
HAL Id: hal-00280409
https://hal.science/hal-00280409

Submitted on 16 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Algebraic Identification of MIMO SARX Models
Laurent Bako, René Vidal

To cite this version:
Laurent Bako, René Vidal. Algebraic Identification of MIMO SARX Models. Hybrid Systems: Com-
putation and Control, Springer-Verlag, St Louis, USA, 2008, 2008, St Louis, United States. Hybrid
Systems: Computation and Control, Springer-Verlag, St Louis, USA, 2008. �hal-00280409�

https://hal.science/hal-00280409
https://hal.archives-ouvertes.fr


Algebraic Identification of MIMO SARX Models
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Abstract. We consider the problem of identifying the parameters of a multiple-
input multiple-output switched ARX model with unknown number of submodels
of unknown and possibly different orders. This is a very challenging problem
because of the strong coupling between the unknown discrete state and theun-
known model parameters. We address this challenge by algebraically eliminating
the discrete state from the switched system equations. This algebraic procedure
leads to a set of hybrid decoupling polynomials on the input-output data, whose
coefficients can be identified using linear techniques. The parameters ofeach
subsystem can then be identified from the derivatives of these polynomials. This
exact analytical solution, however, comes with an important price in complexity:
The number of coefficients to be identified grows exponentially with the number
of outputs and the number of submodels. We address this issue with an alternative
scheme in which the input-output data is first projected onto a low-dimensional
linear subspace. The projected data is then fit with a single hybrid decoupling
polynomial, from which the classification of the data according to the generating
submodels can be obtained. The parameters of each submodel are then identified
from the input-output data associated with each submodel.

1 Introduction

Hybrid systems are mathematical models of physical processes which exhibit both con-
tinuous and discrete behaviors. Such systems can be thoughtof as a collection of dy-
namical submodels with interacting behavior resulting from switching among all the
submodels. The switches can be exogenous, deterministic, state-driven, event-driven,
time-driven or totally random. Given input-output data generated by such a system, the
identification problem consists of determining the parameters of each dynamical sub-
model as well as those of the switching mechanism (if any).

Prior work. Most of the existing hybrid system identification methods have been de-
veloped for the class of piecewise auto-regressive exogenous (PWARX) systems [1–6],
for which the regressor space is partitioned into polyhedral regions with one ARX sub-
model associated with each polyhedron. For a comprehensivereview of hybrid system
identification techniques, we refer the readers to the survey paper [7]. The optimization
based method [1] solves the identification problem as a linear or quadratic mixed integer
programming problem. The clustering based procedures [2–4] use clustering to separate
the data into different groups, linear regression to find theboundaries of the polyhedral
regions, and linear identification to determine a submodel for each region. Other meth-
ods alternate between assigning the data to submodels and estimating simultaneously
their parameters by performing a weights learning technique on a fuzzy parameterized



model [8], solving a Minimum Partition into Feasible Subsystems (MinPFS) problem
[6] or resorting to Bayesian inference [5]. The algebraic approach [9, 10] is applicable
to the class of Switched ARX (SARX) models, where the switching mechanism can be
arbitrary. This approach uses a single decoupling polynomial that vanishes on all the
data regardless of their generating submodel. Once this polynomial is computed, the
problem reduces to that of recovering the system parametersfrom the derivatives of the
polynomial evaluated at a subset of the regressors.

Unfortunately, most of the aforementioned identification methods can only deal
with single-input single-output (SISO) systems. While a fewidentification methods for
multiple-input multiple-output (MIMO) switched linear [11–13] and piecewise affine
[14–16] systems in state-space form do exist, they generally require the restrictive as-
sumption of a minimum dwell time in each discrete state. In addition, they often iterate
between data clustering and model estimation, which is quite sensitive to initialization.

Paper contributions. We present an algebraic solution to the problem of identifying
MIMO SARX models. The orders of the submodels are unknown andpossibly differ-
ent and the number of submodels is not available. Our method is based on a technique
called Generalized Principal Component Analysis (GPCA) [17], which can cluster data
into multiple subspaces by polynomial fitting and differentiation. In contrast to the iden-
tification of SISO SARX models [10], where only one vanishingpolynomial is used to
embed the data lying in a mixture of hyperplanes, the identification of MIMO SARX
models involves a potentially unknown numbernh ≥ 1 of independent homogeneous
polynomials that vanish on subspaces of co-dimension higher than one. In order to con-
veniently construct the regressors to which the embedding is applied, we first estimate
the orders of the submodels and the number of discrete statesfrom a rank constraint on
the input-output data. Then, given the number of submodels,we compute the number
of vanishing polynomialsnh and subsequently identify the ARX parameters from the
derivatives of these polynomials. However, the number of coefficients to be estimated
grows exponentially with the number of outputs and the number of submodels, thereby
making the method computationally expensive. We thus propose an alternative method
that first partitions the data according to each submodel using a single vanishing poly-
nomial. Given the classification of the data according to each submodel, the parameters
of each submodel are then identified using linear techniques.

