
HAL Id: hal-00280599
https://hal.science/hal-00280599v1

Preprint submitted on 19 May 2008 (v1), last revised 23 Jan 2009 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An optimal control approach to imaging by modification
Yves Capdeboscq, Frédéric de Gournay, Jérôme Fehrenbach, Otared Kavian

To cite this version:
Yves Capdeboscq, Frédéric de Gournay, Jérôme Fehrenbach, Otared Kavian. An optimal control
approach to imaging by modification. 2008. �hal-00280599v1�

https://hal.science/hal-00280599v1
https://hal.archives-ouvertes.fr


AN OPTIMAL CONTROL

APPROACH TO

IMAGING BY MODIFICATION

Y. CAPDEBOSCQ , F. DE GOURNAY , J. FEHRENBACH , AND O. KAVIAN

Abstract. We discuss the reconstruction of the impedance from the local

power density. This study is motivated by a new imaging principle which

allows to recover interior measurements of the energy density by a non invasive
method. We discuss the theoretical feasibility in two dimensions, and propose

numerical algorithms to recover the conductivity in two and three dimension.
The efficiency of this approach is documented by several numerical simulations.

1. Introduction

Let Ω be a simply connected open set in R
d, d = 2 or 3, with a C1 boundary ∂Ω.

Given an integer N ≥ 1, let (gi)1≤i≤N be N continuous functions in H1/2(∂Ω), and

given σ ∈ L∞ (Ω), consider ui, solution to the following conductivity problems

(1) div (eσ∇ui) = 0 in Ω, ui = gi on ∂Ω, for all i ∈ {1, . . . , N} ,

and define (Si,j)1≤i,j≤N ∈ L1 (Ω) by

(2) Sij := eσ∇ui · ∇uj a.e. in Ω.

This work is devoted to the theoretical and numerical study of the following in-
verse problem: given the functions (Sij)1≤i,j≤N on ω ⊂⊂ Ω, and given σ near the

boundary of the domain, recover σ inside ω.
This question is motivated by a new imaging method for the determination of

the conductivity inside the domain Ω, which relies both on electrical impedance to-
mography and ultrasonic wave focusing. A focused ultrasonic wave modifies slightly
the conductivity within the domain, which allows in turn to recover the energy den-
sities Sij . This method is described in the recent work of Ammari et al. [2]. In this
paper, a first inversion algorithm is proposed to recover eσ from S11, S22 and S12,
which recovers data very successfully.

Yet, many questions are left unanswered. In [2], the case of a full energy density
map is considered, i.e. ω = Ω, and the ad-hoc algorithm proposed cannot be
extrapolated simply when imaging smaller subdomains. This algorithm relies in
a fundamental way on the existence of several measurements (at least two), and
diverges in general for one measurement. Furthermore, because it is based on a
perturbation approach, its stability cannot be guaranteed a priori.

This problem is studied here from a different perspective, that of optimal control.
Consider the case of one current, that is, one data S11. It is clear that the inversion
can be reformulated as a minimisation problem, such as the following

Minimise J (σ) :=

∫

ω

j (E(σ), x) dx over all σ ∈ L∞(Ω),(3)

where j : R × Ω −→ [0,∞) is an appropriately chosen sufficiently smooth function
and j(s, x) = 0 iff s = S11(x), and

E(σ) := eσ|∇u|2 with div (eσ∇u) = 0 in Ω, u = g1 on ∂Ω.(4)
1
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The solving methods and numerical results presented in this paper follow this
formulation, or its multi-data counterpart. To assess the quality of the inversion
procedure, it is necessary to establish what can be recovered. Note that, even
though the problem under consideration is related to electrical impedance tomog-
raphy, we cannot rely on the theoretical results obtained for that problem: indeed
we cannot assume that the Steklov-Poincaré operator, or the Dirichlet-to-Neumann
map, is known, since only a limited number of voltage potentials (gi)1≤i≤N are im-
posed on the boundary.

In fact, the nature of the inversion is quite different. For instance in the one
dimensional case in which Ω = (0, 1), with one data S11 known everywhere on
(0, 1), the conductivity is easily determined. Indeed, for some constant C we have
eσux = C and thus S11 = e−σC2. Also assuming for instance g1(1) − g1(0) = 1,

one infers that C
∫ 1

0
eσ(x)dx = u(1) − u(0) = 1, and C =

∫ 1

0
S11(x)dx so that C

is determined by S11 and finally σ is completely determined. In contrast, using
electrical impedance tomography, only the average of the conductivity over (0, 1)
can be recovered.

Of paramount importance for this complete reconstruction is the knowledge of
S11 everywhere on (0, 1). In any dimension, if the data is only known on a subdo-
main ω strictly included in Ω, one can only hope to recover the log-conductivity σ
up to an additive constant, as it is illustrated by the following example. Suppose
for simplicity that d = 2 and that the domain is a disk of radius 1 centered at the
origin, and that the log-conductivity is radial, given by

σ =











log γ0 if r < 1
2

log γ1 if 1
2 < r < 1√

2

0 if 1√
2

< r < 1

.

In such a case, for a boundary condition of the form g = c1 cos(θ) + s1 sin(θ),
θ ∈ (0, 2π), the solution u, and, in turn, the data, can be computed explicitly by
separation of variables. The solution u is given in polar coordinates by u(r, θ) =
p1 (c1 cos(kθ) + s1 sin(kθ)) r, for r ≤ 1/2, where the constant p1 is given by

p1 =
16γ1

γ2
1 + 9γ1 + 3γ1γ0 + 3γ0

.

We therefore see that selecting γ0 and γ1 of such that γ0 = γ1(7−γ1)/3(1+γ1) will
yield the same data as that of an homogeneous medium of log-conductivity σ = 0.

Counter examples for polynomial boundary conditions, g =
∑N

k=1 ck cos(kθ) +
sk sin(kθ) can be constructed similarly by introducing N annulus of different con-
ductivities between the disk of radius 1/2 and the exterior boundary.

In Section 2, we investigate the theoretical reconstruction of the log-conductivity.

First we show that, if s1 = eσ/2∇u1 is known, that is not only the modulus S
1/2
11

but also the direction θ1 := |∇u1|−1∇u1 of the gradient ∇u1 is known, then the
conductivity may be determined up to a multiplicative constant, under some reg-
ularity assumption (this means that the log-conductivity σ is determined up to an
additive constant). Then, we show that if two diffeomorphic measurements s1 and
s2 are performed, yielding a set of three data S11, S22 and S12, the direction θ1 can
also be recovered up to a constant. Note that when ω = Ω, using the fact that σ is
known in a neighbourhood of ∂Ω, both constants involved in the determination of
the log-conductivity and that of the direction θ1 can be recovered. By diffeomorphic
measurements we mean that the solutions u1, u2 satisfy

(5) det (∇u1,∇u2) > 0 or equivalently det (s1, s2) > 0 a. e. in ω.
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Figure 1. A problematic configuration for the conductivity when
d = 3 and when the conductivity is very high in the annuli com-
pared to that of the background medium.

