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Algebraic Identification of MIMO SARX Models

Laurent Bakd? and René Vidal

1 Ecole des Mines de Douai, Département Informatique et Automatiqd©85®ouai, France
2 Center for Imaging Science, Johns Hopkins University, Baltimore, NIP18, USA

Abstract. We consider the problem of identifying the parameters of a multiple-
input multiple-output switched ARX model with unknown number of subeisd

of unknown and possibly different orders. This is a very challengiraplpm
because of the strong coupling between the unknown discrete state amu the
known model parameters. We address this challenge by algebraicallpatiimg

the discrete state from the switched system equations. This algebraidprece
leads to a set of hybrid decoupling polynomials on the input-output da@sevh
coefficients can be identified using linear techniques. The parameterachf
subsystem can then be identified from the derivatives of these polylsoifiras
exact analytical solution, however, comes with an important price in ity

The number of coefficients to be identified grows exponentially with the mamb
of outputs and the number of submodels. We address this issue with axater
scheme in which the input-output data is first projected onto a low-dimealsion
linear subspace. The projected data is then fit with a single hybrid decguplin
polynomial, from which the classification of the data according to the géngra
submodels can be obtained. The parameters of each submodelraigethtified
from the input-output data associated with each submodel.

1 Introduction

Hybrid systems are mathematical models of physical preseshich exhibit both con-
tinuous and discrete behaviors. Such systems can be thofighta collection of dy-
namical submodels with interacting behavior resultingrfrewitching among all the
submodels. The switches can be exogenous, determinitstte;driven, event-driven,
time-driven or totally random. Given input-output data gexted by such a system, the
identification problem consists of determining the pararsebf each dynamical sub-
model as well as those of the switching mechanism (if any).

Prior work. Most of the existing hybrid system identification methodsehaeen de-
veloped for the class of piecewise auto-regressive exage(®IVARX) systems [1-6],
for which the regressor space is partitioned into polyheggions with one ARX sub-
model associated with each polyhedron. For a compreheresnaw of hybrid system
identification techniques, we refer the readers to the syvaper [7]. The optimization
based method [1] solves the identification problem as adioeguadratic mixed integer
programming problem. The clustering based procedureg [Bedclustering to separate
the data into different groups, linear regression to findabendaries of the polyhedral
regions, and linear identification to determine a submaaole¢éch region. Other meth-
ods alternate between assigning the data to submodels aimditisg simultaneously
their parameters by performing a weights learning techmiqua fuzzy parameterized



model [8], solving a Minimum Partition into Feasible Suligyss (MinPFS) problem
[6] or resorting to Bayesian inference [5]. The algebraiprapch [9, 10] is applicable
to the class of Switched ARX (SARX) models, where the swiighihechanism can be
arbitrary. This approach uses a single decoupling polyabthat vanishes on all the
data regardless of their generating submodel. Once thisipolial is computed, the
problem reduces to that of recovering the system paranfetenshe derivatives of the
polynomial evaluated at a subset of the regressors.

Unfortunately, most of the aforementioned identificatioethods can only deal
with single-input single-output (SISO) systems. While a fdentification methods for
multiple-input multiple-output (MIMO) switched linear [3+13] and piecewise affine
[14-16] systems in state-space form do exist, they gegeradjuire the restrictive as-
sumption of a minimum dwell time in each discrete state. lditiwh, they often iterate
between data clustering and model estimation, which igdhsitive to initialization.

Paper contributions. We present an algebraic solution to the problem of idemtgyi
MIMO SARX models. The orders of the submodels are unknownpossibly differ-
ent and the number of submodels is not available. Our methbdsed on a technique
called Generalized Principal Component Analysis (GPCA],[thich can cluster data
into multiple subspaces by polynomial fitting and diffefatibn. In contrast to the iden-
tification of SISO SARX models [10], where only one vanishpaynomial is used to
embed the data lying in a mixture of hyperplanes, the ideatiftn of MIMO SARX
models involves a potentially unknown numbegy > 1 of independent homogeneous
polynomials that vanish on subspaces of co-dimension hifjlaa one. In order to con-
veniently construct the regressors to which the embeddiagplied, we first estimate
the orders of the submodels and the number of discrete $tates rank constraint on
the input-output data. Then, given the number of submoeaas;ompute the number
of vanishing polynomials;, and subsequently identify the ARX parameters from the
derivatives of these polynomials. However, the number efftdents to be estimated
grows exponentially with the number of outputs and the nurobsubmodels, thereby
making the method computationally expensive. We thus mejm alternative method
that first partitions the data according to each submodefusisingle vanishing poly-
nomial. Given the classification of the data according tdvesatbmodel, the parameters
of each submodel are then identified using linear techniques

2 Problem Statement
We consider a MIMO SARX model of the form

y(t) =D ALyt — i)+ Y B u(t —i) +e(t), (1)
i=1 =0

wherey(t) € R™v is the output vecton,(t) € R™ is the input vector, € {1, ..., s}
is the discrete statey,, is the order of thg-th submodel for\; = j, s is the number

of submodels of the SARX system a{uA;}zj? € R™>*™ and{ B! };112’ €
R™>"u gre the associated parameter matrices. The modeling erpsocess noise is
represented by(t) € R™v. In this representation, there may exist for certain moglels

an intege®; < n; such thatB} = 0 for i > §; but we require that’” # 0 for all ;.