2 Problem Statement

We consider a MIMO SARX model of the form

y(t) =

nλt
∑

i=1

Ai
λt

y(t− i) +

nλt
∑

i=0

Bi
λt

u(t− i) + e(t), (1)

wherey(t) ∈ R
ny is the output vector,u(t) ∈ R

nu is the input vector,λt ∈ {1, . . . , s}
is the discrete state,nλt

is the order of thej-th submodel forλt = j, s is the number

of submodels of the SARX system and
{

Ai
j

}i=1,··· ,nj

j=1,··· ,s
∈ R

ny×ny and
{

Bi
j

}i=1,··· ,nj

j=1,··· ,s
∈

R
ny×nu are the associated parameter matrices. The modeling error or process noise is

represented bye(t) ∈ R
ny . In this representation, there may exist for certain modelsj

an integerδj < nj such thatBi
j = 0 for i > δj but we require thatAnj

j 6= 0 for all j.



Given input-output data{u(t), y(t)}Nt=1 generated by an SARX system of the form
(1), and upper bounds on the system ordersn̄ ≥ max(nj) and on the number of sub-
modelss̄ ≥ s, the identification problem can be formulated as follows: identify the
number of submodelss, their orders{nj}

s

j=1 and their parameters
{

Ai
j , B

i
j

}i=1,··· ,nj

j=1,··· ,s
.

3 Algebraic Identification of MIMO Switched ARX Systems

To begin with the identification procedure, let us define the parameter matrices

Γj =
[

B
nj

j A
nj

j · · · B1
j A1

j B0
j A0

j

]

∈ R
ny×(nj+1)(nu+ny),

Pj =
[

0ny×qj
Γj

]

∈ R
ny×K , j = 1, · · · , s,

(2)

and the regressor vector

xn(t) =
[

u(t− n)⊤ y(t− n)⊤ · · · u(t− 1)⊤ y(t− 1)⊤ u(t)⊤ −y(t)⊤
]⊤
∈ R

K , (3)

with n = maxj(nj), A0
j = Iny

, qj = (n−nj)(nu + ny) andK = (n + 1) (nu + ny).
For now, assume that the data is not corrupted by noise i.e.e(t) = 0 in (1). Then,

the equations defining an SARX system of the form (1) may be re-written as

(P1xn(t) = 0) ∨ · · · ∨ (Psxn(t) = 0) , (4)

where∨ refers to thelogical or operator. To eliminate the discrete state from this set of
sny equations, similarly to the case of SISO SARX models [9], we take the product of
one equation per submodel. The advantage of doing so is that we obtain a set of poly-

nomial constraints
∏s

j=1

(

θ⊤ij
xn(t)

)

= 0, with θ⊤ij
= Pj(i, :) for i = 1, . . . , ny and

j = 1, . . . , s, that are satisfied by all the data regardless of their generating submodel.
Consequently, the equations in (4) are equivalent to a set ofup tons

y (not necessarily
independent) homogeneous polynomialspi1,··· ,is

onxn(t) of the form

pi1,··· ,is

(

z
)

=

s
∏

j=1

(

θ⊤ij
z
)

=
∑

hn1,··· ,nK

i1,··· ,is
zn1

1 · · · z
nK

K = h⊤
i1,··· ,is

νs

(

z
)

. (5)

Here,νs : R
K → R

Ms(K), with Ms(K) =
(

K+s−1
s

)

, is the Veronese map which
associates toz ∈ R

K the vector of all monomials of degrees, zs1

1 · · · z
sK

K , s1 + · · · +
sK = s, organized in a descending lexicographic order. Therefore, eachpi1,··· ,is

is a
homogeneous polynomial of degrees with coefficient vectorhi1,··· ,is

∈ R
Ms(K) and

all monomials of degrees in K variables stacked as a vector inνs(z) ∈ R
Ms(K).

3.1 Known Number of Submodels of Known and Equal Orders

In this subsection, we assume that the number of submodelss is known, and that the
orders of all the submodels are also known and equal ton. Note that the regressor
vectorsxn(t) generated by the hybrid model (1) lie in the union of thes subspaces
{null(Pj)}

s
j=1. A basis for each one of these subspaces can be estimated using the

GPCA algorithm [17] as follows. From the entire set{u(t), y(t)}Nt=1 of input-output
data available, construct the matrix of embedded regressorvectors

L(n, s) =
[

νs

(

xn(n + 1)
)

· · · νs

(

xn(N)
)]⊤
∈ R

(N−n)×Ms(K). (6)



Then the coefficient vectorshi1,··· ,is
of the vanishing polynomials must satisfy

L(n, s)hi1,··· ,is
= 0. (7)

In order to solve for the parametershi1,··· ,is
from (7), one needs to compute the

null space of the embedded data matrixL(n, s). Note thathi1,··· ,is
is the symmetric

part of the tensor product of an indexed set of rows
{

θij

}s

j=1
taken from{Pj}

s

j=1, i.e.

hi1,··· ,is
= Sym (θi1 ⊗ · · · ⊗ θis

) ∈ R
Ms(K), where⊗ denotes the Kronecker product.

