖Uh|t=0‖L2(Ω) = ‖uh|t=0‖L2(Ω) ≃ h1+ δ
4 , (4.10)
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while for r > 4
‖Uh‖Lq([0,1],Lr(Ω)) ≥ Ch

1
3
+ 5

3r (4.11)

and since δ = 1−ǫ
2

we deduce that (4.2) holds for β ≤ β(r) − ǫ since we have

hβ‖Uh‖Lq([0,1],Lr(Ω)) ≥ Chβ(r)−ǫh
1
3
+ 5

3r = Ch−7ǫ/8h1+(1−ǫ)/8

≫ h1+ δ
4 ≃ ‖Uh|t=0‖L2(Ω). (4.12)

Remark 4.5. Notice that for 2 ≤ r < 4

‖Uh‖Lq([0,1],Lr(Ω)) ≥ Ch
1
r
+ 1

2
+δ( 1

r
− 1

4
), (4.13)

therefor in this case the previous construction doesn’t provide a contradiction to the
Strichartz inequalities when compared to the free case.

Proposition 4.6. The approximate solution Uh defined in (3.47) satisfies the Dirichlet
boundary condition

Uh|[0,1]×∂Ω = O(h∞). (4.14)

Proof. Using Propositions 3.3 and 3.9, the contribution of Uh on the boundary writes

Uh(t, 0, y) =
N∑

n=0

∑

±
Tr±(unh)(t, y; h) = Tr+(u0

h)(t, y; h) + Tr−(uNh )(t, y; h). (4.15)

The first term in the right hand side of (4.15) is easy to handle since Tr+(u0
h)(t, y; h) is

essentially supported for

t ∈ [−2(1 + c0)a
1/2,−2(1 − c0)a

1/2].

Since we consider only the restriction to [0, 1] × ∂Ω, the contribution from this term will
be OL2(h∞). To deal with the second term in the right hand side of (4.15) we first study
the essential support of Tr−(uNh )(t, y; h) for t ∈ [0, 1]. We distinguish two situations:

• If (4h−δ/2)−1 − [(4h−δ/2)−1] < 1/2, where we denoted by [z] the integer part of z we
take

N := [(4h−δ/2)−1]

and we deduce that Tr−(uNh )(t, y; h) is essentially supported for t in an interval
strictly contained in [0, 1] while Tr+(uNh )(t, y; h) has a nontrivial contribution only
on

[4Na1/2 − 2(1 + c0)a
1/2, 4Na1/2 − 2(1 − c0)a

1/2].

A direct computation shows that for this choice of N

4Na1/2 − 2(1 + c0)a
1/2 ≃ 4h−δ[(4h−δ)−1] +

1

2
(4h−δ)−1 > 1.

Therefor, on [0, 1] the contribution of Tr+(uNh )(t, y; h) is canceled by Tr−(uN−1
h )(t, y; h),

while the contribution of Tr−(uNh ) equals OL2(h∞) since it is essentially supported
outside [0, 1].
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• If (4h−δ/2)−1 − [(4h−δ/2)−1] ≥ 1/2, we set

N := [(4h−α/2)−1] + 1

and we conclude using the same arguments as in the preceding case.

5 End of the proof of Theorem 1.2

Let Uh be the approximate solution to the wave equation (3.1) defined by (3.47). In (4.10)
we obtained ‖Uh|t=0‖L2(Ω) ≃ h1+δ/4. We now consider the L2-normalized approximate
solution Wh = 1

‖Uh|t=0‖L2(Ω)
Uh. We also let Vh = Wh + wh, where Vh solves

�Vh = 0, Vh|[0,1]×∂Ω = 0, (5.1)

with initial data
Vh|t=0 = Wh|t=0, ∂tVh|t=0 = ∂tWh|t=0. (5.2)

