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Récemment, une nouvelle classe d'algorithmes d'optimisation baptisée EDA (pour estimation of distribution algorithms) a montré son efficacité sur le problème de l'apprentissage de structure de réseaux Bayésiens. Pour cela, les chercheurs ont comparé les EDA avec des algorithmes génétiques. Dans cet article nous proposons de comparer les EDA avec un algorithme à base de score reconnu comme performant : GES. L'objectif de ce travail est de réaliser une analyse critique des EDA dans ce cadre.

ABSTRACT. Recently, a new class of optimization algorithms called EDA (stand for estimation of distribution algorithms) has shown its effectiveness on the problem of learning Bayesian networks structures. For this, the researchers compared the EDA with genetic algorithms. We propose here to compare the EDA with an algorithm-based scoring recognized as powerful: GES. The aim of this work is to achieve a critical analysis of EDA in this context.

Introduction

La recherche sur les réseaux Bayésiens a connu un grand essor ces dernières années, en particulier sur l'apprentissage automatique de la structure à partir de données [START_REF] Buntine | A guide to the literature on learning probabilistic networks from data[END_REF]. Ce problème très documenté est un problème NP-difficile [START_REF] Chickering | Learning Bayesian Networks is NP-Complete[END_REF].

Les EDA (ou Estimation of Distribution Algorithms) [START_REF] Blanco | Learning Bayesian networks in the space of structures by estimation of distribution algorithms[END_REF] sont des algorithmes qui ont fait leurs preuves dans de nombreux domaines [START_REF] Larrañaga | Estimation of Distribution Algorithms. A new tool for evolutionary computation[END_REF], y compris sur l'apprentissage de réseaux Bayésiens. Ainsi, [START_REF] Blanco | Learning Bayesian networks in the space of structures by estimation of distribution algorithms[END_REF], [START_REF] Romero | Learning Bayesian networks in the space of orderings with estimation of distribution algorithms[END_REF] et [START_REF] Thibault | Learning Bayesian network structures by estimation of distribution algorithms : An experimental analysis[END_REF] présentent plusieurs applications de ces algorithmes et montrent empiriquement leur efficacité en les comparant avec des approches génétiques [START_REF] Larrañaga | Structure Learning of Bayesian Networks by Genetic Algorithms : A Performance Analysis of Control Parameters[END_REF]. Dans une précédente étude [START_REF] Thibault | Learning Bayesian network structures by estimation of distribution algorithms : An experimental analysis[END_REF], nous avons réalisé une optimisation du paramétrage de l'algorithme afin d'en augmenter la performance.

Nous nous proposons ici d'évaluer la qualité des résultats de cette approche en comparant avec l'algorithme GES (ou Greedy Equivalent Search) [START_REF] Chickering | Optimal structure identification with greedy search[END_REF], un algorithme très performant utilisant l'espace des équivalents de Markov.

2. Apprentissage à base de score [START_REF] Heckerman | A Bayesian approach to causal discovery[END_REF] discutent de l'intérêt des méthodes à base de score. Elles permettent notamment l'incorporation aisée de connaissances a priori [START_REF] Cheng | Learning Bayesian networks from data : an information-theory based approach[END_REF], un travail plus efficace avec les données manquantes, et la possibilité de combiner plusieurs modèles pondérés (model averaging) [START_REF] Friedman | Being Bayesian about Network Structure[END_REF] rend l'étape d'inférence bien moins dépendante des erreurs éventuellement commises pendant l'apprentissage de la structure et permet de mixer des modèles provenant de plusieurs sources.

Scores

Les scores AIC (Akaike Information Criterion) [START_REF] Akaike | Statistical predictor identification[END_REF] et BIC (Bayesian Information Criterion) [START_REF] Schwarz | Estimating the dimension of a model[END_REF], deux scores dérivés du PML (Penalized Maximum Likelihood) sont composés de deux critères inconciliables : le maximum de vraisemblance (par rapport aux données) et la complexité du modèle. Les structures maximisant ces deux critères sont respectivement le graphe complet (au sens orienté), et le graphe vide.