The difficulty is that we want to ensure that we have performed diffeomorphic
measurements by a judicious choice of g1 and g2, independently of σ. The follow-
ing theorem of Alessandrini and Nesi [1], extending the classical theorem of Radò
(1926), Kneser (1926), and Choquet (1945) for harmonic maps, shows that in two
dimension, there are many such possible choices. We formulate it for the scalar
case, although in [1] the result is shown for matrix valued conductivities.

Theorem 1.1 (Alessandrini & Nesi [1]). Let Ω ⊂ R
2 be a bounded simply connected

open set, whose boundary ∂Ω is a simple closed curve. Let g = (g1, g2) be a mapping
∂Ω → R

2 which is a homeomorphism of ∂Ω onto a convex closed curve C, and let
D denote the bounded convex domain bounded by C. Let σ ∈ L∞(Ω), and let
U = (u1, u2) be the σ-harmonic mapping whose components u1, u2 are solutions of
the Dirichlet problems

div (eσ∇ui) = 0 in Ω,

ui = gi on ∂Ω,

with gi ∈ H1(Ω) ∩ C(Ω) and i = 1, 2. Then U is a homeomorphism of Ω onto D.
In particular we have either

∀ω ⊂⊂ Ω, det (∇u1,∇u2) > 0 a.e. in ω

or
∀ω ⊂⊂ Ω, det (∇u1,∇u2) < 0 a.e. in ω

As a consequence, assuming that Ω is convex and sufficiently smooth, taking mea-
surements with, say, g1 = x1 and g2 = x2 (that is g = Id), we are guaranteed that
condition (5) holds.

Unfortunately, such a result is not true when d = 3, even in the harmonic case as
it was proved by Laugesen [5], and changes of signs in the determinant can happen
arbitrarily small scales, see Briane et al. [3]. Geometries such as the one sketched
in Figure 1 provide counter-examples. These results indicate that an extension of
our approach of the uniqueness problem to the three dimensional case is likely to
fail.

In Section 3, we adopt an optimisation point of view, and consider the inverse
problem as described in (3). More precisely, we introduce two functionals

J1(σ) :=

∫

ω

(

eσ/2 |∇u| − S
1/2
11

)2

,



IMAGING BY MODIFICATION 4

and

J2(σ) :=
1

2

n
∑

i=0

(
∫

ωi

eσ |∇u|2 dx −
∫

ωi

S11 dx

)2

,

where (ωi)1≤i≤n is a partition of ω. We compute their differentials, and show that
strict convexity of such functionals cannot be guaranteed a priori. This fact is
not related to the particular choice of integrand (cost functions j in the language of
optimal control (3)). We then discuss how a weaker lower bound on the Hessian can
be used to improve minimisation procedures, and why several electric measurements
are beneficial.

For the sake of concision, the gradient descent method used to minimise J1 is not
detailed. In Section 4, we detail the implementation of the Gauss-Newton method
used to minimise J2. For an increased numerical efficiency, the Jacobian matrix of
the cost function is evaluated differently on fine and coarse meshes. This leads to a
multigrid algorithm. For three dimensional computations, the involved number of
degrees of freedom prohibits the resolution of very fine scale problems. We believe
that our algorithm, because it is multigrid, allows to circumvent this difficulty, if a
fine resolution is needed only in a small area of the domain.

Finally in Sections 5 and 6, numerical examples are presented and discussed.
In the two dimensional case, with the idea of a patchwork resolution in mind,
we document how parallel resolution on different patches can be performed. In
the three dimensional case the multi-grid resolution method is illustrated on a
half sphere — a domain resembling a breast, since breast cancer detection is an
application we have in mind.

2. On the theoretical reconstruction of the

conductivity in two dimensions.

In this section we show that, possibly up to two constant parameters, the conduc-
tivity can be determined from two diffeomorphic measurements. In fact, we could
exhibit an explicit inversion formula from Proposition 2.1 and Proposition 2.2, us-
ing formulae (9) and (18), which would simplify the inversion to the evaluation of
two real parameters, easily found from the near boundary information available for
σ. We chose not to do so for two reasons. First these formulae are exclusively two
dimensional, as they rely in an essential way on the fact that divergence free fields
are curls, and Theorem 1.1 is used frequently. Finally, both (9) and (18) require to
differentiate the measured data, and this is a well known source for instability.

Proposition 2.1. Assume d = 2 and σ ∈ L∞(Ω) be such that ∇σ ∈ Lp(Ω) for
some p > 2. Let u1 be the solution of (1) for i = 1. Assume that S11 6= 0 and
furthermore that s1 := eσ/2∇u1 is known almost everywhere in ω ⊂ Ω, and that

|∇u1|−1 ∈ L2(Ω) and |∇u1|−2∂iju1 ∈ L2(Ω)(6)

Then σ is known in ω up to an additive constant. Without further assumptions,
the additive constant cannot always be determined.

Proof. Let ϕ ∈ H1
0 (Ω) be a test function. Testing (1) against ϕ we obtain

∫

Ω

eσ/2s1 · ∇ϕ dx = 0.

Define

J :=

[

0 −1
1 0

]

.
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Then, using the fact that the vector valued function e−σ/2s1 is a gradient, and that
we are in two dimensions, we obtain

∫

Ω

e−σ/2Js1 · ∇ϕ dx = 0.