Proposition 5.1. Under the preceding assumptions wh satisfies

‖�wh‖L2(t∈[0,1],L2(Ω)) = O(h−δ), wh|∂Ω = OL2(h∞), (5.3)

wh|t=0 = 0, ∂twh|t=0 = 0. (5.4)

Proof. If we set α(h) := ‖Uh|t=0‖L2(Ω) ≃ h1+δ/4, then one has

‖�wh‖2
L2(t∈[0,1],L2(Ω)) = α(h)−2‖

N∑

n=0

�unh‖2
L2(t∈[0,1])L2(Ω) (5.5)

. α(h)−2
∑

k≤N/4

∫

Jk

‖
N∑

n=0

�unh‖2
L2(Ω)dt+O(h∞) (5.6)

. 8α(h)−2
∑

k≤N/4

∫

Jk

‖�ukh‖2
L2(Ω) +O(h∞), (5.7)

where
Jk := [4a1/2k − 2a1/2, 4a1/2k + 2a1/2],

and where we used the fact that for each n there are at most three cusps to consider for
t ∈ Jk as shown in Lemma 4.4. Let us estimate ‖�ukh(t, .)‖L2(Ω) for t ∈ Jk. The proof of
Proposition 6.6 of the Appendix applied to �ukh (computed in (3.13)) yields

‖�ukh(t, .)‖L2(Ω) . h−δ+1+δ/4,
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since the assumption ̺ ∈ S[−c0,c0](λ) implies that supz |∂2
z̺| ≤ C for some constant C

independent of λ and one can bound from above the L2(Ω) norm of �ukh (notice that the
only difference between the estimates concerning ukh is that instead of ̺n we now have ∂2̺n

which we handle in the same way). Consequently we obtain

‖�wh‖2
L2(t∈[0,1],L2(Ω)) . a(h)−2

∑

k≤N/4
|Jk|h−2δ+2+δ/2 . h−2δ,

since |Jk| are of size a1/2, k ≤ N/4 and Na1/2 ≃ 1.

Corollary 5.2. If (q, r) is a sharp wave-admissible pair in dimension two then wh satisfies

‖wh‖Lq([0,1],Lr(Ω)) ≤ Ch1−δ−2( 1
2
− 1

r
), (5.8)

where C is some constant independent of h.

Proof. Write the Duhamel formula for wh,

wh(t, x, y) =

∫ t

0

sin(t− τ)
√
−∆D√

−∆D

(�wh(τ, .))dτ. (5.9)

Using the Minkowsky inequality and Proposition 5.1 we find

‖wh‖L∞([0,1],H1(Ω)) = ‖
∫ t

0

sin(t− τ)
√
−∆D√

−∆D

(�wh(τ, .))dτ‖L∞([0,1],H1(Ω))

≤
∫ 1

0

‖�wh(τ, .)√
−∆D

‖H1(Ω)dτ ≃ ‖�wh‖L1([0,1],L2(Ω)) ≤ Ch−δ. (5.10)

Remark 5.3. Notice that since we are dealing with the Dirichlet Laplace operator ∆D inside
a bounded domain there is no problem in estimating ‖(

√
−∆D)−1f‖H1(Ω) by ‖f‖L2(Ω). In-

deed, let (eνj
)j≥0 be the eigenbasis of L2(Ω) consisting in eigenfunctions of −∆D associated

to the eigenvalues ν2
j considered in non-decreasing order and decompose f =

∑
j≥0 fjeνj

,
fj =< f, eνj

>. Then

(
√

−∆D)−1f ≃
∑

j

1

νj
fjeνj

and since ν1 ≥ c > 0 for some fixed constant c > 0 we can estimate

‖(
√

−∆D)−1f‖2
H1(Ω) ≃

∑

j≥0

(1 + ν2
j )

ν2
j

‖fj‖2
L2(Ω).