P M L(B | D) = log L(D | θ M V , B) -f (N ) • Dim(B) [1] Où f (N ) = 1 pour AIC, log(N ) 2
pour BIC. Dans le cas de données discrètes finies 1 :

log L(D | θ M V , B) = n i=1 qi j=1 ri k=1 N ijk • log( N ijk N ij ) [2] Dim(B) = n i=1 (r i -1) • q i [3]
Les scores dits « Bayésiens », par exemple BD (Bayesian Dirichlet) [START_REF] Cooper | A bayesian method for the induction of probabilistic networks from data[END_REF], estiment la probabilité d'une structure a posteriori. Dans le cas des données statiques, on peut simplifier le calcul en utilisant la formule de Bayes :

p(B|D) = p(B, D) p(D) ∝ p(B, D) = θ L(D | θ, B) • p(θ | B) • dθ [4]
Une dérivation est possible lorsque les paramètres suivent une distribution de Dirichlet et que les données sont IID (indépendants et uniformément répartis) :

BD(B | D) = p(B) • n i=1 qi j=1 Γ(α ij ) Γ(N ij + α ij ) ri k=1 Γ(N ijk + α ijk ) Γ(α ijk ) [5]
Plus tard ce critère est adapté aux équivalents de Markov pour obtenir BDe [START_REF] Heckerman | Learning Bayesian networks : The combination of knowledge and statistical data[END_REF], puis avec des a priori uniformes, ce qui donne BDeu [START_REF] Buntine | Theory refinement on Bayesian networks[END_REF].

Il existe d'autres scores, comme MDL (Minimum Description Length) [START_REF] Bouckaert | Probabilistic network construction using the Minimum Description Length principle[END_REF] dont le principe est de minimiser la taille de codage nécessaire à la description du modèle et des données relativement au modèle. Notons enfin l'utilisation de scores adaptés aux recherches par arcs, i.e., qui utilisent des poids sur les arcs (au lieu des noeuds), comme l'information mutuelle [START_REF] Chow | Approximating discrete probability distributions with dependence trees[END_REF]. D'une façon générale, le score définit l'objectif de la recherche : les critères PML sont utilisés lorsque le modèle recherché doit être efficace en inférence tout en minimisant sa complexité, les scores Bayésiens (BD, BDe etc.) favorisent les structures offrant le meilleur a posteriori, etc.

En pratique, les scores sont utilisés lorsqu'ils réunissent certaines propriétés.

-La DÉCOMPOSABILITÉi.e., la possibilité de calculer un score local en chaque noeud -garantit des temps de calcul moindres lors de modifications locales.

-La propriété d'ÉQUIVALENCE garantit que deux structures d'une même classe d'équivalence de Markov auront les mêmes scores. Cette propriété est particulièrement utile lorsque la recherche utilise l'espace des équivalents de Markov.

-La CONSISTANCE fait qu'un modèle contenant la distribution -contenue dans les données -obtiendra un meilleur score qu'un modèle ne la contenant pas. De plus cette propriété discrimine les modèles contenants tous deux la distribution mais dont le nombre de paramètres est différent. Il existe une variante locale de cette propriété : la consistance locale qui permet à GES d'améliorer localement les structures.

Méthodes

Certains des algorithmes de recherche utilisent des heuristiques de limitation de l'espace de recherche, comme le font les algorithmes K2 [START_REF] Cooper | A bayesian method for the induction of probabilistic networks from data[END_REF] ou MWST (Maximum Weight Spanning Tree) [START_REF] Chow | Approximating discrete probability distributions with dependence trees[END_REF]. D'autres effectuent leur recherche directement dans l'espace complet à l'aide de métaheuristiques. L'algorithme glouton, ou Greedy Search [START_REF] Chickering | learning bayesian networks : search methods and experimental results[END_REF], progresse à l'aide d'opérations locales, mais converge dans des maxima locaux. Des techniques plus évoluées ont alors été utilisées :

iterated hill-climbing [START_REF] Campos | An iterated local search algorithm for learning Bayesian networks restarts based on conditional independence tests[END_REF], simulated annealing [START_REF] Janzura | A simulated annealing-based method for learning Bayesian networks from statistical data : Research Articles[END_REF], tabu search [START_REF] Munteanu | The EQ Framework for Learning Equivalence Classes of Bayesian Networks[END_REF], genetic algorithm [START_REF] Larrañaga | Structure Learning of Bayesian Networks by Genetic Algorithms : A Performance Analysis of Control Parameters[END_REF], etc.