Given input-output datéu(t), y(t)}f[:1 generated by an SARX system of the form
(1), and upper bounds on the system orders max(n;) and on the number of sub-
modelss > s, the identification problem can be formulated as followsnitfy the

number of submodels their orders{n;}_, and their parametergA’, B; };jl':

3 Algebraic Identification of MIMO Switched ARX Systems

To begin with the identification procedure, let us define themmeter matrices
I; = [B;Li A;?j le, Ajl B;? A;)] c Rnyx(anrl)(”uﬁLny)’
Py =[On,xq, Ij] €R™E, G =1, s,

and the regressor vector

() = [ut—n)T y(t—m)T - ut =17yt -1 u®)T —y()7] € RX, (3)

with n = max;(n;), A} = I,,,, ¢; = (n —n;)(ny +ny) andK = (n + 1) (1, +ny).
For now, assume that the data is not corrupted by noise(ie~= 0 in (1). Then,
the equations defining an SARX system of the form (1) may beritten as

(Przn(t) =0) V-V (Pszn(t) = 0), 4)

whereV refers to thdogical or operator. To eliminate the discrete state from this set of
sn, equations, similarly to the case of SISO SARX models [9], aleetthe product of
one equation per submodel. The advantage of doing so is thabtain a set of poly-

nomial constraint§[;_, (an:n(t» = 0, with §; = P;(4,:) fori = 1,...,n, and
j =1,...,s, that are satisfied by all the data regardless of their géngraubmodel.

Consequently, the equations in (4) are equivalent to a sep ¢ n; (not necessarily
independent) homogeneous polynomjals... ;, onz,(t) of the form

S
Diy e i (z) = H (9;';2) = Z thy’,:'.',’iZK 2Pt = h;'; Vs (z) (5)
j=1

Here,v, : RE — RM-(5) with M (K) = (®*°7"), is the Veronese map which
associates te € R¥ the vector of all monomials of degreezy' - 23, s1 4+ +
sk = s, organized in a descending lexicographic order. Thergfaehp;, ... ;_ is a
homogeneous polynomial of degreavith coefficient vector;, ... ;. € RM:(¥) and
all monomials of degreein K variables stacked as a vectonif(z) € RM:(¥),

(2)

3.1 Known Number of Submodels of Known and Equal Orders

In this subsection, we assume that the number of submedsl&nown, and that the
orders of all the submodels are also known and equal. tblote that the regressor
vectorsz, (t) generated by the hybrid model (1) lie in the union of theubspaces
{null(P;)}5_,. A basis for each one of these subspaces can be estimategthein

GPCA algorithm [17] as follows. From the entire s{el(t),y(t)}f’:l of input-output
data available, construct the matrix of embedded regresmors

L(n,s) = [ys (g;n(n+ 1)) v (%(N))]T c RIN-n)x My (K) (6)



Then the coefficient vectors, ... ;, of the vanishing polynomials must satisfy
L(n7 S)hil,m s — 0. (7)

In order to solve for the parameteks, ... ;. from (7), one needs to compute the
null space of the embedded data matfi:, s). Note thath;, ... ;. is the symmetric
part of the tensor product of an indexed set of rdus };:1 taken from{P;} _,, i.e.

hiy ...i. = Sym (0;, ®---®6;) € RM(K) ‘where® denotes the Kronecker product.
The linear span of all these coefficient vectors gives a aadespfRM- (%) that we will
refer to as the space of homogeneous polynomials of degvaeishing on the data.
By computing the null space di(n, s), we obtain a basis for this subspace. In what
follows, we will denote such a basis of dimensionasH = [hy -+ h,, |. Notice that
the elements of this basis need not have the structure of metfic tensor product.

When the data are perfect and rich enough so that the dimeafstibe null space of
L(n, s) is exactly equal ta;,, the matrix of polynomial coefficientd can be computed
as a basis fonull(L(n, s)) using the Singular Value Decomposition (SVD)Iofn, s).