Take now C = supj(1 + 1/ν2
j ) ≤ 1 + 1/c2, then

‖(
√
−∆D)−1f‖H1(Ω) ≤

√
C‖f‖L2(Ω). (5.11)
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If, instead, we were considering the Neumann Laplacian ∆N inside the domain Ω, in order
to obtain bounds like in (5.11) we had to introduce a cut-off function Ψ ∈ C∞

0 (R) equal to
1 close to 0 and decompose a function f

f = Ψ(−∆N )f + (1 − Ψ(−∆N ))f

and treat separately the contribution Ψ(−∆N)f obtained for small frequencies of f .

In order to obtain estimates for the L∞([0, 1], Lr(Ω)) norms of wh we also need to
establish bounds from above for its L∞([0, 1], L2(Ω)) norms. We need the next result:

Proposition 5.4. Let f(x, y) : Ω → R be localized at frequency 1/h in the y ∈ Rd−1

variable, i.e. such that there exists ψ ∈ C∞
0 (Rd−1 \0) with ψ(hDy)f = f . Then there exists

a constant C > 0 independent of h such that one has

‖f‖H−1(Ω) ≤ Ch‖f‖L2(Ω).

Proof. Since χ(hDy)f = f we have

‖f‖H−1(Ω) = sup
‖g‖H1(Ω)≤1

∫
ψfḡ ≤ ‖f‖L2(Ω) × sup

‖g‖H1(Ω)≤1

‖ψ(hDy)g‖L2(Ω)

≤ h‖f‖L2(Ω)‖ψ̃(hDy)∇yg‖L2(Ω) ≤ Ch‖f‖L2(Ω),

where we set ψ̃(η) = |η|−1ψ(η).

Using again Duhamel’s formula written above, we have

‖wh‖L∞([0,1],L2(Ω)) . ‖�wh‖L1([0,1],H−1(Ω)) (5.12)

and from Proposition 5.4 applied to f = �wh we deduce

‖wh‖L∞([0,1],L2(Ω)) . h‖�wh‖L1([0,1],L2) . Ch1−δ. (5.13)

Interpolation between (5.10) and (5.13) with weights σ and 1 − σ yields

‖wh‖L∞([0,1],Hσ(Ω)) ≤ Ch1−δ−σ. (5.14)

We take σ = 2(1
2
− 1

r
) and use the Sobolev inequality in order to obtain

‖wh‖Lq([0,1],Lr(Ω)) ≤ Ch1−δ−2( 1
2
− 1

r
). (5.15)

End of the proof of Theorem 1.2
From Corollary 5.2 we see that the norm ‖wh‖Lq(([0,1],Lr(Ω)) is much smaller then the

norm of ‖Wh‖Lq(([0,1],Lr(Ω)): in fact we have to check that the following inequality holds for
r > 4

h1−δ−2( 1
2
− 1

r
) ≪ h

1
3
+ 5

3r
−1− δ

4 (5.16)
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which is obviously true. Let β < β(r) = 3
2
(1

2
− 1

r
) + 1

6
(1

4
− 1

r
). We have

hβ‖Vh‖Lq([0,1],Lr(Ω)) ≥ hβ(‖Wh‖Lq([0,1],Lr(Ω)) − ‖wh‖Lq([0,1],Lr(Ω))) (5.17)

≥ 1

2
hβ‖Wh‖Lq([0,1],Lr(Ω)) ≫ 1. (5.18)

On the other hand ‖Vh‖L2(Ω) ≃ 1, h‖∂tVh|t=0‖L2(Ω) ≃ 1 , thus for β < β(r) the (exact)
solution Vh satisfies

hβ‖Vh‖Lq([0,1],Lr(Ω)) ≫ ‖Vh|t=0‖L2(Ω). (5.19)

The proof of Theorem 1.2 is complete.