The linear span of all these coefficient vectors gives a subspace ofRMs(K) that we will
refer to as the space of homogeneous polynomials of degrees vanishing on the data.
By computing the null space ofL(n, s), we obtain a basis for this subspace. In what
follows, we will denote such a basis of dimensionnh asH =

[

h1 · · · hnh

]

. Notice that
the elements of this basis need not have the structure of a symmetric tensor product.

When the data are perfect and rich enough so that the dimensionof the null space of
L(n, s) is exactly equal tonh, the matrix of polynomial coefficientsH can be computed
as a basis fornull(L(n, s)) using the Singular Value Decomposition (SVD) ofL(n, s).
A basis forspan(P⊤

λt
) can then be computed by differentiating the polynomials defined

by H at xn(t). The parameter matrixPλt
of the submodel generatingxn(t) can then

be computed as the basis ofspan(P⊤
λt

) with an identity matrix at the end, as defined in
(2). As we do not need to compute the parameter matrices at each time instant, we can
alternatively chooses regressorszj ∈ null(Pj) (see §4.1) and obtain thes parameter
matrices{Pj}

s
j=1 from the derivatives of the vanishing polynomials at{zj}

s
j=1. Algo-

rithm 1 gives a basic version of the GPCA algorithm [17] for computing the system
parameter matrices{Pj}

s
j=1 from input-output data in a deterministic framework.

In practice the input-output data may be affected by noise. In this case, even with
the assumption that the orders and the number of submodels are known, the matrix
L(n, s) is likely to be full rank and so, one may not be able to get the right basisH
of polynomials. Therefore, it is desirable to know in advance the dimensionnh of this
basis. In this way,H could be approximated by the right singular vectors ofL(n, s) that
correspond to itsnh smallest singular values. But since the matricesPj are not known, it
is not easy to computenh in a general framework. However, under certain assumptions
on the intersection between the null spaces of the matricesPj , we can derive a closed
form formula fornh as outlined in Proposition 1.

Algorithm 1 (Identification of MIMO SARX systems using the GPCA algorithm)
Step 1: Compute a basisH for the null space ofL(n, s) by SVD and let the corresponding basis

of vanishing polynomials of degrees beQ(z) =
[

p1(z) · · · pnh
(z)

]

= νs(z)⊤H.
Step 2: Let

∇Q(z) =
[

∂p1(z)
∂z

· · ·
∂pnh

(z)

∂z

]

=

(

∂νs(z)

∂z

)⊤

H.

Step 3: Obtain by SVD a basisTj ∈ R
K×ny for span(P⊤

j ) as the range space of∇Q(zj),
j = 1, · · · , s, wherezj ∈ null(Pj) but is not innull(Pi), for all i 6= j.

Step 4: Let T⊤

j =
[

T 1
j T 2

j

]

be a partition ofT⊤

j such thatT 2
j ∈ R

ny×ny . T 2
j is necessarily

invertible and we can getPj =
(

T 2
j

)−1
T⊤

j ∈ R
ny×K , j = 1, · · · , s.



Proposition 1 Let H be the symmetric tensor product of a set of matricesB1, . . . , Bs

in R
K×m. That is,H is the matrix whose columns are all vectors inR

Ms(K) of the form
Sym (bi1 ⊗ · · · ⊗ bis

), wherebi1 , . . . , bis
are, respectively, columns ofB1, · · · , Bs. If

∑s
i=1 rank(Bi)− s < K and for all{i1, · · · , iq} ⊂ {1, · · · , s}, q ≤ s,

rank(
[

Bi1 , · · · , Biq

]

) = min
(

K,

q
∑

j=1

rank(Bij
)
)

, (8)

thenrank(H) =
∏s

j=1 rank(Bj).

Assumption (8) of Proposition 1 corresponds to an importantproperty of the sub-
space arrangement∪s

j=1 null(B⊤
j ) that is known astransversality. This property states

that the dimension of the intersection of any subset of subspaces in the arrangement
∪s

j=1 null(B⊤
j ) is as small as possible [18]. Under this assumption, the number of inde-

pendent homogeneous polynomials that vanish on∪s
j=1 null(B⊤

j ) is equal torank(H).
If the same property holds for∪s

j=1 null(Pj) and if (n + 1) (nu + ny) > (s− 1) ny,
then it follows from Proposition 1 thatnh is given bynh =

∏s
j=1 rank(Pj) = ns

y since
rank(Pj) = ny for all j. Although our formula is less general than the one derived in
[19], it is much easier to compute. In the rest of the section,we will assume that the
conditions of Proposition 1 hold, unless stated otherwise.

To summarize, givenn ands, the parameter matricesPj follow directly from Al-
gorithm 1. If noise is present in the data, the same algorithmstill applies but with the
difference that the basisH is approximated by the singular vectors ofL(n, s) that are
associated with itsnh = ns

y smallest singular values.

3.2 Unknown Number of Submodels of Unknown and Possibly Different Orders
Consider now the more challenging case where neither the orders nor the number of
submodels are known and the orders are possibly different. Consequently,nh is also
unknown. This means that we need to derive all the parametersof the SARX model
(1) directly from the data. In order to properly estimate these parameters, we shall first
identify the orders and the number of submodels. Once this task is accomplished, Al-
gorithm 1 can be applied to a certain submatrix ofL(n, s) that will be defined later.