A basis forspan(PATt) can then be computed by differentiating the polynomialsaefi
by H atz,(t). The parameter matri®y, of the submodel generating, (t) can then
be computed as the basissp)fan(P;) with an identity matrix at the end, as defined in
(2). As we do not need to compute the parameter matrices httisae instant, we can
alternatively choose regressors; € null(P;) (see §4.1) and obtain theparameter
matrices{ P’; };_, from the derivatives of the vanishing polynomials{af};_,. Algo-
rithm 1 gives a basic version of the GPCA algorithm [17] fomguting the system
parameter matricegP; }2_, from input-output data in a deterministic framework.

In practice the input-output data may be affected by noisehis case, even with
the assumption that the orders and the number of submodelnamwn, the matrix
L(n, s) is likely to be full rank and so, one may not be able to get tbtrbasisH
of polynomials. Therefore, it is desirable to know in advatize dimensiom,, of this
basis. In this wayH could be approximated by the right singular vector& @i, s) that
correspond to itg;, smallest singular values. But since the matriegare not known, it
is not easy to computey, in a general framework. However, under certain assumptions
on the intersection between the null spaces of the matftewe can derive a closed
form formula forn;, as outlined in Proposition 1.

Algorithm 1 (Identification of MIMO SARX systems using the GPCA algorithm)

Step 1 Compute a basi# for the null space of.(n, s) by SVD and let the corresponding basis
of vanishing polynomials of degreebe Q(z) = [p1(2) -+ pn, (2)] = vs(2) " H.

Step 2Let 9 T
— |opi(x) . 9pn,(2)| _ vs(2)
CORE ] ( BE
Step 3 Obtain by SVD a basi§; € R**"v for span(P;') as the range space & Q(z;),
j=1,---,s,wherez; € null(P;) butis not innull(F;), for all ¢ # j.

Step 4Let T, = [T} T7] be a partition off;" such thatf? € R"v*™v. T} is necessarily
invertible and we can ge®; = (sz)f1 T eR™*E j=1,-- s




Proposition 1 Let H be the symmetric tensor product of a set of matriBes. . ., B,
in RE*™_ Thatis,H is the matrix whose columns are all vectoriff= () of the form

Sym (b;;, ® --- ® b;_), whereb;, , ..., b, are, respectively, columns &f;, - , B;. If
> rank(B;) — s < K and forall {iy,- - ,i,} C {1 o ,shq<s,
rank([B;,,- -+, B;,]) = min ( z rank(B ) (8)

thenrank(H) = szl rank(B;).

Assumption (8) of Proposition 1 corresponds to an impornaiaperty of the sub-
space arrangement,_; null(BjT) that is known agransversality This property states
that the dimension of the intersection of any subset of sadEpin the arrangement
Uiy null(BjT) is as small as possible [18]. Under this assumption, the eawfinde-
pendent homogeneous polynomials that vanistvjpn null( BjT) is equal torank(H ).

If the same property holds far;_, null(P;) and if (n + 1) (ny, +ny) > (s — 1) ny,
then it follows from Proposition 1 that;, is given byn, = szl rank(P;) = n; since
rank(P;) = n, for all j. Although our formula is less general than the one derived in
[19], it is much easier to compute. In the rest of the sectiom will assume that the
conditions of Proposition 1 hold, unless stated otherwise.

To summarize, givem ands, the parameter matrice; follow directly from Al-
gorithm 1. If noise is present in the data, the same algorgtilinapplies but with the
difference that the basH is approximated by the singular vectorsiofn, s) that are
associated with its;, = n;, smallest singular values.

3.2 Unknown Number of Submodels of Unknown and Possibly Diérent Orders
Consider now the more challenging case where neither therorbr the number of
submodels are known and the orders are possibly differamsé&juentlyp;, is also
unknown. This means that we need to derive all the paramefdate SARX model
(1) directly from the data. In order to properly estimatesthparameters, we shall first
identify the orders and the number of submodels. Once thisitaaccomplished, Al-
gorithm 1 can be applied to a certain submatrix¢f., s) that will be defined later.

Before proceeding further, we need to introduce some motsti-or andl, positive
integers, we use the same definitions #9f¢) and L(r, ) as before. Without loss of
generality, we denote by = ny > ny > - - - > n, the orders of the different submodels
that constitute the SARX system and fet [nl e ns] € N* be a vector consisting
of all the orders enumerated in a non-increasing orderlltivs from (2) and (3) that
the equations defining the SARX model (1) may be re-written as

([Nxn, () =0)V .-V (Tsz,, (t) =0), 9

wherez,, () € RX7, K; = (nj +1)(n, +ny) andl; e R *%iforj =1,...,s. As
before, we may ehmmatwe in (9) by taking the product of one equation per submodel.
This leads to a set of polynomial equations on the inpututudipta of the form

(elTxnl (t)) T (esTxm, (t)) = thp (mn(t))a (lO)

whered € R X5 isarow ofl;, forj = 1,...,s, andn,(z,(t)) is a vector obtained
from v, (z,,(t)) after removing some of the monomlai§(xn )) does not contain all



the monomials, becausg < n forall j = 1,...,s, hencer,, (t) is a sub-vector of
x,(t), and so the product in (10) does not give rise to all the moatmm v, (x,,(t)).