6 Appendix

6.1 Proof of Lemma 2.2 ( TT ∗ argument)

Proof. Let 0 < T0 < ∞ and denote by T the operator which to a given u0 ∈ L2(Rn)

associates U(t)ψ(hD)u0 ∈ Lq([0, T0], L
r(Rn)), where by U(t) = e−

it
h
G we denoted the

linear flow. Its adjoint T ∗ : Lq
′
([0, T0], L

r′(Rn)) → L2(Rn) is given by

(T ∗g)(x) =

∫ T0

0

ψ∗U(−t)g(t, x)dt (6.1)

thus we can write

(TT ∗g)(t, x) =

∫ T0

0

U(t)ψψ∗U(−s)g(s, x)ds =

∫ T0

0

U(t− s)ψψ∗g(s, x)ds (6.2)

since ψ has constant coefficients. Suppose that the dispersive estimate

‖e− it
h
Gψ(hD)u0‖L∞(Rn) . (2πh)−nγn,h(

t

h
)‖ψ(hD)u0‖L1(Rn) (6.3)

holds for a function γn,h : R → R+. Interpolation between (6.3) and the energy estimates
gives

‖e− it
h
Gψ(hD)u0‖Lr(Rn) ≤ Ch−n(1− 2

r
)γn,h(

t

h
)1− 2

r ‖u0‖Lr′(Rn), (6.4)

and from (6.2) and (6.4) we deduce

‖TT ∗‖Lq((0,T0],Lr(Rn)) ≤ Ch−n(1− 2
r
)‖

∫ T0

0

γn,h(
t− s

h
)1− 2

r ‖g(s)‖Lr′(Rn)ds‖Lq[0,T0]. (6.5)

The application |t|− 2
q ∗ : Lq

′ → Lq is bounded for q > 2 by Hardy-Littlewood-Sobolev
theorem, thus we obtain (2.7),

‖T‖2
L2→Lq((0,T0],Lr(Rn)) ≤ h−n(1− 2

r
) sup
t∈(0,T0]

t
2
q γ(

t

h
)1− 2

r ≤ Ch−2β
(

sup
s∈(0,

T0
h

]

sαγ(s))
)1− 2

r

. (6.6)
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6.2 Propagation of positivity

On C
2m = C

m
z × C

m
ζ one considers the symplectic 2-form σ = dz ∧ dζ =: σR + iσI.

Definition 6.1. Let Λ be a smooth manifold of C2m. It is called

1. R (resp. I, C)-Lagrangian if its dimension on R is 2m and σR|Λ = 0 (resp. σI|Λ = 0,
σC|Λ = 0);

2. R (resp. I)-symplectic if σR|TΛ (resp. σI|TΛ) is nondegenerate;

3. positive at some point ρ ∈ Λ if the (real-valued) quadratic form Q : u → 1
i
σ(u, ū) is

positive definite on the tangent space TρΛ of Λ at ρ.

Lemma 6.2. Assume that the projection Λ ∋ (z, ζ) → z ∈ Cm is a local diffeomorphism.
Then Λ is a C-Lagrangian if and only if it is locally described by an equation of the type
ζ = ∂Φ

∂z
, where Φ is a holomorphic function of z and we write (locally) Λ = ΛΦ.

Lemma 6.3. A C-Lagrangian Λ is positive at some point ρ if and only if near ρ it is
of the form ΛΦ, where Φ is a holomorphic function such that the real symmetric matrix
(Im ∂2Φ

∂zj∂zk
)j,k=1,m is positive definite.

Let q = q(z, ζ) be a holomorphic function on an open subset U ⊂ C2m. Then as in the
real domain one defines the Hamilton field of q by the identity σ(u,Hq(z, ζ)) = dq(z, ζ)u.
One also defines the Hamilton flow exp sHq(z, ζ) for s real, by

∂

∂s
exp sHq(z, ζ) = Hq(exp sHq(z, ζ)) (6.7)

and one can easily prove that for any open subset U ′ ⊂⊂ U and for any s ∈ R such
that ∪s′∈[0,s] exp s′Hq(U

′) ⊂ U , the application U ′ ∋ (z, ζ) → exp sHq(z, ζ) is a complex
canonical transformation.