Before proceeding further, we need to introduce some notations. Forr andl, positive
integers, we use the same definitions forxr(t) andL(r, l) as before. Without loss of
generality, we denote byn = n1 ≥ n2 ≥ · · · ≥ ns the orders of the different submodels
that constitute the SARX system and letρ =

[

n1 · · · ns

]

∈ N
s be a vector consisting

of all the orders enumerated in a non-increasing order. It follows from (2) and (3) that
the equations defining the SARX model (1) may be re-written as

(Γ1xn1
(t) = 0) ∨ · · · ∨ (Γsxns

(t) = 0) , (9)

wherexnj
(t) ∈ R

Kj , Kj = (nj + 1)(nu + ny) andΓj ∈ R
ny×Kj for j = 1, . . . , s. As

before, we may eliminate∨ in (9) by taking the product of one equation per submodel.
This leads to a set of polynomial equations on the input-output data of the form

(

θ⊤1 xn1
(t)

)

· · ·
(

θ⊤s xns
(t)

)

= h⊤ηρ

(

xn(t)
)

, (10)

whereθ⊤j ∈ R
1×Kj is a row ofΓj , for j = 1, . . . , s, andηρ

(

xn(t)
)

is a vector obtained
from νs (xn(t)) after removing some of the monomials.ηρ

(

xn(t)
)

does not contain all



the monomials, becausenj ≤ n for all j = 1, . . . , s, hencexnj
(t) is a sub-vector of

xn(t), and so the product in (10) does not give rise to all the monomials inνs (xn(t)).
In order to define the set of monomials that are to be removed, let z = xn(t) and

consider a monomialzα1

1 · · · z
αK

K , α1 + · · · + αK = s. From the definition ofxn(t)
in (3), it can be seen that the elementz

αj

j is contained in a monomial ofηρ

(

xn(t)
)

if
the number of regressorsxni

(t) with lengthKi ≥ K1 − j + 1 (that is the number of
regressors wherezj shows up) is greater or equal toαj . Therefore, in order for the whole
monomialzα1

1 · · · z
αK

K to be included inηρ

(

xn(t)
)

, we must have thatkj ≥ αj for all
j = 1, · · · ,K, wherekj = card({i : Ki ≥ K1 − j + 1}). In view of this analysis, it
can shown that the set of monomials to be removed can be indexed by the setIρ of
exponents(α1, · · · , αK) satisfyingα1 + · · ·+ αj > kj for j ≤ K1 −Ks.

With this notation, we define a new embedded data matrix inR
(N−n)×(Ms(K1)−|Iρ|)

Vρ :=
[

ηρ

(

xn(n + 1)
)

, · · · , ηρ

(

xn(N)
)]⊤

(11)

that is simply the matrixL(n, s) with |Iρ|missing columns (n = ρ(1)). As before, the
null space ofVρ contains the coefficients of the set of vanishing polynomials. However,
we may not compute such coefficients directly, because we neither know the system
ordersρ nor the number of modelss. As it turns out, bothρ ands can be computed
from the data under the assumption that the data are rich enough. More specifically:

Definition 1. We say that the data{u(t), y(t)}Nt=1 are sufficiently exciting for the SARX
system (1) if the null space ofVρ in (11) is of dimension exactly equal tonh, i.e.

rank(Vρ) = Ms(K1)− nh − |Iρ| . (12)

Notice that Definition 1 assumes implicitly that all the discrete states have been
sufficiently visited. If we denote the matrix of data vectorsrelated to the discrete state

j by X̄j =
[

xn(tj1) · · · xn(tjNj
)
]

, where thetjk, k = 1, . . . , Nj , are the time instants

t such thatλt = j, thenX̄j must span completelynull(Pj). Otherwise,null(Pj) may
not be identifiable from∪s

j=1 null(Pj). We have the following result.

Theorem 1 Let s̄ ≥ s be an upper bound on the number of submodels and letr be an
integer. Assume that the data are sufficiently exciting in the sense of Definition 1. Assume
further thatNj ≫ Ms̄(K1) for all j = 1, . . . , s. Thendim

(

null(L(r, s̄))
)

= 0 if and
only if r < max (nj).

