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RÉSUMÉ. Cet article présente un nouvel algorithme conservateur de sélection de variables avec
données manquantes. Il est conservateur au sens où il fait une hypothèse au pire cas sur le
processus de perte des données. Il s’applique en particulier aux données manquantes vérifiant
l’hypothèse IM ("informatively missing"), i.e., quand les données manquantes ne peuvent être
inférées à partir des seules données disponibles. L’algorithme est fondé sur la recherche de la
couverture de Markov de la variable cible. Une évaluation empirique est menée sur plusieurs
bases de données synthétiques et réelles pour évaluer son efficacité.

ABSTRACT. This papers introduces a novel conservative feature subset selection method with
informatively missing data, i.e., when data is not missing at random but due to an unknown
censoring mechanism. This is achieved in the context of determining the Markov blanket (MB)
of the target variable in a Bayesian network. The method is conservative in the sense that it
constructs the MB that reflects the worst-case assumption about the missing data mechanism,
when the missing values cannot be inferred from the available data only. An application of
the method on synthetic and real-world incomplete data is carried out to illustrate its practical
relevance.

MOTS-CLÉS : Réseaux Bayésiens, données manquantes, couverture de Markov, classification pro-
babiliste, selection de variables.

KEYWORDS: Bayesian networks, missing data, Markov boundary, probabilistic classification,
feature subset selection.
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1. Introduction

A principled solution to the feature subset selection problem is to determine the
Markov boundary (MB) of a target variable T (Koller et al., 1996; Margaritis et
al., 1999; Pearl, 1988). The Markov boundary of T , denoted by MBT , is defined
as any minimal subset of V (the full set) that renders the rest of V independent of
T . In recent years, they have been a growing interest in inducing the MB automa-
tically from data. Very powerful correct, scalable and data-efficient constraint-based
(CB) algorithms have been proposed recently, e.g., PCMB (Peña et al., 2005), IAMB
(Tsamardinos et al., 2003) or its variants : Fast-IAMB (Yaramakala, 2004) and Inter-
IAMB (Yaramakala et al., 2005). These methods yields compact MB by heeding inde-
pendencies in the data. They systematically check the data for independence relations
and use those relationships to infer necessary features in the MB. When no entry is
missing in the database, the MB can be estimated efficiently with these methods. An
excellent trade-off between time and quality of reconstruction is systematically obtai-
ned. Unfortunately, when the database is incomplete, i.e., some entries are reported as
unknown, the simplicity and efficiency of these methods are lost.

Scoring approaches are capable of dealing with incomplete records in the database
based on the expectation maximization (EM) principle (Dempster et al., 1977). The
EM algorithm (Friedman, 1997; Friedman, 1998; Francois et al., 2006; Francois et
al., 2007) and Gibbs sampling (Geman et al., 1984) are notorious solutions to handle
incomplete data sets, but both methods assume implicitly that data are missing at ran-
dom. Under this assumption, the missing values can be inferred from the available
data. However, this assumption does not hold and it is hard, if not impossible, to test
in practice. The decrease in accuracy my be severe with EM-based methods when the
assumption is violated. More recently, Robust Bayesian Estimator (RBE) (Ramoni et
al., 2001) methods were proposed to learn conditional probability distributions from
incomplete data sets without making any assumption about the missing data mecha-
nism. The major feature of the RBE is to produce probability estimates that are ro-
bust with respect to different types of missing data. This robustness is achieved by
providing probability intervals containing the estimates that can be learned from all
completed data sets.

In this paper, we transpose Ramoni’s ideas (Ramoni et al., 2001) to the problem of
finding a conservative Markov blanket of a variable with information missing entries.
By conservative, we mean the MB that renders the rest of the variables independent of
the target without making any assumption about the unknown censoring mechanism.
The problem is addressed in this paper by maximizing the conditional dependence
measure over all possible ways to fill the missing data. The idea is exemplified with the
G2 statistic in this paper but its generalization is fairly easy. The intuition behind the
method is similar to that of Ramoni et al. (Ramoni et al., 2001). The idea is that, when
no information about the pattern of missing data is available, an incomplete database
contains the set of all possible estimates and this paper provides a characterization
of these constraints. This conservative test addresses the main shortcoming of CB
methods with missing data : the difficulty of performing a classical (non bayesian)
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independence test when some entries are missing without making any assumption
about the missing data mechanism.