This yields for all test functions ϕ,
∫

Ω

s1 · ∇ϕ dx − 1

2

∫

Ω

∇σ · s1ϕ dx = 0,(7)

and
∫

Ω

Js1 · ∇ϕ dx +
1

2

∫

Ω

∇σ · Js1ϕ dx = 0.(8)

(At this point note that since we assume ∇σ ∈ Lp(Ω) and since by Sobolev imbed-
dings theorem we have ϕ ∈ Lq(Ω) for all q < ∞ and all ϕ ∈ H1

0 (Ω), upon choosing
appropriately q one checks that ∇σ · s1ϕ ∈ L1(Ω)). Using the fact that

∇σ = (∇σ · s1)
s1

S11
+ (∇σ · Js1)

Js1

S11
a.e. in Ω,

for any Φ := (ϕ1, ϕ2) ∈ (C1
c (Ω))2 we obtain

1

2

∫

Ω

σdiv (Φ) dx = −1

2

∫

Ω

∇σ · Φ dx

= −1

2

∫

Ω

(∇σ · s1)
s1

S11
· Φ dx − 1

2

∫

Ω

(∇σ · Js1)
Js1

S11
· Φ dx

= −
∫

Ω

s1 · ∇
(

s1

S11
· Φ
)

dx +

∫

Ω

Js1 · ∇
(

Js1

S11
· Φ
)

dx ,(9)

where we have used (7) with ϕ := Φ · s1/S11 and (8) with ϕ := Φ · Js1/S11. Indeed
this is possible, since using the assumption that ∇σ ∈ Lp(Ω) while |∇u1|−1 ∈ L2(Ω)
and |∇u1|−2∂iju1 ∈ L2(Ω) one may check that the defined functions ϕ are in H1

0 (Ω).
Now note that the right hand side of (9) depends only on the data s1: therefore

by choosing the support of Φ in ω, that is where s1 is known, we conclude that the
left hand side is known. This in turn proves that σ is known in ω up to an additive
constant. �

The proof of proposition 2.1 uses the fact that two orthogonal projections of the
flux s1 can be related to the conductivity. In the next proposition we show that
two distinct measurements, yielding three data S11, S22 and S12 allow to recover the
direction θ1 := |∇u1|−1∇u1 up to a constant, (and in turn, the conductivity using
proposition 2.1). This relies on the fact that, provided Ω is convex and smooth, if
g1 = x1 and g2 = x2, then the solutions u1, u2 of (1) verify

(10) det(∇u1,∇u2) > 0 a.e. in ω,

thanks to Theorem 1.1.

Proposition 2.2. Assume that Ω is convex and smooth, that g1 = x1 and g2 = x2

so that (10) holds. Assume that S11, S22 and S12 are known in ω ⊂ Ω, and that
u1, u2 satisfy (6). Then the direction

θ1 :=
∇u1

|∇u1|
=

s1

|s1|
= S

−1/2
11 eσ/2∇u1

is known up to a constant rotation.
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Proof. First, note that s1 = eσ/2∇u1 and s2 = eσ/2∇u2 are related via two known
constants. Indeed we may write, for some α(x), β(x) that s2(x) = α(x)s1+β(x)Js1

and since det(s1, s2) = s1 ∧ s2 we have

s2 = α(x)s1 + β(x)Js1 =
S12

S11
s1 +

det(s1, s2)

S11
Js1.(11)

The determinant det(s1, s2) is known, since thanks to (10) its sign is known to be
positive (for instance), and therefore

det(s1, s2) =

√

S11S22 − (S12)
2
.

From equation (1), and the fact that d = 2, we deduce that for any compactly
supported test function ϕ, since for j = 1, 2 we have div(eσ/2sj) = 0, thanks to
(11),

∫

Ω

eσ/2s1 · ∇ϕ dx = 0,(12)

∫

Ω

eσ/2 (αs1 + βJs1) · ∇ϕ dx = 0,(13)

and due to the fact that e−σ/2sj is a gradient and Js2 = αJs1 − βs1,
∫

Ω

e−σ/2Js1 · ∇ϕ dx = 0,(14)

∫

Ω

e−σ/2 (αJs1 − βs1) · ∇ϕ dx = 0.(15)

Assume momentarily that σ, s1 and s2 are smooth enough so that we can integrate
by parts (13) and (15). Then using the fact that div(e−σ/2Js1) = 0, we obtain

∫

Ω

eσ/2∇α · s1ϕ dx +

∫

Ω

e−σ/2∇ (eσβ) · Js1ϕ dx = 0,

and
∫

Ω

e−σ/2∇α · Js1ϕ dx −
∫

Ω

eσ/2∇
(

e−σβ
)

· s1ϕ dx = 0.

Introducing U = (∇α − J∇β)β−1, we have proved that

(16)

∫

Ω

U · s1ϕ dx +

∫

Ω

∇σ · Js1ϕ dx = 0 =

∫

Ω

U · Js1ϕ dx −
∫

Ω

∇σ · s1ϕ dx.

Integrating by parts (12), we deduce from (16) the identity,

−2

∫

Ω

div (s1) ϕ dx =

∫

Ω

∇σ · s1ϕ dx =

∫

Ω

U · Js1ϕ dx,

and similarly, starting from (14), thanks to (16) we obtain,

−2

∫

Ω

div (Js1) ϕ dx = −
∫

Ω

∇σ · Js1ϕ dx =

∫

Ω

U · s1ϕ dx.

Finally we have proved that for any Φ = (ϕ1, ϕ2) ∈ C∞
0 (Ω)2,

∫

Ω

U · JΦ =

∫

Ω

(U · s1)

(

JΦ · s1

S11

)

+ (U · Js1)

(

JΦ · Js1

S11

)

dx,

= −2

∫

Ω

(

div (Js1)
JΦ · s1

S11
+ div (s1)

JΦ · Js1

S11

)

dx,

= 2

∫

Ω

(

div (Js1)
Js1

S11
+ div (s1)

s1

S11

)

· Φ dx.
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A direct computation shows that if we set θ1 := s1/|s1|, and θ1 = (cos t, sin t), we
have

(17)

∫

Ω

(

div (Js1)
Js1

S11
+ div (s1)

s1

S11

)

· Φ dx =

∫

Ω

(−J∇t + ∇ (log S11)) · Φ dx,

or equivalently

(18)

∫

Ω

J∇t · Φ dx = −
∫

Ω

(

div (Js1)
Js1

S11
+ div (s1)

s1

S11
−∇ (log S11)

)

· Φ dx.

Thus we have expressed ∇t in terms of known quantities. To conclude the proof,
notice that with the regularity conditions assumed about u1, u2, σ, the integrals
involving U and ∇ (log S11) are well defined, and therefore t is determined up to an
additive constant. �

3. An optimal control approach

In Section 2, we presented Propositions 2.1 and 2.2 to document the feasibility
of the inversion in an ideal case. For the practical inversion, which will be discussed
in the sequel, we will adopt a very different approach. The inversion is considered
as a minimisation problem, and it is performed in two or three dimensions. In Sub-
section 3.1, the minimisation problems are precisely stated. The direct and adjoint
differentiation of the cost functions are detailed in Subsection 3.2. Numerical sim-
ulations are presented in Sections 5 and 6, where several boundary conditions are
simultaneously considered and the effective cost functions are sum of cost functions
similar to J1 or J2. Subsection 3.3 is devoted to the study of the convexity prop-
erties of the cost functions. We consider the general form (3) of the minimisation
problem, and discuss the convexity properties of the minimisation of

(19) J (σ) =

∫

Ω

j (E(σ), x) dx.