Proof. Assumer < n1 and letq be the number of submodels whose orders are less than
or equal tor. LetX =

[

xr(t
o
1), · · · , xr(t

o
No

)
]

∈ R
f×No , with f = (r+1)(nu+ny), be

a matrix whose columns are regressor vectors formed by data generated by the(s− q)
submodels of ordersnj > r. Since the data are sufficiently exciting,X must be full row
rank. It follows from Lemma 5 in [20] thatrank(νs̄(X )) = min(No,Ms̄(f)) = Ms̄(f),
whereνs̄ (X ) =

[

νs̄(xr(t
o
1)), · · · , νs̄

(

xr(t
o
No

)]

. Consequently,L(r, s̄) is full column

rank, because it is equal to a row permutation of
[

νs̄(X ), νs̄(Xs−q+1), · · · , νs̄(Xs)
]⊤

.
Assume now thatr ≥ max(nj). Then the row nullity of each data matrixXj is at

least one. This means that, for allj = 1, . . . , s, there exists a nonzerobj ∈ R
f satisfying

b⊤j Xj = 0. One can then verify thatSym(b1⊗· · ·⊗bs⊗as+1⊗· · ·⊗as̄) ∈ null(L(r, s̄))

for someai ∈ R
f . Hence,dim(null(L(r, s̄))) ≥ 1. ⊓⊔



Let s̄ ≥ s and n̄ ≥ max(nj) be upper bounds on the number of submodels and
their orders respectively. Thanks to Theorem 1, we can estimate both the number of
submodelss and the orders{nj} from the rank of the embedded data matrixL(r, s̄).
The basic idea is that, wheneverr is less than one of the orders, there is no polynomial
of degrees̄ ≥ s vanishing on the entire data set, provided thatN ≫ s and that the
data is sufficiently exciting. Therefore, as shown in Algorithm 2, we can obtain the first
ordern1 by settingρ̄ =

[

r · · · r
]

∈ N
s̄, so thatVρ̄ = L(r, s̄), and then start decreasing

r from r = n̄ to r = 0 until null(Vρ̄) = {0} for somer∗. We then haven1 = r∗ + 1.
Given n1, we can set̄ρ =

[

n1 r · · · r
]

∈ N
s̄ and repeat the procedure starting from

r = n1 and so on, until all the orders of all thes submodels are identified. Notice that,
once all the orders of thes submodels have been correctly estimated,r will go to zero
for the s̄ − s remaining presumed submodels. Therefore, if one assumes that nj > 0
for all j = 1, . . . , s, then the number of submodels can be estimated as the number of
ordersnj strictly greater than zero.

One advantage of Algorithm 2 is that it does not require priorknowledge of the
dimensionnh of the space of vanishing polynomials. If all the orders are correctly
identified, then the sufficiency of excitation condition in Definition 1 guarantees that
the dimension of the null space ofVρ is exactly equal tonh. Given nh, we can use
Algorithm 1 to compute a basisHρ of null(Vρ). We can then complete that basis with
zeros to form a matrixH ∈ R

Ms(K1)×nh such that the rows indexed byIρ are null.
The remaining steps of Algorithm 1 are then performed without additional change.

Algorithm 2 (Identification of the orders and the number of submodels)
Setjo ← 1, nj ← n̄ for j = 1, . . . , s̄,
K ← (n̄ + 1) (nu + ny), V ← L(n̄, s̄),

1. Determine the maximum ordern1 using Theorem 1
– While rank(V ) < Ms̄(K), do
• nj ← n1 − 1 for j = 1, . . . , s̄

• K ← (n1 + 1) (nu + ny)
• V ← lastMs̄(K) columns ofV

– EndWhile
– Obtain the maximum order asn1 ← n1 + 1 and then setnj ← n1 for j = 1, . . . , s̄

– SetV ← L(n1, s̄) andK ← (n1 + 1) (nu + ny)
2. Find the remaining ordersnj , j = 2, . . . , s̄ using Theorem 1

– jo ← jo + 1
– While rank(V ) < Ms̄(K)− |Iρ̄|
• nj ← njo − 1 for j = jo, . . . , s̄

• ρ̄←
[

n1 · · · ns̄

]

• ComputeIρ̄ and remove the corresponding columns ofV

– EndWhile
– Obtain the ordernjo : nj ← njo + 1 for j = jo, . . . , s̄

– SetV ← L(n1, s̄)
3. Go to step 2 untiljo = s̄ or until one getsnjo = 0
4. Determine the number of submodelss = card({j : nj > 0})



3.3 Implementation of Algorithm 2 with Noisy Data

The algorithm proposed in the previous subsection will operate correctly in the absence
of noise. When dealing with noisy data, however, the multiplerank tests required may
cause Algorithm 2 to fail, because the involved matrices mayalways be full rank. In
this subsection, we discuss some possible improvements of the algorithm in order to
enhance its ability to deal with noisy data.

Recall first that the purpose of the rank test is to check whether or not the dimension
of the null space ofVρ̄ is zero for a given vector of orders̄ρ. Therefore, we do not need
to know the rank ofVρ̄ exactly. We just need a measure of how likely it is that there
exists a nonzero vectorhρ̄ satisfyingVρ̄hρ̄ = 0.