Lemma 6.4. Let Λ be a C-Lagrangian submanifold of C2m and assume that there exists ρ ∈
Λ∩R2m such that Λ is positive at ρ. Moreover assume that there exists a complex canonical
transformation κ defined on a complex domain containing R2m such that κ(R2m) ⊂ R2m

and κ(ρ) ∈ Λ. Then Λ is positive at κ(ρ).

Proof. Observe that if u ∈ Tκ(ρ)Λ, then u = dκ(ρ)v with v ∈ TρΛ and ū = dκ(ρ)v̄ =
dκ(ρ̄)v̄ = dκρv̄. Take now κ = exp sHq. For the proofs see [13], [14].

6.3 Airy functions

We give below some of the basic properties of the function Ai(z) which are used in this
work. For z ∈ R, Ai(z) is defined by

Ai(z) =
1

2π

∫ ∞

−∞
ei(

u3

3
+zu)du =

1

2π

∫ ∞

−∞
cos(

u3

3
+ zu)du. (6.8)
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This integral is not absolutely convergent, but is well defined as the Fourier transform of
a temperate distribution. For pozitive z > 0, z → ∞ we have

Ai(z) = O(z−∞), (6.9)

Ai(−z) = A+(−z) + A−(−z)(≃ 1√
π
z−

1
4 cos(

2

3
z3/2 − π

4
)), (6.10)

where

A±(−z) ≃ z−1/4e∓
2i
3
z3/2± iπ

2
− iπ

4 (

∞∑

j=0

a±,j(−1)−j/2z−3j/2), a±,0 =
1

4π3/2
. (6.11)

Proposition 6.5. All the zeroes of Ai(z) are real and negative, say

Ai(−ωj) = 0, 0 > −ω0 > −ω1 > ...→ −∞. (6.12)

6.3.1 Proof of Lemma 2.5

Proof. Let k ≥ 0 be fixed. For x > 0 write

ψ(hDy)u(x, y) =
1

(2πh)d−1

∫
eiyη/hAi(xh−2/3|η|2/3 − ωk)ψ(η)ϕ̂(

η

h
)dη. (6.13)

The change of variables x = h2/3ζ reduces the proof to the verification of the following
inequality

‖ψ1(hDy)ϕ‖Lr(Rd−1) . ‖ψ(hDy)u(h
2/3ζ, .)‖Lr(R+×Rd−1) . ‖ψ2(hDy)ϕ‖Lr(Rd−1). (6.14)

Since ψ is (compactly) supported away from 0, let supp(ψ) ⊂ {0 < |η0| ≤ |η| ≤ |η1|}. For
j ∈ {0, 1}, let ǫj > 0 be fixed and set ζ0 = (ωk −ω0 + ǫ0)|η0|−2/3, ζ1 = (ωk + 1+ ǫ1)|η1|−2/3.

• For ζ ∈ [ζ0, ζ1] we have, by Proposition 6.5,

−ω0 < −ω0 + ǫ0 = ζ0|η0|2/3 − ωk ≤ z = ζ |η|2/3 − ωk ≤ ζ1|η1|2/3 − ωk = 1 + ǫ1.

For these values of the argument z ∈ [−ω0+ǫ0, 1+ǫ1], Ai(z) is positive, bounded from
above and below which immediately yields, together with the assumption ψ1 = ψψ1

‖ψ1(hDy)ψ(hDy)ϕ‖Lr(Rd−1) ≤ C1‖ψ(hDy)u(h
2
3 ζ, .)‖Lr([ζ0,ζ1]×Rd−1), (6.15)

C1 =
supη |ψ1(η)|

infz∈[−ω0+ǫ0,1+ǫ1] |Ai(z)|
,

consequently

‖ψ1(hDy)ϕ‖Lr(Rd−1) ≤ C1‖ψ(hDy)u(h
2
3 ζ, .)‖Lr((0,∞)×Rd−1). (6.16)