As in (3), we assume that j : R × Ω → L1(Ω) is a Caratheodory function which
is C2 with respect to its first variable, non-negative, and such that j(s, x) = 0 if
and only if s = eσ⋆(x)|∇u⋆(x)|2, where eσ⋆

is the true conductivity and u⋆ is the
associated electric potential. Strictly convex functionals are known to be favourable
in optimisation problems, as they imply uniqueness of the solution and convergence
of descent algorithms. We show that the minimisation is not fault free, namely,
around the global minimiser, the Hessian of J is not positive definite.

3.1. The minimisation problems. We assume that the true log-conductivity σ⋆

is known in a layer of positive thickness close to the boundary ∂Ω. More pre-
cisely: we assume that σ⋆ is known in Ω \ Ω′, where Ω′ is a subdomain such that
dist(Ω′, ∂Ω) > 0. Let g ∈ H1/2(∂Ω). The set of admissible log-conductivities is

L∞
ad(Ω) = {σ ∈ L∞(Ω) | σ|Ω\Ω′ = σ⋆},

and its tangent space at any point is the subspace denoted by

L∞
0 (Ω) = {δ ∈ L∞(Ω) | δ|Ω\Ω′ = 0}.

If σ ∈ L∞
ad(Ω), we denote by u(σ) ∈ H1 the solution u of

(20)

{

∇ · (eσ∇u) = 0 Ω
u = g ∂Ω.

We describe two optimisation methods to recover the conductivity from energy
density measurements. The heuristic idea is to find σ ∈ L∞

ad(Ω) such that

E(σ) := eσ |∇u|2
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approaches S = E(σ⋆). For the sake of concision we write sometimes E(σ) instead
of E(σ, x) = eσ(x)|∇u(x)|2.

The first method uses local measurements of S on the subdomain ω: it consists
in minimising the following cost function

(21) J1(σ) =

∫

ω

[

√

E(σ) −
√

E(σ⋆)
]2

dx.

This corresponds to the general problem (19) with j(s, x) =
(√

s −
√

E(σ⋆, x)
)2

for x ∈ ω and j(s, x) = 0 otherwise.
The second method is a multigrid method. The domain Ω′ is partitioned in

subdomains (ωi)1≤i≤n. Let ω0 = Ω\Ω′. We assume that the total power in each ωi

(i = 0 . . . n) is known, this quantity is

∫

ωi

E(σ⋆). The cost function to be minimised

is:

(22) J2(σ) =
1

2

n
∑

i=0

(
∫

ωi

E(σ) dx −
∫

ωi

E(σ⋆) dx

)2

,

where we restrict to conductivities that are constant on each ωi. Note that if a finite
element method with piecewise constant conductivities on a mesh (Ti)1≤i≤M is used

for the discretisation of (19) with j(s, x) = (s − E(σ⋆, x))
2
, then the minimisation

problem of (19) and the minimisation of J2 are equivalent when n = M and for all
i ∈ {1, . . . ,M}, ωi = Ti.

To minimise these functionals, we shall use either a steepest descent algorithm
with J1, or a Gauss-Newton algorithm with J2. Both approaches require differen-
tiations.

3.2. Differentiation of J1 and J2. It is well known that the mapping σ 7→ u(σ)
defined on L∞

ad(Ω) → H1(Ω) is C∞ (in fact analytic), and that if δ ∈ L∞
0 (Ω), the

differential of u in the δ direction is du.δ = v where v ∈ H1
0 (Ω) is the solution of

the variational problem

(23) v ∈ H1
0 (Ω), ∀ϕ ∈ H1

0 (Ω),

∫

Ω

eσ∇v∇ϕ dx = −
∫

Ω

δeσ∇u∇ϕ dx.

Consider the mapping

E : L∞
ad(Ω) −→ L1(Ω)
σ 7−→ eσ|∇u(σ)|2.

The mapping E is clearly differentiable, and its derivative in the δ direction is given
by:

(24) dE.δ = δeσ|∇u|2 + 2eσ∇u∇v,

where v = du.δ is the unique solution of (23).

Proposition 3.1. The operator dE : L∞
0 (Ω) → L1(Ω) has the following symmetry

property: for all δ, η ∈ L∞
0 (Ω), denoting by 〈·, ·〉 the duality between L1(Ω) and

L∞(Ω) we have

〈dE.δ, η〉 = 〈dE.η, δ〉.
Proof. If η ∈ L∞

0 (Ω), then

dE.η = ηeσ|∇u(σ)|2 + 2eσ∇u(σ).∇w,

where w solves

(25)

{

∇ · (eσ∇w) = −∇ · (ηeσ∇u(σ)) Ω
w = 0 ∂Ω.
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We can write

〈dE.δ, η〉L1,L∞(Ω) =

∫

Ω

ηδeσ|∇u(σ)|2 + 2ηeσ∇u(σ).∇v.

The second term in this integral is evaluated by:
∫

Ω

ηeσ∇u(σ).∇v = −
∫

Ω

v∇ · (ηeσ∇u(σ)) = −
∫

Ω

eσ∇v.∇w.

As a result,

〈dE.δ, η〉L1,L∞(Ω) =

∫

Ω

ηδeσ|∇u(σ)|2 − 2

∫

Ω

eσ∇v.∇w.

This quantity being symmetric in δ and η, it follows that

〈dE.δ, η〉L1,L∞(Ω) = 〈dE.η, δ〉L1,L∞

0
(Ω)

and the result is proved. �

As a consequence of (23), if we write

J2(σ) =
1

2
||F (σ)||2,

where

(26) F (σ) = (fi(σ))0≤i≤n ∈ R
n+1 with fi(σ) =

∫

ωi

E(σ) −
∫

ωi

E(σ⋆),

the mapping F : L∞
ad(Ω) → R

n+1 defined in (26) is differentiable, and if σ ∈ L∞
ad(Ω)

and δ ∈ L∞
0 (Ω):

dF.δ = (df0.δ, df1.δ, . . . ,dfn.δ),

with

(27) dfi.δ =

∫

ωi

(

δ + 2
∇u(σ).∇v

|∇u(σ)|2
)

eσ|∇u(σ)|2 dx,

where v solves (23).
Let us now study the adjoint differentiation of J1, and J2.