In order to define the set of monomials that are to be remoeed, + ,,(¢) and
consider a monomial{"* - -- 23, oy + --- + ax = s. From the definition ofz,, (¢)
in (3), it can be seen that the elemeit is contained in a monomial of, (:cn(t)) if
the number of regressofs,, (t) with lengthK; > K; — j + 1 (that is the number of
regressors wherg shows up) is greater or equaldg. Therefore, in order for the whole
monomialz{" - - - 2% to be included iny, (z,,(t)), we must have that; > «; for all
j=1,---,K,wherek; = card({i : K; > K; — j + 1}). In view of this analysis, it
can shown that the set of monomials to be removed can be iddexéhe sets, of
exponentgas, - - -, ak) satisfyingay + --- + a; > k; for j < K7 — K.

With this notation, we define a new embedded data matiié i) < (Ms (K1) =[-7)

V, = [np(xn(n + 1))v T 777P($H(N))}

that is simply the matrix(n, s) with |.#,| missing columnsi{ = p(1)). As before, the
null space ofl/, contains the coefficients of the set of vanishing polynosnidbwever,

we may not compute such coefficients directly, because wbareknow the system
ordersp nor the number of models. As it turns out, botlp and s can be computed
from the data under the assumption that the data are rictgbn®ore specifically:

Definition 1. We say that the datgu(t), y(t)}ﬁ\':1 are sufficiently exciting for the SARX
system (1) if the null space &f, in (11)is of dimension exactly equal tg,, i.e.

rank(V,) = M(K1) — np — |7,]. (12)

' (11)

Notice that Definition 1 assumes implicitly that all the dite states have been
sufficiently visited. If we denote the matrix of data vectoetated to the discrete state

jby X; = [mn(t{) xn(t{vj)}, where thet/, k = 1,..., N;, are the time instants

t such that\; = j, thenX; must span completelyull(P;). Otherwisenull(P;) may
not be identifiable fronu;_, null(F;). We have the following result.

Theorem 1 Lets > s be an upper bound on the number of submodels andidetan
integer. Assume that the data are sufficiently excitingésinse of Definition 1. Assume
further thatN; > M,(K;) forall j = 1,...,s. Thendim (null(L(r,5))) = 0 if and
only if r < max (n;).

Proof. Assumer < n, and letg be the number of submodels whose orders are less than
orequaltor. LetX = [2,(t9),--- , 2, (t% )] € R/>*Ne with f = (r+1)(n,+ny), be
a matrix whose columns are regressor vectors formed by @aergted by thés — ¢)
submodels of ordens; > r. Since the data are sufficiently excitinj,must be full row
rank. It follows from Lemma 5 in [20] thatink (v5 (X)) = min(N,, Ms(f)) = Ms(f),
wherev; (X) = [vs(zr(t9)), -+, vs (z,(t%,)]. ConsequentlyL(r, 5) is full column
rank, because it is equal to a row permutatioﬁugf(?() Vs(Xs—gt1)s -+ s 1/5(2{5)] T
Assume now that > max(n;). Then the row nullity of each data matri; is at
least one. This means that, for al= 1, ... ., s, there exists a nonzebg € R/ satisfying
b; &; = 0. One can then verify thétym(b; ®- - - ®bsQa,11®- - ®as) € null(L(r, 5))
for somea; € Rf. Hencedim(null(L(r, 5))) > 1. O



Lets > s and@ > max(n;) be upper bounds on the number of submodels and
their orders respectively. Thanks to Theorem 1, we can agtimoth the number of
submodelss and the ordergn;} from the rank of the embedded data matki-, 5).

The basic idea is that, wheneveis less than one of the orders, there is no polynomial
of degrees > s vanishing on the entire data set, provided that> s and that the
data is sufficiently exciting. Therefore, as shown in Algfum 2, we can obtain the first
ordern; by settingp = [r e r] € N*, so thatV; = L(r, §), and then start decreasing
r fromr = 7 tor = 0 until null(V;) = {0} for somer*. We then haver; = r* + 1.
Givenn, we can sep = [m T r} € N® and repeat the procedure starting from
r = n; and so on, until all the orders of all tkesubmodels are identified. Notice that,
once all the orders of the submodels have been correctly estimatedill go to zero

for the 5 — s remaining presumed submodels. Therefore, if one assuraes jth> 0
forall j = 1,...,s, then the number of submodels can be estimated as the nuinber o
ordersn; strictly greater than zero.