One possible way of approaching this problem is to inspect the smallest singular
value ofVρ̄ for different vectors̄ρ. For example, to computen1, let ρ̄1,l =

[

l · · · l
]

∈
N

1×s̄, l = 0, . . . , n̄, and defineWρ̄1,l

.
= 1

N−n̄
Vρ̄1,l

V ⊤
ρ̄1,l

as the matrix obtained from
1

N−n̄
L(n̄, s̄)⊤L(n̄, s̄) by removing its columns and rows indexed byIρ̄1,l

. Denote by
σ1,l, the smallest eigenvalue of the matrixWρ̄1,l

for l = 0, · · · , n̄. According to Theo-
rem 1,Wρ̄1,l

has at least one nonzero vector in its null space for alll ≥ n1 and hence,
σ1,n1

≈ · · · ≈ σ1,n̄ ≈ ε1,n1

.
= 1

n̄−n1

(σ1,n1+1 + · · ·+ σ1,n̄) and are small compared
to σ1,0, · · · , σ1,n1−1. Therefore, to determinen1, one needs to look for the smallest
integerl ∈ {0, · · · , n̄} for whichσ1,l ≈ ε1,l in a certain sense.

Following this procedure, Algorithm 2 can be implemented ina more efficient way
for determining the orders. Witĥn0 = n̄, and given a user-defined decision threshold
ε0, the following algorithm directly computes the orders starting from j = 1 through
j = s̄, by avoiding the rank tests required in Algorithm 2.

ρ̄j,l =
[

n̂1 · · · n̂j−1 l · · · l
]

, l = 0, · · · , n̂j−1,

σj,l = min λ
(

Wρ̄j,l

)

, l = 0, · · · , n̂j−1,

εj,l =
1

n̂j−1 − l

(

σj,l+1 + · · ·+ σj,n̂j−1

)

, l = 0, · · · , n̂j−1,

Sj = {l = 0, · · · , n̂j−1 : |σj,l − εj,l| < εo} ,

n̂j =

{

min {l : l ∈ Sj} , if Sj 6= ∅
n̂j−1 otherwise,

j ← j + 1,

whereλ(Wρ̄j,l
) is the set of all eigenvalues of the matrixWρ̄j,l

. In the notation such
as ρ̄j,l, the indexj indicates which submodel’s order is being estimated whilel is a
possible value of the order sought.

4 Complexity reduction using a projection approach

The algebraic algorithm proposed in the previous section becomes computationally
prohibitive when the dimensions of the SARX system are large. This is because the
regressorxn(t) ∈ R

K1 constructed from allny outputs is large, and so it induces an
exponential increase inMs(K1), the dimension of the space of homogeneous polyno-
mials space of degrees in K1 variables. Moreover, the numbernh of polynomials to be



estimated is unknown, even when the orders and the number of submodels are given,
unless one makes certain assumptions.

In this section, instead of attempting to compute a potentially large and unknown
number of polynomials, we propose a computationally simpler method to identify the
model parameters. The idea is to transform the MIMO system into a multiple-input
single-output (MISO) system, and hence use only one decoupling polynomial to parti-
tion the data according to the different ARX submodels. Onceall the data are correctly
partitioned, the SARX system identification problem reduces to a standard regression
problem for each discrete state.

To that end, notice that, without loss of generality, system(1) can transformed into
the MISO system3

y(t) =

nλt
∑

i=1

ai
λt

y(t− i) +

nλt
∑

i=0

F i
λt

u(t− i) + e(t), (13)

where the
{

ai
j

}j=1,··· ,s

i=1,··· ,nj
are the coefficients of the polynomialznj−a1

jz
nj−1−· · ·−a

nj

j

that encodes the poles of thejth submodel as its roots.

Let γ =
[

γ1 · · · γny

]⊤
be a vector of real nonzero numbers and letyo(t) =

γ⊤y(t) ∈ R be a weighted combination of all the system outputs. Then, (13) can be
transformed into the following single output system

yo(t) =

nλt
∑

i=1

ai
λt

yo(t− i) +

nλt
∑

i=0

γ⊤F i
λt

u(t− i) + γ⊤e(t). (14)

Remark 1 To the purpose of separating the data according to their generating sub-
models, one may be tempted to consider a single outputyj(t) from (13) instead of a
combination of all theny outputs. The problem with proceeding in this way is that, af-
ter pole-zero cancellation, the MISO system with outputyj(t) may be common to many
different modes and so, we may not be able to differentiate between those modes. By
choosing a random linear combination of the outputs, such degenerate situations can
be avoided almost surely.

By introducing the blended outputyo(t), we obtain only one hybrid decoupling
polynomialg(z) that is easier to deal with. However, at the same time the parameters of
different submodels are combined. This raises the questionof whether this combination
of outputs preserves the distinguishability of the different submodels that constitute the
SARX system. In fact, depending on the weights vectorγ, two submodels which were
initially distinct may reduce to the same submodel in (14). To analyze this risk, let

Fj =
[

F
nj

j · · · F 1
j F 0

j

]

∈ R
ny×(nj+1)nu and aj =

[

a
nj

j · · · a1
j

]⊤
∈ R

nj . (15)

It follows from (14) that two different modesi andj become indistinguishable after
the previous transformation byγ, if they have the same order (ni = nj), the same

3 Note that the ordersnj in (13) may be larger than the ones in (1). By an abuse of notation, we
will keep using the same notation for the orders.



dynamics (ai = aj) and
(

F⊤
i − F⊤

j

)

γ = 0, i.e. whenγ lies in null(F⊤
i − F⊤

j ). If the
Fj were known one could readily select aγ which does not satisfy this condition. But
these matrices are precisely what we are looking for. The question is, without knowing
theFj , how can we chooseγ in such a way that for anyi 6= j, γ /∈ null(F⊤

i − F⊤
j ).