Proposition 3.2. Assume that ω ⊂ Ω′. Let χ be the characteristic function of ω.
Define an error function

ε(σ) := χeσ

(
√

E(σ⋆)

E(σ)
− 1

)

,

and let p be the adjoint state solution of the variational problem

p ∈ H1
0 (Ω), ∀ϕ ∈ H1

0 (Ω)

∫

Ω

eσ∇p∇ϕ dx =

∫

Ω

ε∇u∇ϕ dx.

The functional J1 is differentiable with respect to σ and its derivative is given by

(28) dJ1.δ =

∫

Ω

δ

(

−ε + 2
∇u∇p

|∇u|2
)

eσ|∇u|2 dx.

Proof. Note that p ∈ H1
0 (Ω) is solution to the elliptic adjoint problem div(eσ∇p) =

div(ε(σ)∇u). We have

J1(σ) =

∫

Ω

χ
(

√

E(σ) −
√

E(σ⋆)
)2

dx

and so the derivative of J1 is:

dJ1.δ =

∫

Ω

χ
(

√

E(σ) −
√

E(σ⋆)
)

(

δeσ/2|∇u| + 2eσ/2∇v∇u

|∇u|

)

dx,(29)
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where v = du.δ is defined in equation (23). In order to write the derivative dJ1

in terms of δ only — and not in terms of δ and v — an adjoint problem is used.
Namely let p ∈ H1

0 be the solution of:

p ∈ H1
0 (Ω), ∀ϕ ∈ H1

0 (Ω)
∫

Ω

eσ∇p∇ϕ dx = −
∫

Ω

χ
(

√

E(σ) −
√

E(σ⋆)
)

eσ/2∇u∇ϕ

|∇u| dx =

∫

Ω

ε∇u · ∇ϕ dx,(30)

Then, choosing ϕ := v in equation (30), it follows from equation (23) with ϕ = p
that:

dJ1.δ =

∫

Ω

(

χeσ|∇u|2
(

1 −
√

E(σ⋆)/E(σ)
)

+ 2eσ∇u∇p
)

δ dx,

which is (28). �

Proposition 3.3. Let σ ∈ L∞
ad(Ω) and Z = (z0, z1, . . . , zn) ∈ R

n+1. Then

(31) dFT .Z = z|∇u|2 + 2∇u∇p ,

where z is the piecewise constant function equal to zi in ωi (i = 0 . . . , n) and p
solves

(32)

{

∇ · (eσ∇p) = ∇ · (zeσ∇u) Ω
p = 0 ∂Ω.

This for instance allows us to compute the gradient of the cost-function J2. Indeed,

since J2(σ) =
1

2
||F ||2 we have

∇J2 = dFT .F

and so it suffices to apply (31) with Z = F .

Proof of Proposition 3.3. If δ ∈ L∞
0 (Ω), then

〈dFT .Z, δ〉L1,L∞(Ω) = 〈Z,dF.δ〉Rn+1 =

n
∑

i=0

zi

∫

ωi

δeσ|∇u|2 + 2eσ∇u · ∇v dx.

Using the definition of z this can be written

〈

dFT .Z, δ
〉

L1,L∞

0
(Ω)

=

∫

Ω

zδeσ|∇u(σ)|2 + 2zeσ∇u(σ) · ∇v dx.

Let us evaluate the second term in the right-hand side. Choosing v as a test
function in the adjoint equation satisfied by p, and choosing p as a test function in
the equation satisfied by v, we have

∫

Ω

zeσ∇u(σ) · ∇v dx =

∫

Ω

eσ∇p · ∇v dx =

∫

Ω

δeσ∇p · ∇u dx.

Hence for every δ ∈ L∞
0 (Ω),

〈dFT .Z, δ〉L1,L∞(Ω) =

∫

Ω

(

zeσ|∇u|2 + 2eσ∇u · ∇p
)

δ dx.

�
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3.3. Local minimisers and degenerate convexity. We make the following
simple observation.

Proposition 3.4. Assume that σ is such that E (σ) = E (σ⋆). Then

(33)
∣

∣D2J (σ) · [δ, δ]
∣

∣ ≤ 2

∥

∥

∥

∥

d2j

ds2
(E (σ⋆) , x) E (σ⋆)

∥

∥

∥

∥

∞
D2J1 (σ) · [δ, δ],

and whenever
∣

∣

∣

d2j
ds2 (E (σ⋆) , x)

∣

∣

∣

−1

is integrable we have

(34)

(

∫

Ω

∣

∣

∣

∣

d2j

ds2
(E (σ⋆) , x)

∣

∣

∣

∣

−1

dx

)−1
(
∫

Ω

Eδdx

)2

≤ D2J · [δ, δ].

When J = J1, we have

1

2

(
∫

Ω

E (σ⋆) dx

)−1(∫

Ω

E (σ⋆) δdx

)2

≤ D2J1 (σ) · [δ, δ] ≤ 1

2

∫

Ω

E (σ⋆) δ2 dx.

Note that Proposition 3.4 illustrates the fact that it is sufficient to study the case
J = J1 to prove that degeneracy in the convexity is general. In particular, in-
equality (33) shows that the Hessian of J cancels simultaneously as that of J1, if
the energy density is smooth.

The lower bound (34) does not prove strict convexity. However, it provides a
rule-of-thumb on how to mend steepest descent algorithm resolutions that tend to
stall close to the minimiser. Since E (σ⋆) is strictly positive, the lower bound will
not vanish if δ ≥ 0, or δ ≤ 0 everywhere. Therefore, if δ⋆ is the increment given by
the algorithm, choosing to alternatively apply either max(δ⋆, 0) or min(δ⋆, 0) will
avoid a degenerate behaviour.

Proof of Proposition 3.4. Performing the same computation as in the proof of Propo-
sition 3.2, we have for σ ∈ L∞

ad(Ω) and δ ∈ L∞
0 (Ω),

DJ (σ) · δ =

∫

Ω

∂j

∂s
(E(σ), x) E(σ)

[

δ + 2
∇v · ∇u

|∇u|2

]

dx.

Another differentiation shows that the second derivative is given by

D2J (σ) · [δ, δ] =

∫

Ω

∂2j

∂s2
(E(σ), x)

[

E(σ)

(

δ + 2
∇v · ∇u

|∇u|2

)]2

dx

+

∫

Ω

∂j

∂s
(E(σ), x) E(σ)

[

δ2 + 4δ
∇v · ∇u

|∇u|2
+ 2

∇w · ∇u

|∇u|2

]

dx,

where w ∈ H1
0 (Ω) is the second derivative of u(σ) in the direction δ. When

∂j

∂s
(E(σ), x) ≡ 0, that is at a critical point of J , this simplifies in

(35) D2J (σ) · [δ, δ] =

∫

Ω

d2j

ds2
(E(σ), x)

[

E(σ)

(

δ + 2
∇v · ∇u

|∇u|2

)]2

dx.