One advantage of Algorithm 2 is that it does not require pkivowledge of the
dimensionn;, of the space of vanishing polynomials. If all the orders averextly
identified, then the sufficiency of excitation condition irfihition 1 guarantees that
the dimension of the null space &f, is exactly equal tov,. Givenn,, we can use
Algorithm 1 to compute a basi§, of null(V,). We can then complete that basis with
zeros to form a matrix] € RM:(Ku)xnu sych that the rows indexed by, are null.
The remaining steps of Algorithm 1 are then performed wittamlditional change.

Algorithm 2 (Identification of the orders and the number of submodels)
Setj, — 1,n; —nforj=1,...,5,
K — (n+1)(ny+ny),V— L(#n,s),

1. Determine the maximum ordef using Theorem 1
— While rank(V) < M;(K), do
enj—mn—1forj=1,...,8
o K (m+1) (nu+mny)
e V — lastM;(K) columns ofV/

— EndWhile
— Obtain the maximum order as < n; + 1 and thenset; «— n,forj=1,...,5
— SetV «— L(n1,5) andK «— (n1 + 1) (ny + ny)
2. Find the remaining orders;, j = 2, ..., 5 using Theorem 1
— Jo+ Jo+1
— While rank(V) < M;s(K) — |.%5]
® N  — Nj, —lforj:jo,...,§
° p— [ﬂl ’I’Lg}
e Compute.#; and remove the corresponding columngd/of
— EndWhile
— Obtain the orden;,: n; < n;, +1forj =jo,...,5

— SetV «— L(n1,3)
3. Go to step 2 untif, = 5 or until one gets:;, = 0
4. Determine the number of submodels- card({j : n; > 0})




3.3 Implementation of Algorithm 2 with Noisy Data

The algorithm proposed in the previous subsection will afgecorrectly in the absence
of noise. When dealing with noisy data, however, the multiplk tests required may
cause Algorithm 2 to fail, because the involved matrices aimays be full rank. In
this subsection, we discuss some possible improvementgeddlgorithm in order to
enhance its ability to deal with noisy data.

Recall first that the purpose of the rank test is to check vdrathnot the dimension
of the null space oV/; is zero for a given vector of ordegs Therefore, we do not need
to know the rank ofl/; exactly. We just need a measure of how likely it is that there
exists a nonzero vectar, satisfyingV;h; = 0.

One possible way of approaching this problem is to inspeztsthallest singular
value ofV} for different vectorsp. For example, to compute;, let p; ; = [l l} €
N5, 1 = 0,...,n, and definé,, , = 5=V}, V| as the matrix obtained from
~— L(n, 5) T L(n, ) by removing its columns and rows indexed [y, ,. Denote by
o1,1, the smallest eigenvalue of the mat#ix;, , for/ = 0, --- ,n. According to Theo-
rem 1,W;, , has at least one nonzero vector in its null space fof alln; and hence,
Ol R N OLp N Elp, = ﬁ%nl (01,41 + -+ + 01,7) and are small compared
to 010, -+ ,01,n,—1. Therefore, to determing;, one needs to look for the smallest
integer! € {0,--- ,n} forwhichoy; = €1 in a certain sense.

Following this procedure, Algorithm 2 can be implemented imore efficient way
for determining the orders. Withy = 7, and given a user-defined decision threshold
€9, the following algorithm directly computes the orders sty from j = 1 through
j = 5, by avoiding the rank tests required in Algorithm 2.

1,

PjL = [ﬁ1 i1l l]7l:(),...’ﬁj_17

051 = min A (Wﬁj,l) s | = 07..‘ 7ﬁj—17

1 .
gju=——— (g1 + -+ 0ja,), 1=0, iy,
nj—1 —1
S;={l=0,--- 71|01 — €yl <&},
A min{l:l €8}, if S;#0
N 7 otherwise
J—J+1

where \(W;, ,) is the set of all eigenvalues of the matiiX;, ,. In the notation such
asp;,, the index;j indicates which submodel’s order is being estimated whika
possible value of the order sought.

4 Complexity reduction using a projection approach

The algebraic algorithm proposed in the previous sectiaroimes computationally
prohibitive when the dimensions of the SARX system are lafidgs is because the
regressor,,(t) € R®1 constructed from alh, outputs is large, and so it induces an
exponential increase i/, (K ), the dimension of the space of homogeneous polyno-
mials space of degreein K variables. Moreover, the numbey, of polynomials to be



estimated is unknown, even when the orders and the numbeibaicdels are given,
unless one makes certain assumptions.

In this section, instead of attempting to compute a potéytiarge and unknown
number of polynomials, we propose a computationally simpiethod to identify the
model parameters. The idea is to transform the MIMO systeim anmultiple-input
single-output (MISO) system, and hence use only one dermupblynomial to parti-
tion the data according to the different ARX submodels. Caitthe data are correctly
partitioned, the SARX system identification problem redutea standard regression
problem for each discrete state.