• On the other hand, since Ai(z) is bounded for z ∈ R, we obtain, since ψ = ψψ2

‖ψ(hDy)u(h
2
3 ζ, .)‖Lr((0,∞)×Rd−1) ≤ C2‖ψ2(hDy)ϕ‖Lr(Rd−1), (6.17)

where
C2 = sup

η
|ψ(η)| sup

z
|Ai(z)|.
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6.4 Lr norms of the phase integrals associated to a cusp type
Lagrangian

Proposition 6.6. For t ∈ [4na1/2 − 2a1/2(1 + c0), 4na
1/2 + 2a1/2(1 + c0)], the Lr(Ω) norm

of a cusp unh(t, .) of the form (3.10) are estimated (uniformly in t) by

‖unh(t, .)‖Lr(Ω) ≃
{
h

1
r
+ 1

2a
1
r
− 1

4 , 2 ≤ r < 4,

h
1
3
+ 5

3r , r > 4.
(6.18)

From Proposition 6.6 we deduce the following

Corollary 6.7. For t ∈ [4na1/2 − 2a1/2(1 + c0), 4na
1/2 + 2a1/2(1 + c0)], the Lr(Ω) norms

of a cusp unh(t, .) satisfy

• for 2 ≤ r < 4
‖unh(t, .)‖Lr(Ω) ≃ h

1
r
+ 1

2
+δ( 1

r
− 1

4
), (6.19)

‖unh(0, .)‖L2(Ω) ≃ h1+ δ
4 . (6.20)

• for r > 4
‖unh(t, .)‖Lr(Ω) ≃ h

1
3
+ 5

3r . (6.21)

Proof. Let 0 ≤ n ≤ N ≃ λhǫ be fixed and let

t ∈ [4na1/2 − 2a1/2(1 + c0), 4na
1/2 + 2a1/2(1 + c0)].

We compute the Lr(Ω) norms of

unh(t, x, y) =

∫

R2

e
iη
h

(y−(1+a)1/2t+(x−a)s+s3/3− 4
3
na3/2)×

× Ψ(η)̺n(
t+ 2(1 + a)1/2s

2(1 + a)1/2a1/2
− 2n, η, λ)dsdη, (6.22)

where the symbol ̺n(., η, λ) ∈ S[−c0,c0](λ/(n + 1)) defined in (3.8) is essentially supported
for the first variable in [−c0, c0] and where η close to 1 on the support of Ψ. Notice that
due to the translation y → (y− t(1+a)1/2 + 4

3
na3/2) and the change of variable x→ (a−x)

we are reduced to estimate the norm of

vnh(z, x, y) :=

∫
e

iη
h

(y+ s3

3
−sx)̺n(z +

s

h
δ
2

, η, λ)Ψ(η)dsdη,

for z = t
2(1+a)1/2a1/2 − 2n ∈ [−(1 + c0), 1 + c0]. We distinguish several regions:

• For |x| ≤Mh2/3 where M is a constant, we make the changes of variables x = ζh2/3

and s = h1/3u which gives

I(z, x, η, h) :=

∫
e

iη
h

( s3

3
−sx)̺n(z + h−δ/2s, η, λ)ds (6.23)
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= h1/3

∫
eiη(

u3

3
−uζ)̺n(z + h1/3−δ/2u, η, λ)du.

Let Q(ζ, u) = u3

3
− ζu and for θ : R → [0, 1], set

Fθ(w, ζ, z, h) =

∫
eiwηΨ(η)fθ(ζ, η, z, h)dη, (6.24)

fθ(ζ, η, z, h) =

∫
eiηQ(ζ,u)θ(u)̺n(z + h1/3−δ/2u, η, λ)du. (6.25)

We make integrations by parts in order to compute

wkFθ(w, ζ, z, h) = ik
∫
eiwη∂kη (Ψ(η)fθ(ζ, η, z, h))dη,

∂kηfθ(ζ, η, z, h) =

∫
eiηQ(ζ,u)θ(u)

k∑

j=0

Cj
k(iQ)k−j∂jη̺

n(z + h1/3−δ/2u, η, λ)du.