Note that by construction at the global minimiser, that is, when E (σ) = E (σ⋆)

a.e. in ω, identity (35) holds and ∂2j
∂s2 (E (σ) , x) ≥ 0. Therefore,

∣

∣D2J (σ) · [δ, δ]
∣

∣ ≤
∥

∥

∥

∥

d2j

ds2
(E (σ⋆) , x)E (σ⋆)

∥

∥

∥

∥

∞

∫

ω

E(σ)

[

δ + 2
∇v · ∇u

|∇u|2

]2

dx

≤ 2

∥

∥

∥

∥

∂2j

∂s2
(E (σ⋆) , x)E (σ⋆)

∥

∥

∥

∥

∞
D2J1 (σ) · [δ, δ],
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upon applying formula (35) to

j (s, x) =
(

s1/2 − E (σ⋆, x)
1/2
)2

.

This proves the first part of the proposition. Let us now turn to J1. Expanding
D2J1 (σ) · [δ, δ], we find

D2J1 (σ) · [δ, δ] =
1

2

∫

Ω

E(σ)δ2 dx + 2

∫

Ω

E(σ)

[

∇v · ∇u

|∇u|2

]2

dx

+ 2

∫

Ω

δ∇u · ∇v dx,

=
1

2

∫

Ω

E(σ)δ2 dx + 2

∫

Ω

eσ

|∇u|2
(

[∇v · ∇u]2 − |∇v|2 |∇u|2
)

dx,

where we have used (23) with ϕ = v. Since, by Cauchy-Schwarz inequality, the
second term of the right-hand-side is non positive, we have shown that

D2J1 (σ) · δ · δ ≤ 1

2

∫

Ω

E(σ)δ2 dx.

On the other hand, if we choose v as a test function in (20) and integrate by parts,
we obtain

∫

Ω

E (σ)
∇v · ∇u

|∇u|2
dx = 0.

As a consequence,

(
∫

Ω

E (σ) δ dx

)2

=

(

∫

Ω

E (σ)

[

δ + 2
∇v · ∇u

|∇u|2

]

dx

)2

≤ D2J · [δ, δ]
(

2

∫

Ω

E(σ) dx

)

,

using again Cauchy-Schwarz inequality. �

The next proposition shows that the Hessian D2J is not always positive definite.
We provide a counter example in the simplest case, that is, for the Laplacian.

Proposition 3.5. Let Ω := (0, π)2 and assume that σ ≡ 0, while g = x1, and
∂j/∂s (E (0) , x) ≡ 0. Then there exist directions δ such that

‖δ‖L2(Ω) = 1 and D2J (0) [δ, δ] = 0.

Proof. Since σ = 0, we have u := u1 = x1. The corrector v ∈ H1
0 given by (23)

satisfies

(36) ∆v = −∇xδ.

Choose

δ(x, y) =
∞
∑

n=1

2dn cos(nx) sin(ny),

=
∞
∑

n=1

dn sin(n(x + y)) +
∞
∑

n=1

dn sin(n(y − x)),

with

π

2

∞
∑

n=1

d2
n = 1.
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An explicit computation gives

v(x, y) = −
∞
∑

n=1

1

2n
dn sin(nx) sin(ny),

and

δ + 2
∇u · ∇v

|∇u|2
= 0 in Ω.

Therefore, since from formula (35) we have

D2 J (0)[δ, δ] =
1

2

∫

Ω

d2j

ds2
(E(0), x)

[

E(0)

(

δ + 2
∇u · ∇v

|∇u|2

)]2

dx,

the proof is complete. �

Remark: In the proof of Proposition 3.5, we selected an ad-hoc family of pertur-
bations, to cancel the Hessian. Had we started with a perturbation of the general
form

δ =
∑

n≥0

∑

p>0

dn,p cos(nx) sin(py),

we would have obtained
(

δ + 2
∇u · ∇v

|∇u|2

)2

=
∑

p>0

d2
0,p sin2(py) +

∑

n>0,p>0

d2
n,p

(

n2 − p2

n2 + p2

)2

cos2(nx) sin2(py).

Notice that coefficients in the ∇u/|∇u| = (1, 0) direction are not weighted by any
factor. Therefore the perturbation, which is the increment in a steepest descent
algorithm, is the most important in that direction. This, we think, is an explana-
tion for the speed-up observed in computations, when multiple currents are used,
simultaneously or alternatively: the optimisation becomes efficient in multiple di-
rections.

4. Minimisation of the cost function J2

This section is dedicated to the presentation of the minimisation algorithm for
J2. We do not detail the gradient descent — or steepest descent — algorithm used
for J1. It is a steepest descent algorithm with adaptive step that was implemented
using FreeFem++ [4]. Several boundary conditions are used to estimate the conduc-
tivity: g1, . . . , gN . The cost function is the sum of the cost-functions associated to
these boundary conditions: J1 =

∑

1≤k≤N J k
1 .

The optimisation procedures used to minimise the cost function J2 are detailed.
Although we always use Gauss-Newton method, a different approach is followed for
fine or coarse computations, which yields in turn a multigrid algorithm, presented
in Section 4.2.

4.1. Gauss-Newton optimisation. We make use of several boundary conditions
to estimate the conductivity: g1, . . . , gN . The cost function is the sum of the cost-
functions associated to these boundary conditions: J2 =

∑

1≤k≤N J k
2 .

The domain Ω is divided in subdomains (ωi)0≤i≤n. The true value of the con-
ductivity in ω0 is assumed to be known. We consider F : R

n → (Rn)N , σ 7→
(F1(σ), . . . , FN (σ)), where Fk is associated to the boundary condition gk and is
defined as in equation (26). The map F is C1 and dF = (dF1, . . . ,dFN ).

The Gauss-Newton Method is an iterative descent method designed to minimise
a cost function of the form

J2(σ) =
1

2
||F (σ)||2 =

N
∑

k=1

||Fk(σ)||2.
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An initial guess σ0 is provided, and the m-th iteration reads σm+1 := σm + δm,
where the descent direction δm solves

(37) dFT .dF.δm = −dFT .F.