To that end, notice that, without loss of generality, sysféjrcan transformed into
the MISO systerh

T Y
y(t) = al,ylt —i) + ) F{ult —i) +e(t), (13)
i=1 i=0
where the{a’ }Z: * are the coefficients of the polynomiall: —a} 2" ! —...—a"

that encodes the po7léjs of thi#lh submodel as its roots.

Let~y = [71 ~-~7ny]T be a vector of real nonzero numbers andygft) =
vTy(t) € R be a weighted combination of all the system outputs. Thes), ¢an be
transformed into the following single output system

(W Ty
Yo(t) = Z al\,Yo(t — i) + Z 'yTFﬁ;tu(t — i)+ e(t). (14)
i=1 i=0

Remark 1 To the purpose of separating the data according to their gaimey sub-
models, one may be tempted to consider a single outgi} from (13) instead of a
combination of all the:, outputs. The problem with proceeding in this way is that, af-
ter pole-zero cancellation, the MISO system with outg(t) may be common to many
different modes and so, we may not be able to differentiaiedsn those modes. By
choosing a random linear combination of the outputs, sudederate situations can
be avoided almost surely.

By introducing the blended output,(t), we obtain only one hybrid decoupling
polynomialg(z) that is easier to deal with. However, at the same time thenpetexs of
different submodels are combined. This raises the questiahether this combination
of outputs preserves the distinguishability of the differeubmodels that constitute the
SARX system. In fact, depending on the weights vegtdmwo submodels which were
initially distinct may reduce to the same submodel in (14)amnalyze this risk, let

Fj=[F" .- F} F)] e Rw*ntme and q; = [0} - a;]T eR"™. (15)
It follows from (14) that two different modesandj become indistinguishable after
the previous transformation by, if they have the same orden,( = n;), the same

% Note that the orders; in (13) may be larger than the ones in (1). By an abuse of notation, we
will keep using the same notation for the orders.



dynamics ¢; = a;) and (F;," — F;") v = 0, i.e. wheny lies in null(F;" — F"). If the
F; were known one could readily selectyavhich does not satisfy this condition. But
these matrices are precisely what we are looking for. Thetgpreis, without knowing
the F;j, how can we choose in such a way that for any # j, v ¢ null(F;” — F)").
In fact, it is not hard to show that whenis drawn randomly, this condition is satisfied
with probability one. Therefore, two submodels that ardinti$ in the original system
(13) remain so after the transformation. However, the sdplily of the modes, which
is a measure of how close the different submodels are, maifdute.
From (14), let us redefine the parameter veétoand the regressar, (t) as
B, =[0L ATFM al - ATF al A TFO 1] eRE, j=1,--- s (16)

Tn(t) = [ult —n)" yo(t —n) - u(t)’ —yo(t)]T e RX, a7)

whereK = (n + 1)(n, + 1). One can view the smallest singular vakug X (+y)) of
X(v) = [#a(n+1) -+ Zz(N)], as a certain measure of how likely the data can be

fitted to one subspace &X. It is in fact intuitive that the more distinguishable the
subspaces are, the largey( X (v)) should be. Therefore, to preserve the separability of

the modes, we suggest to choostor example asy” = arg max. <1 %
whereo ... (X (7)) is the largest singular value df (). Since this could be a hard
optimization problem, an alternative is to choose sevexatidateys in such a way
thatoo (X (7)) is in a certain proportion of ;4. (X (7))-

Once~ has been chosen, we can proceed with the identification guoeeAs be-
fore, we eliminate the dependency of the system equatiohe@switches by consider-
ing the following decoupling polynomial which vanishes twe tlata independently of

their generating submodel:

S

9(z.0) =[] (éjg:«n(t)) = BT v (Za () = 0. (18)

Jj=1

Solving (18) is a particular and simpler casg, (= 1) of the case studied in section 3.
The procedure for the determinationéfis roughly the same:

1. Solve for the orders and number of submodels using Algori2.

2. Obtainh, as any nonzero elementimll(V,) (which is expected to be one dimen-
sional when the data are sufficiently exciting), and

3. Completeh,, with zeros to form & € RM:(X) so that the entries df defined by
4, are zero.

Givenh, the parameters may be obtained from the derivativeas shown in [9]:

g, = Y9E) G (19)

erVa(zj)

wherez; is a pointinS; \ s, S;, S; = {z € R¥ : §] 2 = 0}, ex is a vector of length
K with 1 in its last entry and) everywhere else.



4.1 Classification of the Data

The computation of; for each submodel, involves finding a point lyingSi but not
in any otherS;, i # j =1,...,s. We find a point inS; asz; = z,(7;), where

Vg (Za(t) " Ta(t)
e Vg (T (t))

Dy = {t :Vg(Z,(t)) #0} andD; = {t : Vg(Z,(t)) #0,0] T, (t) # 0,5 = 1, ..., j—1},
for j > 1. Then one can compute the parameters by (19) usirg z,, ().