In fact, it is not hard to show that whenγ is drawn randomly, this condition is satisfied
with probability one. Therefore, two submodels that are distinct in the original system
(13) remain so after the transformation. However, the separability of the modes, which
is a measure of how close the different submodels are, may be affected.

From (14), let us redefine the parameter vectorθ̄j and the regressor̄xn(t) as

θ̄j =
[

0⊤qj
γ⊤F

nj

j a
nj

j · · · γ⊤F 1
j a1

j γ⊤F 0
j 1

]⊤
∈ R

K , j = 1, · · · , s (16)

x̄n(t) =
[

u(t− n)⊤ yo(t− n) · · · u(t)⊤ −yo(t)
]⊤
∈ R

K , (17)

whereK = (n + 1)(nu + 1). One can view the smallest singular valueσ0(X(γ)) of
X(γ) =

[

x̄n̄(n̄ + 1) · · · x̄n̄(N)
]

, as a certain measure of how likely the data can be
fitted to one subspace ofRK̄ . It is in fact intuitive that the more distinguishable the
subspaces are, the largerσ0(X(γ)) should be. Therefore, to preserve the separability of
the modes, we suggest to chooseγ for example asγ∗ = arg maxγ:‖γ‖≤1

σ0(X(γ))
σmax(X(γ)) ,

whereσmax(X(γ)) is the largest singular value ofX(γ). Since this could be a hard
optimization problem, an alternative is to choose several candidateγs in such a way
thatσ0(X(γ)) is in a certain proportion ofσmax(X(γ)).

Onceγ has been chosen, we can proceed with the identification procedure. As be-
fore, we eliminate the dependency of the system equation on the switches by consider-
ing the following decoupling polynomial which vanishes on the data independently of
their generating submodel:

g
(

x̄n(t)
)

=

s
∏

j=1

(

θ̄⊤j x̄n(t)
)

= h⊤νs

(

x̄n(t)
)

= 0. (18)

Solving (18) is a particular and simpler case (ny = 1) of the case studied in section 3.
The procedure for the determination ofθ̄j is roughly the same:

1. Solve for the orders and number of submodels using Algorithm 2.
2. Obtainhρ as any nonzero element innull(Vρ) (which is expected to be one dimen-

sional when the data are sufficiently exciting), and
3. Completehρ with zeros to form ah ∈ R

Ms(K) so that the entries ofh defined by
Iρ are zero.

Givenh, the parameters may be obtained from the derivative ofg as shown in [9]:

θ̄j =
∇g(zj)

e⊤
K̄
∇g(zj)

, j = 1, . . . , s, (19)

wherezj is a point inSj \∪
s
i6=jSi, Sj =

{

x ∈ R
K : θ̄⊤j x = 0

}

, eK is a vector of length
K with 1 in its last entry and0 everywhere else.



4.1 Classification of the Data

The computation of̄θj for each submodel, involves finding a point lying inSj but not
in any otherSi, i 6= j = 1, . . . , s. We find a point inSj aszj = x̄n(τj), where

τj = arg min
t∈Dj

∣

∣

∣

∣

∣

∇g (x̄n(t))
⊤

x̄n(t)

e⊤K∇g (x̄n(t))

∣

∣

∣

∣

∣

, (20)

D1 = {t :∇g(x̄n(t)) 6=0} andDj = {t :∇g(x̄n(t)) 6=0, θ̄⊤i x̄n(t) 6= 0, i = 1, ..., j−1},
for j > 1. Then one can compute the parameters by (19) usingzj = x̄n(τj).

Recall that recovering the vectors
{

θ̄j

}s

j=1
associated with the blended outputyo(t)

is only an intermediate step in achieving the goal of computing the parametersaj and
Fj that define each subsystem of the original system (13). Now, from the parameters̄θj

obtained, we can determine the discrete state of (14) which is the same as that of (13)
and then, compute finally the system sought. In order to discard possible outliers in the
data we set up a performance boundε < 1 to define the following decision rules:

If min
j

∆(θ̄j , x̄n(t)) > ε ‖x̄n(t)‖ , then λt is undecidable.

If min
j

∆(θ̄j , x̄n(t)) ≤ ε ‖x̄n(t)‖ , then λt = arg min
j

∆
(

θ̄j , x̄n(t)
)

.

Here ∆(θ̄j , x̄n(t)) =

∣

∣θ̄⊤j x̄n(t)
∣

∣

∥

∥θ̄j

∥

∥

is the distance from the point̄xn(t) to the linear

hyperplaneSj defined by its normal vector̄θj . We defineXj = {t > n̄ : λt = j}

=
{

tj1, · · · , t
j
Nj

}

, j = 1, . . . , s as the set of time instances in which the regressors

are generated by the submodelj.