If the number n of unknowns is small (typically n smaller than 20) the Jacobian
matrices dFk are computed column-wise by solving n conductivity problems using
formula (27). The equation (37) is then assembled and solved easily using any

linear solver since dFT .dF =
∑N

k=1 dFT
k .dFk and dFT .F =

∑N
k=1 dFT

k .Fk.
If the number of unknowns n is large (for a fine spatial resolution there can be

one unknown value of the conductivity in each convex on the finite element mesh)
the computation of the full matrix dF is time and memory consuming. We use an
iterative method, namely the conjugate gradient, to solve equation (37) without
assembling dF . This requires merely the knowledge of the right-hand side dFT .F
and a procedure that gives the product of the matrix dFT .dF by a given vector.
These are provided by the direct and adjoint differentiations described in paragraph
3.2.

More precisely: F (σm) is computed by solving N conductivity problems; dFT .F
is computed by adjoint differentiation (N adjoint problems of conductivity to be
solved); and if ξ is given, dFT .dFξ = dFT . (dF.ξ) is computed in two steps, solving
d direct then d adjoint conductivity problems.

We implemented the algorithms that are sketched below:
Algorithm 1: multigrid conductivity estimation (full Jacobian)

input: the values of the boundary currents g1, . . . , gN and the associated measure-
ments E1(σ

⋆), . . . , EN (σ⋆), initial guess σ0 (such that σ0 = σ⋆ in Ω \ ω)

1.- set m := 0,
2.- compute the potentials u1, . . . , uN predicted with the log-conductivity σm,
3.- compute Fk = (fk,1, fk,2, . . . , fk,n) where fk,i =

∫

ωi

eσm |∇uk|2 −
∫

ωi

Ek(σ⋆),
for k = 1 . . . , N ,

4.- compute dFk, k = 1 . . . , N column-wise using equation (27),

5.- solve for δ the equation
(

∑

1≤k≤N dFT
k .dFk

)

δ = −
∑

1≤k≤N dFT
k .Fk,

6.- update the log-conductivity: σm+1 := σm + δ,
7.- if the stopping criterion is not met, set m := m + 1 and go to step 2.

Algorithm 2: fine conductivity estimation (zero memory)

Same as algorithm 1 above except:

4.- compute dFT
k .Fk, k = 1 . . . , N , using equation (31)

5.- solve for δ the equation
(

∑

1≤k≤N dFT
k .dFk

)

δ = −∑1≤k≤N dFT
k .Fk, using

conjugate gradient,

4.2. Multigrid identification of the conductivity. The conductivity distribu-
tion is retrieved from E1(σ

⋆), . . . , EN (σ⋆) by the following multigrid algorithm that
is a combination of algorithms 1 and 2.

Algorithm 3: combined algorithm
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Figure 2. The reference material (left) ; the convergence history
for the whole domain described in section 5.1 (right)

input: the discretisation mesh, the values of the boundary currents g1, . . . , gN and the
associated measurements E1(σ

⋆), . . . , EN (σ⋆), initial guess for the log-conductivity

1.- set n := 1, set ω1 = ω, estimate the log-conductivity σ provided by algorithm
1.

2.- define a new partition of Ω by dividing each (ωi)1≤i≤n in 2 subdomains (that
are unions of convexes of the mesh), set n := 2n,

3.- find an optimal log-conductivity σ that is constant in each ωi using algorithm
1.

4.- is n is too large, go to step 5. else go to step 2.
5.- the partition of Ω is the partition defined by the convexes of the mesh,
6.- find the log-conductivity σ that is constant in each convex using algorithm 2.

5. Numerical results using the cost function J1

In this section, we document the efficiency of the reconstruction method using
J1. Several boundary conditions g1, . . . , gN are used to estimate the conductivity.
The cost function is the sum of the cost-functions associated to these boundary
conditions: J1 =

∑

1≤k≤N J k
1 . A steepest descent algorithm with adaptive step

was implemented using FreeFem++ [4] for the minimisation of J1. Note that in
contrast with the theoretical reconstruction done in Section 2, we only make use of
the diagonal data, that is, Sii, i = 1, . . . , N , and we make no assumption on the
regularity of these data.

We study a test case that was introduced in [2]. On a disk of diameter 1, different
conductivities are set, the background conductivity is equal to 0.5, the conductivity
in the small disk to 0.75, the one in the triangle to 2 and finally to 2.55 in the L-
shaped domain (see Figure 2). On the annulus of inner radius 6 and outer radius 8,
the conductivity is supposed known. Dirichlet boundary data are fixed to be equal
to the Cartesian coordinates g1 = x, g2 = y, g3 = x + y and g4 = x − y on the
boundary of the circle.

Note that S33 = S11 +S22 +2S12 and S44 = S11 +S22−2S12, and the knowledge
of this set of four data is actually equivalent to the knowledge of the hypothesis of
the theoretical reconstruction done in Section 2.

5.1. The whole domain. The first reconstruction test is performed with ω = Ω,
that is, Sii, i = 1, . . . , 4 is known everywhere. Figure 2 displays the evolution
of the functional J1 to be minimised and the L2 error of σcomp, the computed
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Figure 3. The convergence of the cost function J1 given by (21)
(left) and the L2 error of the conductivity (right).

Figure 4. The computed conductivity with an ellipse patch, see
section 5.2 (left) ; and with an ellipse patch on the wrong domain,
see section 5.3 (right).

log-conductivity with σ⋆ the real log-conductivity. In practical applications, the
real conductivity data is unknown: it is presented here to validate the algorithm.
Two distinct patterns can be distinguished in the convergence history presented on
Figure 2 (right). The first one lies between iterations 1 and 5 and seems quadratic.
The second mode happens after iteration 5 and is slower. We believe that this
second mode is driven by numerical errors in the resolution of the direct problem and
that our algorithm indeed shows quadratic descent. Note that this reconstruction is
slower but also converges using one data only, which is impossible using the method
presented in [2].

5.2. Measurements in a smaller domain. For the second test, the energy den-
sity data are available in an ellipse ω around the L-shaped domain. The convergence
histories of the cost function and the L2 difference with the real conductivity are
shown in Figure 3. Again, the resulting conductivity approaches well the reference
one.

An interesting feature of this test is the tendency of the algorithm to compensate
discrepancies of the conductivity outside ω within a boundary layer in the neigh-
bourhood of ω. A close look at Figure 4 (left) shows that the higher conductivity
on the left boundary of the ellipse stands for the triangle, and the one on the upper
side is the upper branch of the L-shape that is not contained in the ellipse. Note
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Figure 5. The convergence of the functional J1 (left) and the
L2 difference (right) for the wrong domain of Section 5.3 .

that the computed conductivity is found up to a multiplicative constant: the error
graphs were done adjusting this constant.