En 2003, [START_REF] Blanco | Learning Bayesian networks in the space of structures by estimation of distribution algorithms[END_REF] puis [START_REF] Romero | Learning Bayesian networks in the space of orderings with estimation of distribution algorithms[END_REF] proposent d'utiliser les EDA (Estimation of Distribution Algorithms) [START_REF] Mülhenbein | From recombination of genes to the estimation of distributions I. Binary parameters[END_REF] pour palier les problèmes rencontrés avec les algorithmes génétiques et décrits dans [START_REF] Larrañaga | Combinatorial optimisation by learning and simulation of Bayesian networks[END_REF]. De nombreux travaux montrent l'efficacité des EDA dans de nombreux domaines [START_REF] Larrañaga | Estimation of Distribution Algorithms. A new tool for evolutionary computation[END_REF], y compris pour l'apprentissage de réseaux Bayésiens où les EDA surpassent les algorithmes génétiques [START_REF] Blanco | Learning Bayesian networks in the space of structures by estimation of distribution algorithms[END_REF][START_REF] Romero | Learning Bayesian networks in the space of orderings with estimation of distribution algorithms[END_REF][START_REF] Thibault | Learning Bayesian network structures by estimation of distribution algorithms : An experimental analysis[END_REF].

Algorithmes EDA

Les EDA sont des algorithmes « évolutionnaires » à base de populations. Ils reposent sur une connaissance explicite de la distribution des individus dans l'espace des solutions n'utilisant ainsi aucun opérateur de croisement ou mutation. Les EDA repartissent les individus d'une génération selon la distribution manipulée, puis réestiment cette distribution selon les meilleurs individus. Dans notre précédent travail expérimental [START_REF] Thibault | Learning Bayesian network structures by estimation of distribution algorithms : An experimental analysis[END_REF] dist ← distribution uniforme initiale 3:

répéter 4: population ← GÉNÈRE_POPULATION_SELON_DIST(dist, M ) 5: meilleurs ← SÉLECTIONNE_MEILLEURS(population, N ) 6: dist ← RÉESTIME_DISTRIBUTION(meilleurs) 7: jusqu'à CONVERGENCE(dist) == 1 8:
retourne meilleur_individu 9: fin fonction Illustrons l'algorithme sur One Max, un problème jouet dont le principe est de maximiser la somme des éléments d'un vecteur binaire. La fitness 2 choisie ici est le nombre de 1 par ligne.

ind. x1 x2 x3 fit x(1) 0 1 0 1 x(2) 0 1 0 1 x(3) 1 0 1 2 x(4) 1 0 1 2 x(5) 0 1 1 2 x(6) 1 0 0 1 dist 0.5 0.5 0.5 dist ′ 0.66 0.33 1 ⇒ ind. x1 x2 x3 fit x(1) 1 1 1 3 x(2) 1 1 1 3 x(3) 1 0 1 2 x(4) 1 0 1 2 x(5) 1 0 1 2 x(6) 0 0 1 1 dist 0.7 0.3 1 dist ′ 1 0.66 1 ⇒ . . .
Partant d'une distribution uniforme 6 individus sont générés (1.4). A partir d'une sélection (1.5) des 3 meilleurs (en gras), la distribution est ré-estimée (1.6) en calculant la probabilité fréquentielle de chaque partie de la solution (formule 6). Ce processus recommence jusqu'à un critère d'arrêt (1.7) -généralement la convergence.

dist ′ i = 1 N k∈meilleurs x i (k) [6]
2. La fonction à maximiser qui représente la capacité d'un individu à survivre et se reproduire.

Notre application de l'algorithme aux réseaux Bayésiens utilise une matrice qui associe à chaque arc X → Y une probabilité, ce qui suppose que la distribution des structures peut se calculer à partir d'une combinaison des probabilités de chaque arc. La règle de mise à jour est similaire à celle de l'équation 6. Notons qu'une telle structure nécessite l'utilisation d'un opérateur de coupure des cycles orientés.

Algorithme GES

En 2002, [START_REF] Chickering | Optimal structure identification with greedy search[END_REF] publient l'algorithme GES qui travaille directement dans l'espace des équivalents. Pour comprendre son fonctionnement, il faut revenir sur quelques notions des réseaux Bayésiens.