Let θ(u) = 1|u|≤
√

1+M . Since we integrate for η in a neighborhood of 1, for all k ≥ 0
we estimate

‖wkFθ(w, ζ, z, h)‖L∞
w
≤ (6.26)

k∑

j=0

Cj
k sup
|u|≤

√
1+M

|Q(ζ, u)|k−j
∫

|∂jη̺n(z + h1/3−δ/2u, η, λ)|dη ≤ Ck,M ,

where Ck,M are constants and where we used the fact that ̺n writes as a convolution
product ̺n(z, η, λ) = (Fηλ)

∗n ∗ ̺0(., λ)(z) and the derivatives in η of (Fηλ)
∗n were

computed in Lemma 4.2.

For
√

1 +M ≤ |u| . h
δ
2
− 1

3 we integrate by parts using the operator L = ∂u

iη∂uQ
which

satisfies L(eiηQ) = eiηQ. If we denote, for fixed k, j ∈ {0, .., k}

Qk,j
0 := (1 − θ(u))Qk−j∂jη̺

n(z + h1/3−δ/2u, η, λ),

and for l ≥ 0, Qk,j
l+1 = ∂u(

Qk,j
l

∂uQ
), then we can write

∫
Ll(eiηQ)(1 − θ(u))Qk,j

0 du =
(−1)l

(iη)l

∫
eiηQQk,j

l du, (6.27)

where

Qk,j
l =

l∑

m=0

ck,jl,m(ζ, ̺n(z + ., η, λ))|u|3(k−j)−3l+mhm( 1
3
− δ

2
),
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where ck,jl,m depends on the derivatives ∂l−mu ∂jη̺
n(z + ., η, λ). The principal term is

obtained for j = 0 and m = 0 and it equals |u|3k−3l. It’s enough to take l = 2k to
obtain similar bounds for ‖wkF1−θ(w, ζ, z, h)‖L∞

w
as in (6.26). We find

‖vnh(z, .)‖Lr(|x|≤Mh2/3,y) = h2/3r(

∫

y

∫ M

0

|vnh(z, h2/3ζ, y)|rdζdy)1/r

= h5/3r+1/3‖F1(w, ζ, z, h)‖Lr(ζ≤M,w) ≃ h5/3r+1/3. (6.28)

• For x ∈ (Mh2/3, A] with M ≫ 1 big enough we apply the stationary phase theorem:

Proposition 6.8. ([6, Thm.7.7.5]) Let K ⊂ R be a compact set, f ∈ C∞
0 (K),

φ ∈ C∞(K̊) such that φ(0) = φ′(0) = 0, φ′′(0) 6= 0, φ′ 6= 0 in K̊ \ {0}. Let ω ≫ 1,
then for every k ≥ 1 we have

|
∫
eiωφ(u)f(u)du− (2πi)

1
2 eiωφ(0)

(ωφ′′(0))
1
2

∑

j<k

ω−jLjf | ≤ Cω−k
∑

|α|≤2k

sup |∂αf |. (6.29)

Here C is bounded when φ stays in a bounded set in C∞(K̊), |u|/|φ′(u)| has a uniform
bound and

Ljf =
∑

ν−µ=j

∑

2ν≥3µ

i−j2−ν

µ!ν!
(φ′′(0))−ν∂2ν(κµf)(0). (6.30)

where κ(u) = φ(u) − φ(0) − φ′′(0)
2
u2 vanishes of third order at 0.