5.3. Dependence on the outer-domain for interior patches. The experiment
conducted in Subsection 5.2 and the theoretical reconstruction in Section 2 illustrate
that if the value of Sii is known within ω, then the value of σ can be retrieved
within ω. A natural question is whether such a reconstruction is still possible when
the domain Ω, and the Dirichlet boundary data gi is only approximately known.
Section 2 indicates that this is not a necessary prior and in real experiments the
domain Ω will not be very precisely defined – the external shape of soft material may
vary. In this test, the elliptic measurement subdomain is preserved, but we attempt
to recover σ with a domain Ω that has been changed into a smaller ellipse. The
Dirichlet boundary data imposed are the Cartesian coordinates data gi previously
used, x, y, x + y, x − y, but they are now imposed on this new domain. Because
they are not the σ⋆-harmonic extensions of the previous boundary conditions, an
error is introduced in the boundary conditions.

The computed conductivity σcomp is given in Figure 4 (right) and the conver-
gence history in Figure 5. The algorithm compensates for the discrepancies outside
ω and finds the conductivity σcomp up to a constant. For the L2 difference, σcomp
has been renormalised with the best constant.

5.4. Solving with a patchwork approach. The previous tests show that the
conductivity can be recovered within a “patch”, a sub-region of the domain. We
now investigate whether the algorithm can be parallelised with multiple computers
recovering different patches. Since no constraint is imposed on the conductivity
outside the area of interest, Figure 3 shows that the minimisation procedure tends
to create important errors outside the optimised patch ω, in a boundary layer sur-
rounding ω. A natural concern is whether these error would render parallelisation
inefficient.

The following numerical trial is an attempt to address this question. We optimise
successively on two overlapping patches. Figure 6 shows the resulting conductivities
when the algorithm is applied with the right patch only, then with the left patch
only, and then when the algorithm take each patch into account every two iterations.

Figure 7 shows the convergence history. On the right is the evolution of the cost
function associated with the two subdomains corresponding to the two patches. It
is compared to the convergence history of the cost functions when the full ellipse is
taken into account for optimisation. On the left is the evolution of the cost function
corresponding to one single patch (the left one), also compared with the alternate
optimisation iterations.
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Figure 6. The computed conductivity with the right patch only,
the left one only, and then successive patches.
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Figure 7. The convergence of the cost function J1 corresponding
to the ellipse (right) and the right patch (left) in the successive
patches algorithm. They both are compared to the convergence
history of the algorithm when the whole ellipse or only the right
patch are taken into account

Those convergence histories show that optimising independently each region is
not as efficient as a global minimisation algorithm. However, it is not less efficient
than the optimisation on any of the two sub-regions. This shows that the error
boundary layer which appear on the boundary of the patches is not a severe drift
from the optimal solution, as it vanishes when the outside domain is updated. The
parallelisation of the algorithm is therefore relatively simple. For each given patch,
the outside medium simply needs to be updated regularly by the results obtained
on other patches.

6. Numerical results using the cost function J2

In this section, the numerical results obtained for the cost function J2 are pre-
sented. Several boundary conditions g1, . . . , gN are used to estimate the conductiv-
ity. The cost function is the sum of the cost-functions associated to these boundary
conditions: J2 =

∑

1≤k≤N J k
2 . The algorithms were implemented with piecewise

linear finite elements, using Getfem++ [6] and Matlab. The results presented below
were obtained with the multigrid algorithm introduced in Section 4.2.

6.1. Two dimensional results: a half-disk. The domain Ω ⊂ R
2 is a half disk

of radius 1 centered at the origin, the conductivity σ is unknown in the half disk
ω of radius 0.9 centered at the origin. The domain Ω is meshed by 5168 triangles
and 2647 vertices. The subdomain ω contains 4253 convexes, this is the number of
unknowns, and the number of data for each boundary current applied.
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Figure 8. From left to right, first row: True conductivity ; multi-
grid step 2 ; multigrid step 4. Second row: multigrid step 6 (left).
The last two computations are on the fine grid: Gauss-Newton
step 1 (centre) and Gauss-Newton step 3 (right).

There are N = 2 different boundary currents, respectively equal to x1 and x2 (the
spatial coordinates) but for the bottom boundary of the domain that is considered
as insulating (homogeneous Neumann condition). In figure 8 the true conductivity
(top left) and the estimated conductivity at several steps of algorithm are presented.

6.2. Three dimensional results: a half-sphere. A more realistic three dimen-
sional geometry was simulated, in order to mimic breast examination. The domain
Ω is a half-sphere of radius 1.1, the domain ω is a half sphere of radius 0.9. The
mesh of the domain ω contains 4710 convexes, this is the number of unknown
conductivity coefficients.

The bottom of the half sphere is insulating (homogeneous Neumann condition),
and there are 8 disk-shaped electrodes at the boundary, see figure 9. One experiment
consists of applying a Dirichlet condition to the electrodes, such that each electrode
is at a given electric potential. The true conductivity eσ⋆

is space-dependent, there
is a spherical inclusion of radius 0.1 with high conductivity and a background where
the conductivity depends smoothly on the second space variable. The quantity
eσ⋆ |∇u⋆|2 is measured in ω.

Figure 9. Location of the electrodes (black circles)

There are N = 4 boundary conditions defined as follows: on each electrode a
potential equal to respectively g1 = x1, g2 = x2, g3 = x1 + x2 and g4 = x1 − x2.
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Figure 10. The boundary conditions g1 (left) and g2 (right)
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Figure 11. Evolution of the log10 of the discrepancy between the
true and the reconstructed conductivity: no noise (left) and 2%
noise (right)

where x1 and x2 are the first and second spatial coordinate of the centre of mass
of the electrode. We show g1 and g2 on figure 10.

The multigrid algorithm described in paragraph 4.2 was applied with the fol-
lowing parameters: two coarse multigrid steps and five fine Gauss-Newton steps.
Figure 11 shows the logarithmic evolution of the discrepancy between the true
conductivity and the reconstructed conductivity, as a function of the iterations
(measured with different norms), with no noise and with 2% noise. The complete
resolution takes about 600s with a 1.73 GHz computer.

Note: other simulations were conducted with less boundary conditions (N =
2). In the absence of noise, the results of the reconstruction were analogous to
the reconstruction with N = 4 different boundary conditions (but the speed is
twice faster since the total number of conductivity problems to be solved is divided
by a factor 2). However, in the presence of noise, taking into consideration 4
measurements allows to reduce the variance of the noise (and hence the error in the
retrieved conductivity). An application to real data should evaluate the number
of experiments that provides the best trade-off between speed and noise variance
reduction.
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Figure 12. Slice views of the true and the reconstructed conduc-
tivity with 2% noise
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