Une CARTE D'INDÉPENDANCE est un graphe G tel que (G, P ) respecte la condition de Markov [START_REF] Verma | Causal networks : Semantics and expressiveness[END_REF] (où P une distribution). On parle de carte d'indépendance minimale lorsqu'aucun graphe partiel de G n'est une carte d'indépendance de P. A l'inverse, une CARTE DE DÉPENDANCE est un graphe G ′ tel que toute indépendance dans P implique une séparation dans G ′ . Parallèlement, on peut définir la notion de carte maximale de dépendance. Une CARTE PARFAITE est l'unique carte qui soit à la fois une carte d'indépendance (minimale) et une carte de dépendance (maximale). Lorsque le nombre d'exemples est suffisamment grand, la distribution P de la base d'apprentissage est une carte parfaite du réseau original G (⇔ (G,P) est "faithful"). Notons que la séparation est une notion générale des graphoïdes [START_REF] Pearl | Probabilistic reasoning in intelligent systems : Networks of plausible inference[END_REF], sa version « orientée » est la d-séparation -qui s'applique donc aux réseaux Bayésiens.

Un arc couvert est un arc X → Y tel que les parents de X et Y sont identiques (à part X qui n'est pas un parent de lui-même). S'il existe une réprésentation DAGfaithful H de la distribution P, alors le théorème de Meek [START_REF] Meek | Graphical Models : Selecting causal and statistical models[END_REF] (théorème 1) prouve qu'il existe une suite finie d'opérations pour trouver la carte H. Cette conjecture a été démontrée par [START_REF] Chickering | Optimal structure identification with greedy search[END_REF]. Plusieurs algorithmes utilisent le résultat de Meek [START_REF] Meek | Graphical Models : Selecting causal and statistical models[END_REF] mais GES travaille dans l'espace des équivalents grâce à des opérateurs définit pour cet espace (Chickering, 2002a). Chaque classe d'équivalence est réprésentée par un CPDAG (Completed Partially Directed Acyclic Graph), ou pattern depuis que [START_REF] Verma | Equivalence and synthesis of causal models[END_REF] retourne G ⊲ carte minimale d'indépendance ⇔ carte parfaite 10: fin fonction 3. Comparaisons L'objet de cette étude est d'évaluer la qualité des résultats des approches par EDA en comparant avec l'algorithme GES (ou Greedy Equivalent Search) [START_REF] Chickering | Optimal structure identification with greedy search[END_REF], un algorithme très performant utilisant l'espace des équivalents de Markov. Pour cela, nous comparons les résultats obtenus sur plusieurs benchmarks à l'aide de plusieurs critères de qualité.

Benchmarks

Nous avons utilisés 5 réseaux tests classiques de la littérature : ASIA [START_REF] Lauritzen | Local computations with probabilities on graphical structures and their application on expert systems[END_REF], INSURANCE [START_REF] Binder | Adaptive Probabilistic Networks with Hidden Variables[END_REF], INSULIN [START_REF] Le | Using prior knowledge to improve genetic network reconstruction from microarray data[END_REF], ALARM [START_REF] Beinlich | The ALARM monitoring system : a case study with two probabilistic inference techniques for belief networks[END_REF], HAILFINDER [START_REF] Abramson | Hailfinder : A Bayesian system for forecasting severe weather[END_REF]. Pour chacun, une base d'apprentissage de taille arbitraire (selon le nombre de variables et de modalités) a été générée par la méthode "logic sampling" [START_REF] Henrion | Propagating uncertainty in Bayesian networks by probabilistic logic sampling[END_REF]. Chaque réseau a servi à la génération de 10 bases de d'apprentissage. Les résultats sont des moyennes sur 10 lancements différents avec les écarts-types correspondants.

Criteres de comparaison

Tandis que les EDA effectuent leur recherche dans B -l'espace des réseaux Bayésiens -GES utilise E -l'espace des équivalents. -l'a priori sur les structures p(B) = n i=1 0.001 (ri-1)qi , -l'a priori sur les paramètres

α ijk = 10 ri•qi , -donc, α ij = ri k=1 α ijk = 10
qi . Ce score est donné dans [START_REF] Chickering | Optimal structure identification with greedy search[END_REF] pour l'implémentation de GES. Dans nos expérimentations, il est implémenté avec un cache LRU (Least Recently Used) afin d'accélerer les calculs.

Afin de pouvoir comparer les structures, les DAG obtenus par l'EDA sont transformés en CPDAG par la méthode décrite par [START_REF] Chickering | A Transformational Characterization of Equivalent Bayesian Network Structures[END_REF]. Ainsi, il est possible de compter le nombre de différences structurelles par rapport au représentant de la classe d'équivalence du benchmark. Ces différences structurelles peuvent être de trois types : arc en trop, mauvaise orientation (inversion, absence ou présence abusive d'orientation), ou arc manquant. La distance d'édition (ED) est la somme de ces trois mesures, c'est à dire le nombre de changements élémentaires nécessaires pour retrouver la structure originale.