We make the change of variable s =
√
x(±1 + u) to compute the integral in s in

the expression of vh. Using Proposition 6.8 with φ±(u) = u3

3
± u2, ω = η x

3/2

h
≫ 1,

κ±(u) = u3/3 we write I(z, x, η, h) as a sum I(z, x, η, h) ≃
∑

±,j≥0 I
j
±(z, x, η, h),

where

Ij±(z, x, η, h) := (iπ)1/2h1/2+jη−1/2−je∓
2
3
iηx3/2/hx−1/4−3j/2×

× Lj(̺
n(z + h−

δ
2
√
x(±1 + u), η, λ))|u=0. (6.31)

We compute each Lr norm of
∫
e

iyη
h Ψ(η)Ij±(z, x, η, h)dη:

‖
∫
e

iyη
h Ψ(η)Ij±(z, x, η, h)dη‖Lr(x∈(Mh2/3,A],y) ≃

h1/2+j‖x−1/4−3j/2

∫
e

iη
h

(y∓ 2
3
x3/2)Ψ(η)η−1/2−jLj(̺

n(z±h−δ/2x1/2, η, λ))dη‖Lr(x∈(Mh2/3,A],y).

(6.32)

Using again the fact that ̺n(z, η, λ) = (Fηλ)
∗n ∗ ̺0(., λ)(z) we introduce the map

F n,j(z, η) := Ψ(η)η−1/2−j(Fηλ)
∗n(z) which is compactly supported in η; if F̂ n,j(z, .)

denotes its Fourier transform with respect to η, (6.32) reads

h1/2+j‖x−1/4−3j/2F̂ n,j(.,
(y ∓ 2

3
x3/2)

h
) ∗ Lj(̺n(., η, λ)(z ± h−δ/2x1/2))‖Lr(x∈(Mh2/3,A],y).



REFERENCES 41

Setting y = hw, x = h2/3ζ and translating w → w∓ 2
3
ζ3/2 we can estimate from above

and from below each one of the above norms. For j ≥ 0, Lj is a differential operator
of order 2j and each derivative on ̺ gives a factor

√
x/hδ/2 ≤ 1. We estimate the Lr

norm of
∫
e

iyη
h Ψ(η)I(z, x, η, h)dη from above and from below by the sum over j of

Chr(1/2+j+5/3r−1/6−j)
∫ Ah−2/3

M

ζ−r(1/4+3j/2)dζ

where C > 0 are constants, and since the operators Lj are of order 2j, for each j there
will be 2j terms in the sum: summing up over j ≥ 0 (taking M ≥ 2 for example)
and using the assumption ̺n ∈ S[−c0,c0](λ/(n+ 1)) which assures uniform bounds for
the derivatives ∂j̺n(., η, λ) for each n, j ≥ 0, we obtain for r > 4

‖
∫
e

iyη
h Ψ(η)I(z, x, η, h)dη‖rLr(x∈(Mh2/3,A],y) ≃ hr/3+5/3

∑

j≥0

jM1−r(1/4+3j/2)

(r(1/4 + 3j/2) − 1)
,

and taking M ≥ 2 sufficiently big we can sum over j and we deduce (6.28) for r > 4.

For r ∈ [2, 4) and j = 0 we have r/4 − 1 < 0 and

hr(1/2+5/3r−1/6)

∫ Ah−2/3

M

ζ−r/4dζ ≃ (Ah−2/3)1−r/4

1 − r/4
.

For r ∈ [2, 4) and j ≥ 1 we have r(1/4 + 3j/2) − 1 > 0 and

hr(1/2+j+5/3r−1/6−j)
∫ Ah−2/3

M

ζ−r(1/4+3j/2)dζ ≃ M1−r(1/4+3j/2)

r(1/4 + 3j/2) − 1
.

If M ≥ 2 is sufficiently large the sum of the Lr norms over j ≥ 0 is small compared
to the norm for j = 0, hence (6.28) follows for r ∈ [2, 4) too.

• In the last case x > a the Lr(Ω) norms are as small as we want since the contri-
bution of unh in this case is OL2(h∞), because this region is localized away from a
neighborhood of the Lagrangian ΛΦn and we use Lemma 4.2.
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