Recall that recovering the vectof8; };zl associated with the blended outpytt)
is only an intermediate step in achieving the goal of cormguthe parameters; and
F; that define each subsystem of the original system (13). Now) the parameters;
obtained, we can determine the discrete state of (14) whithel same as that of (13)
and then, compute finally the system sought. In order to diggassible outliers in the
data we set up a performance bound 1 to define the following decision rules:

; (20)

T; = arg min
teD;

If  min A(6;,7,(t)) >¢e||Z.(t)||, then X, isundecidable
J

If  minA(0;,z,(t) <ellzn(t)|], then X, =argminA (6;,2,(t)).
J J

_ 0z, (t
Here A(0;,z,(t)) = ‘]H§|(|)‘ is the distance from the point,(¢) to the linear
J _
hyperplaneS; defined by its normal vectof;. We define%; = {t >n:\ = j}
= {t{, e ,t{vj , 7 = 1,...,s as the set of time instances in which the regressors

are generated by the submoglel

4.2 Estimation of the Submodel Parameters

Based on the results of the previous classification, we knbielwdata correspond to
each generating mode. Therefore, we are left with detengittie parameters of each
mode; from the data indexed by?’;. To begin with, consider a single linear submodel
j of ordern; from (13). For anyt € 2}, let us define

PY(t) == [y(t —1) -+ y(t —n;)] € R™>", (21)
BU() = [u(®)T -+ ult —ny)T] T € ROV (22)

The parameters of the submodels of system (13) can be cothasitee solution to the
following linear regression problem

YO = [0 650701, | ol | +e0 1€ 2 @

This equation is obtained by making use of the identity Ve B) = (B ' ® A)ved X),
where the symbok refers to the Kronecker product and ygcis the vectorization
operator. Notice that in the whole procedure, the vecigrsj = 1,...,s, are esti-
mated twice. The first estimate (obtained frém) is considered as a raw estimate that
is required here just to be able to discriminate among tHerdifit modes. The second
estimate from (23) is expected to be more accurate.



5 Numerical results

We test the performance of the proposed approach on an SARXmsycomposed of
two submodels of orderdand1, with n,, = 1 input andn,, = 2 outputs. The system
equations are given by

_ 1 2 0 1 2
y(t) = a;l,,y(t — 1) +ajln,y(t —2) + bju(t) + bju(t — 1) + bju(t —2), (24)

wherea} anda?, j = 1,2, are scalar coefficients anfl, b}, b7 are vectors of dimension
n, = 2. The coefficients> andb? are zero for the second submodel.

The system is driven by a zero-mean white Gaussian noisé wifluunit standard
deviation and switches periodically from one discretesstainother every0 samples.
The output is corrupted with additive noise with a signahtose ratio (SNR) of 30 dB.

The parameters of the two ARX models are given by the matrices

P1:[1.3561, 0 [0.6913, o0,

0 ]0.3793]0.2639
0.7768}’ (25)

0, 13561 0, 0.6913,|1.3001|1.8145
0.9485, 0 [0, 0]1.7661|2.9830|0
PQ_[ 0, 0.9485/0, 0| 0 0.91060}’ (26)

which are defined with respect to the regressor vector
[yt = 1) |y(t —2)7 [u(t) |u(t — 1) |u(t —2)] .

Given input-output data generated by this system on a tinmelow of size1500,
we are interested in extracting the number of constitudmtngdels, the orders of these
submodels and the parameters that describe them. To demateriste performance of
our algorithm we carried out a Monte-Carlo simulation o&sia00 with the following
user-defined set of parametefis= 3 ands = 3. For a threshold of, = 1072 in the
algorithm of §3.3, the estimation of the orders of both subet®is realized with 100%
of successes. Since we providee: 3, the vector of orders is obtained as= [2 1 0].
The means of the estimaté$ and P, obtained across all the simulations are given by:

P 1.3558, 0.0043| 0.6897, 0.0036|0.0056 | 0.3937,|0.2639 27)
1™ 1-0.0012,, 1.3558 | —0.0021, 0.6907 [ 1.3031 | 1.8208 | 0.7753 |’

P — 0.9480, 0.0045|—0.0005, 0.0050 | 1.7710, |2.9869,| 0.0050 28)
27 1-0.0003, 0.9479 | —0.0001, —0.0006 | —0.0012 | 0.9081 | —0.0018|

Figure 1 shows a histogram with the maximum angle betweendhenn space of
the hybrid parameter matriif and that of its estimat& . Notice that for all simulations
the cosine of this angle is larger tharp9, implying a strong correlation betwed
and its estimate. For the second identification method abeltris much better sincd
consists of only one vector.