Enfin, le nombre d'itérations de chaque algorithme est présenté. A chaque itération de l'EDA tous les individus sont scorés, ce qui n'est pas le cas dans GES puisque seules les modifications locales applicables à l'individu sont scorées. A titre indicatif, nous donnons le temps total d'exécution, directement proportionnel au nombre d'appels effectifs à la fonctions de scorei.e., lorsque la valeur ne se trouve pas en cache.

Résultats

Le tableau 2 présente les écarts de score par rapport à la structure originale (référence). Afin de rendre compte de ces écarts, ils sont également donnés de façon relative. En terme de score, GES obtient de bien meilleurs résultats qu'EDA. Mieux, il obtient de meilleurs scores que celui du réseau original pour les 2 benchmarks IN- SULIN et HAILFINDER. Le En général, l'objectif des méthodes à base de score n'est pas de retrouver la structure initiale, mais de trouver un modèle à la fois simple et précis en inférence. Toutefois, la CONSISTANCE de notre score permet de distinguer les structures « proches » de la structure originale. Un score consistant augmente lorsque le nombre d'indépendances conditionnelles retrouvées augmente, mais diminue si trop d'indépendances supplémentaires sont encodées dans la structure. Nous pouvons donc observer les résultats en terme de défauts structurels (tableau 4) où f p représente le nombre de faux-positifs, f n les faux-négatifs et f o les fautes-d'orientation par rapport au réseau original 3 , la somme formant la distance d'édition (ed). Le 

Conclusion

Dans ce travail, nous avons mis en évidence les limites des EDA en montrant que l'algorithme GES est plus performant en qualité et en temps d'exécution. Pour cela, nous avons comparé nos deux implémentations sur un ensemble de benchmarks connus, en utilisant les critères usuels. La démonstration de la conjecture de Meek offre un résultat théorique important, qui permet d'élaborer des algorithmes plus efficaces que les méthodes généralistes telles qu'EDA.

  Théorème 1 (rappel) Soit G et H deux DAG tels que H est une carte d'indépendance de G. Soit r le nombre d'arcs dans H qui ont une orientation opposée dans G, et m le nombre d'arcs de H qui n'existent dans aucune orientation dans G. Il existe une séquence d'au plus r + 2m opérations de réversion ou d'ajout d'arc dans G telle que : -chaque reversion concerne un arc couvert, -après chaque opération, G est un DAG et H une carte d'indépendance de G, -après toutes les réversions ou ajouts, G = H.

  ont montrés que tous les graphes d'une même classe possèdent le même squelette et les mêmes V-structures, i.e., les mêmes liaisons convergentes. L'opération qui oriente d'une façon quelconque les arcs non-orientés -appelée INSTANCIATION -est close dans l'espace des équivalents. GES procède en deux étapes : une étape gloutonne d'insertion d'arcs (dans E) qui permet d'augmenter le graphe jusqu'à l'obtention d'une carte d'indépendance, puis une étape de suppression d'arcs permettant de minimiser la carte d'indépendance, donc de trouver la carte parfaite. L'utilisation d'un score consistant est donc nécessaire pour découvrir les opérations d'améliorations. tant que arc ← TROUVER_AMELIORATION("deletion",G) faire 7:G ← RETIRE_ARC(G, arc) ⊲ minimisation de la carte d

  nous avons sélectionné la variante UMDA de l'algorithme, qui donnait de meilleurs résultats que la variante PBIL. Nous reprenons ici nos conclusions, en paramétrant l'algorithme avec 1000 individus, une sélection élitiste de 100 individus et sans conservation des individus d'une population sur la suivante.

	Algorithm 1 Algorithme EDA (variante UMDA)

1: fonction EDA(M, N ) ⊲ M taille de la population, N taille de la sélection 2:

  Réseaux tests : ASIA, INSURANCE, INSULIN, ALARM et HAILFINDER la propriété d'équivalence assure de pouvoir comparer les scores des structures obtenues par les algorithmes. Le score utilisé, DÉCOMPOSABLE, ÉQUIVALENT et CONSIS-TANT est BDeu avec :

	benchmarks	variables	type	arcs données
	ASIA	8	binaires	8	2 000
	INSURANCE	27	discrètes	52	10 000
	INSULIN	35	binaires	52	5 000
	ALARM	37	discrètes	46	10 000
	HAILFINDER	56	discrètes	66	30 000
	Tableau 1.				
			L'utilisation d'un score possédant

  score utilisé étant CONSISTANT, cela signifie que le réseau Ecart absolu des scores (ecart -score_ref ) et écart relatif (| ecart score_ref |)obtenu par l'algorithme représente mieux la distribution que le benchmark lui-même. Remarquons que l'écart-type est généralement plus faible pour GES, ce qui montre l'aspect très stochastique des EDA.Le nombre d'itérations rend compte de la faculté de l'algorithme à converger, i.e., trouver une solution en un temps « acceptable ». Chaque génération d'EDA correspond ici à l'évaluation complète de 1000 individus (hors utilisation du cache). La méthode est donc plus gourmande que GES qui n'évalue en général qu'un nombre assez réduit d'opérateurs. On remarquera encore l'écart-type plus important dans les EDA (tableau 3). La grande différence de temps observée est une conséquence du mode Tableau 3. Nombre moyen d'itérations et temps moyen d'exécution avant convergence de fonctionnement de chaque algorithme. Quand l'un procède par « petites » modifications locales, améliorant de fait considérablement la solution, l'autre dissémine de nombreux individus dans l'espace de recherche afin de le « fouiller ».

					écart absolu	relatif (%)
	scores	benchmark		EDA	GES	EDA GES
	ASIA	-4741.8	-13.66 ± 8.45	-1.86 ± 9.66 0.29	0.04
	INSURANCE	-149113	-5128 ± 1701	-3829 ± 963	3.44	2.57
	INSULIN	-87253.6	-970.4 ± 376	+152.4 ± 127	1.11 -0.17
	ALARM	-110637	-7311 ± 1049	-2925 ± 120	6.61	2.64
	HAILFINDER	-1500330 -67328 ± 10434	+4364 ± 92	4.49 -0.29
	Tableau 2. nombre d'itérations	temps d'exécution (en s.)
	temps		EDA		GES	EDA	GES
	ASIA		11.5 ± 2.55	7.0 ± 0.47	0.4 ± 0.1	0.0 ± 0.1
	INSURANCE	26.9 ± 1.91 42.1 ± 1.91	103.4 ± 1.4	1.2 ± 0.1
	INSULIN		28.2 ± 2.86 47.1 ± 1.20	77.3 ± 1.2	1.8 ± 0.1
	ALARM		30.8 ± 1.75 42.9 ± 1.52	168.0 ± 2.3	2.3 ± 0.3
	HAILFINDER	34.8 ± 4.87 65.5 ± 0.71 1794.7 ± 16.7 27.8 ± 0.5

  nombre d'erreurs d'orien-± 3.2 20.0 ± 1.9 23.6 ± 3.0 54.9 ± 6.1 EDA INSULIN 8.4 ± 4.0 13.5 ± 2.8 10.0 ± 2.1 31.9 ± 7.0 ALARM 21.4 ± 2.8 11.5 ± 2.0 28.1 ± 2.3 61.0 ± 4.2 HAILFFINDER 26.9 ± 4.3 33.4 ± 2.8 28.3 ± 3.1 88.6 ± 6.0 ± 2.5 20.3 ± 2.1 10.5 ± 2.0 46.6 ± 4.9 Tableau 4. Qualité de la structure obtenue avec les algorithmes EDA et GES tation est légèrement biaisé : calculant ce critère sur les des CPDAG, une mauvaise orientation d'un arc entrainera souvent une mauvaise orientation de ses voisins par propagation. Malgrès cet obstacle, nous avons conservé cette méthode de comparaison, car chaque différence représente un changement de classe d'équivalence.

	erreurs	fp	fn	fo	ed
	ASIA	1.5 ± 0.7	1.1 ± 0.6	4.6 ± 1.7	7.2 ± 2.1
	INSURANCE 11.3 ASIA 0.2 ± 0.6	1.2 ± 0.8	0.3 ± 0.7	1.7 ± 1.8
	INSURANCE	6.1 ± 1.7 16.0 ± 1.3 14.8 ± 0.8 36.9 ± 2.8
	GES INSULIN	1.0 ± 0.5	5.9 ± 1.1	7.5 ± 1.8 14.4 ± 2.8
	ALARM	5.1 ± 0.3	8.4 ± 0.7	4.4 ± 0.5 17.9 ± 0.3

HAILFFINDER

15.8