4.2 Estimation of the Submodel Parameters

Based on the results of the previous classification, we know which data correspond to
each generating mode. Therefore, we are left with determining the parameters of each
modej from the data indexed byXj . To begin with, consider a single linear submodel
j of ordernj from (13). For anyt ∈Xj , let us define

Φy
j (t) :=

[

y(t− 1) · · · y(t− nj)
]

∈ R
ny×nj , (21)

φu
j (t) :=

[

u(t)⊤ · · · u(t− nj)
⊤

]⊤
∈ R

(nj+1)nu . (22)

The parameters of the submodels of system (13) can be computed as the solution to the
following linear regression problem

y(t) =
[

Φy
j (t) φu

j (t)⊤ ⊗ Iny

]

[

aj

vec(Fj)

]

+ e(t), t ∈Xj . (23)

This equation is obtained by making use of the identity vec(AXB) = (B⊤⊗A)vec(X),
where the symbol⊗ refers to the Kronecker product and vec(·) is the vectorization
operator. Notice that in the whole procedure, the vectorsaj , j = 1, . . . , s, are esti-
mated twice. The first estimate (obtained fromθ̄j) is considered as a raw estimate that
is required here just to be able to discriminate among the different modes. The second
estimate from (23) is expected to be more accurate.



5 Numerical results

We test the performance of the proposed approach on an SARX system composed of
two submodels of orders2 and1, with nu = 1 input andny = 2 outputs. The system
equations are given by

y(t) = a1
jIny

y(t− 1) + a2
jIny

y(t− 2) + b0
ju(t) + b1

ju(t− 1) + b2
ju(t− 2), (24)

wherea1
j anda2

j , j = 1, 2, are scalar coefficients andb0
j , b1

j , b2
j are vectors of dimension

ny = 2. The coefficientsa2
j andb2

j are zero for the second submodel.
The system is driven by a zero-mean white Gaussian noise input with unit standard

deviation and switches periodically from one discrete state to another every10 samples.
The output is corrupted with additive noise with a signal-to-noise ratio (SNR) of 30 dB.

The parameters of the two ARX models are given by the matrices

P1 =

[

1.3561, 0
0, 1.3561

0.6913, 0,
0, 0.6913,

0
1.3001

0.3793
1.8145

0.2639
0.7768

]

, (25)

P2 =

[

0.9485, 0
0, 0.9485

0, 0
0, 0

1.7661
0

2.9830
0.9106

0
0

]

, (26)

which are defined with respect to the regressor vector
[

y(t− 1)⊤ y(t− 2)⊤ u(t) u(t− 1) u(t− 2)
]⊤

.

Given input-output data generated by this system on a time window of size1500,
we are interested in extracting the number of constituent submodels, the orders of these
submodels and the parameters that describe them. To demonstrate the performance of
our algorithm we carried out a Monte-Carlo simulation of size1000 with the following
user-defined set of parameters:n̄ = 3 ands̄ = 3. For a threshold ofε0 = 10−3 in the
algorithm of §3.3, the estimation of the orders of both submodels is realized with 100%
of successes. Since we provideds̄ = 3, the vector of orders is obtained asρ̂ =

[

2 1 0
]

.

The means of the estimateŝP1 andP̂2 obtained across all the simulations are given by:

P̂1 =

[

1.3558, 0.0043
−0.0012, , 1.3558

0.6897, 0.0036
−0.0021, 0.6907

0.0056
1.3031

0.3937,
1.8208

0.2639
0.7753

]

, (27)

P̂2 =

[

0.9480, 0.0045
−0.0003, 0.9479

−0.0005, 0.0050
−0.0001, −0.0006

1.7710,
−0.0012

2.9869,
0.9081

0.0050
−0.0018

]

. (28)

Figure 1 shows a histogram with the maximum angle between thecolumn space of
the hybrid parameter matrixH and that of its estimatêH. Notice that for all simulations
the cosine of this angle is larger than0.99, implying a strong correlation betweenH
and its estimate. For the second identification method, the result is much better sinceH
consists of only one vector.

Figure 2 shows the relative errors between the true parameter matricesPj and the
estimateŝPj obtained by our algorithm. Observe that the percentage of simulations that
give errors less than0.05 is about66% for the first submodel and about85% for the
second submodel. These percentages improve significantly (86% and93%) when we
use the classification approach described in Section 4.
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Fig. 1: Histograms of the maximum subspace angle between span(H) and span(Ĥ).
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Fig. 2: Histograms of the errors
∥

∥P1 − P̂1

∥

∥
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∥

∥P1

∥

∥

2
and

∥

∥

∥
P2 − P̂2

∥

∥

∥

2
/ ‖P2‖2.

6 Conclusions

We have presented an algebraic approach to the identification of MIMO SARX models
with unknown number of submodels of unknown and possibly different orders. The
number of submodels and their orders are estimated from a rank constraint on the input-
output data, and the model parameters using a subspace clustering technique called
GPCA. As the complexity of the method is exponential on the number of outputs and
submodels, we proposed a simpler approach that applies GPCAto a MISO system built
by projecting the original data. Future work includes developing recursive identification
algorithms for MIMO SARX systems, such as the one in [20] for SISO systems.
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