Figure 2 shows the relative errors between the true parametticesP; and the
estimatesf?j obtained by our algorithm. Observe that the percentageruflations that
give errors less thaf.05 is about66% for the first submodel and abo&5% for the
second submodel. These percentages improve significaédy &nd93%) when we
use the classification approach described in Section 4.
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Fig. 1: Histograms of the maximum subspace angle betweetf pand spati).
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6 Conclusions

We have presented an algebraic approach to the identificatiiMO SARX models
with unknown number of submodels of unknown and possiblfedéht orders. The
number of submodels and their orders are estimated fromkacmarstraint on the input-
output data, and the model parameters using a subspaceriigstechnique called
GPCA. As the complexity of the method is exponential on thelber of outputs and
submodels, we proposed a simpler approach that applies GPE&MISO system built
by projecting the original data. Future work includes depéig recursive identification
algorithms for MIMO SARX systems, such as the one in [20] ftB@ systems.



Acknowledgements. The authors thank Mr. Dheeraj Singaraju for his help in proof
reading this paper. This work has been funded by BOURSE-MOHM from the Re-
gional Council of Nord-Pas-de-Calais (France), by Johnsiits startup funds, and by
grants NSF EHS-05-09101, NSF CAREER 11S-04-47739 and ONBON®-05-1083.

References

1. Roll, J., Bemporad, A., Ljung, L.: Identification of piecewise affBystems via mixed-
integer programming. Automatiei(1) (2004) 37-50
2. Ferrari-Trecate, G., Muselli, M., Liberati, D., Morari, M.: A clustey technique for the
identification of piecewise affine systems. Automa8&2) (2003) 205-217
3. Ferrari-Trecate, G., Muselli, M.: Single-linkage clustering for optictessification in piece-
wise affine regression. In: IFAC Conference on the Analysis anéigbes Hybrid Systems.
(2003)
4. Nakada, H., Takaba, K., Katayama, T.: Identification of pieceaiSre systems based on
statistical clustering technique. Automati¢¥5) (2005) 905-913
5. Juloski, A., Weiland, S., Heemels, M.: A Bayesian approach to idestiifin of hybrid
systems. |IEEE Transactions on Automatic Conf@L0) (2005) 1520-1533
6. Bemporad, A., Garulli, A., Paoletti, S., Vicino, A.: A bounded-empproach to piecewise
affine system identification. IEEE Transactions on Automatic Co®®(10) (2005) 1567—
1580
7. Paoletti, S., Juloski, A., Ferrari-Trecate, G., Vidal, R.: Identificati hybrid systems: A
tutorial. European Control Journal (2007)
8. Ragot, J., Mourot, G., Maquin, D.: Parameter estimation of switchieceise linear sys-
tems. In: Conference on Decision and Control. (2003)
9. Vidal, R., Soatto, S., Ma, VY., Sastry, S.: An algebraic geometriccamh to the identification
of a class of linear hybrid systems. In: Conference on Decision antt@0(2003) 167-172
10. Ma, Y., Vidal, R.: Identification of deterministic switched ARX systernasiglentification of
algebraic varieties. In: Hybrid Systems: Computation and Control. Sgarivigrlag (2005)
449-465
11. Bako, L.., Mercere, G., Lecoeuche, S.: Online subspacdfidation of switching systems
with possibly varying orders. In: European Control Conferencg0T72
12. Huang, K., Wagner, A., Ma, Y.: Identification of hybrid linear tinmgariant systems via
subspace embedding and segmentation. In: Conference on Degcigi@vatrol. Volume 3.
(2004) 3227-3234
13. Verdult, V., Verhaegen, M.: Subspace identification of piecewismlisystems. In: Pro-
ceedings of the 43rd IEEE Conference on Decision and Control. {Z8B8-3843
14. Minz, E., Krebs, V.: Identification of hybrid systems using a pkaoowledge. In: I[FAC
World Congress. (2002)
15. Verdult, V., Verhaegen, M.: Subspace identification of piecewigatisystems. In: IEEE
Conference on Decision & Control. (2004) 3838-3843
16. Minz, E., Krebs, V.: Continuous optimization approaches to thdifibation of piecewise
affine systems. In: IFAC World Congress. (2005)
17. Vidal, R., Ma, Y., Sastry, S.: Generalized Principal Componerdlysis (GPCA). IEEE
Transactions on Pattern Analysis and Machine Intellig&¥#2) (2005) 1-15
18. Ma, Y., Yang, A., Derksen, H., Fossum, R.: Estimation of sabsmrrangements with ap-
plications in modeling and segmenting mixed data. SIAM Review (To apf2a08)
19. Derksen, H.: Hilbert series of subspaces arrangementsial@fiPure and Applied Algebra
209(1) (2007) 9198
20. Vidal, R.: Recursive identification of switched ARX systems. Autonagffo appear) (2008)