The remainder of this paper describes our approach. Sections 2 and 3 establish
some notation and reviews the background and motivation of the research. Section 4
describes the theoretical framework of the method, while Section 5 applies the method
to synthetic and real incomplete data sets.

2. Constraint-based Markov blanket discovery

We denote the conditional independence of the variable X and Y given Z, in some
distribution P with IndP (X;Y |Z), dependence as DepP (X;Y |Z). Constraint-Based
(CB for short) learning methods systematically check the data for independence rela-
tions and use those relationships to infer necessary features to be included in the MB.
They rely on a probabilistic association measure between X and Y conditionally on Z
denoted by Assoc(X; Y |Z). In our implementation, we use a well-known CB method
called IAMB (Tsamardinos et al., 2003) along with a statistically oriented conditional
independence test based on the G-test :

G = 2
m∑

i=1

p∑

j=1

q∑

k=1

n(i, j, k) ln
n(i, j, k)n(·, ·, k)
n(i, ·, k)n(·, j, k)

. [1]

where n(i, j, k) is the number of times simultaneously X = xi, Y = xj and
Z = zk in the sample, that is, the value of the cell (i, j, k) in the contingency table.
A distribution P is said faithful with respect to G if the d-separations in the DAG
identify all and only the conditional independencies in P . Suppose < G, P > satisfies
the faithfulness condition, it may be shown that : (1) the set of parents, children and
parents of children of X is the unique Markov boundary of X , and (2) X and Y are
not adjacent in G iff ∃Z ∈ V \ {X ∪ Y } such that IndP (X; Y |Z) (see (Neapolitan,
2004) for instance). Tsamardinos et al. prove in [19] that IAMB is correct under the
faithfulness assumption.

2.1. Dealing with missing entries

When the database is complete, that is, all entries are known, the computation of
Assoc(X;Y |Z) is straightforward. Unfortunately, the expression cannot be computed
when entries are reported as unknown. Suppose for simplicity that Z is empty and
that we wish to estimate the maximum value of Assoc(X, Y ) from an incomplete
database D = {Xj , Yj}j=1,...,n in which some entries of the variable Xj and Yj are
unknown. These unknown entries give rise to multiple types of incomplete cases that
are relevant to the estimation of n(i, j). For instance, Table I shows a database with
several entries missing denoted by " ?". n(?, j) will for instance denote the number
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Case 1 2 3 4 5 6 7 8
X 1 2 1 ? 2 ? 1 1
Y 2 1 ? 1 2 ? ? 2

Tableau 1. Cases with some items missing.

Y = 1 Y = 2 Y =?
X = 1 0 2 2
X = 2 1 1 0
X =? 1 0 1

Tableau 2. Extended contingency table.

of cases where X is missing and Y take value yj . n(?, j) = 1 in this example. The
extended contingency table is shown in Table 2. The task is to estimate the n(i, j)
values. The issues involved in estimating theses values from an incomplete data set
D are better explained if we regard D as the result of a deletion process applied to
a complete but unknown database Dc. We define a consistent completion of D to be
any complete database Dc from which we can obtain D using some deletion process.
The set of consistent completions Dc is given by all databases in which the unknown
entries are replaced by one of the possible values of the unobserved variables.

2.2. Deletion process

According to (Dempster et al., 1977), the assumptions about the missing data me-
chanisms may be classified into three categories :

– missing completely at random (MCAR) : the probability that an entry is missing
is independent of both observed and unobserved values in the data set ;

– missing at random (MAR) : the probability that an entry is missing is a function
of the observed values in the data set ;

– informatively missing (IM) : the probability that an entry is missing depends on
both observed and unobserved values in the data set.

In order to specify the deletion processes, a dummy binary variable Ri may be
associated with each variable Xi. When Ri takes value ’1’, the entry Xi = xi is not
observed and vice-versa. When the probability distribution of each Ri is independent
of X1, . . . , Xn, the data may be seen as MCAR. When this probability distribution
is a function of the observed values in the data set, data are MAR. Now, when this
probability distribution is a function of the observed and unobserved entries, data are
IM. The expectation maximization (EM) algorithm (Dempster et al., 1977) and Gibbs
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Y = 0 Y = 1
X = 1 0 4
X = 2 3 1

Tableau 3. Completed contingency table maximizing G.

sampling (Geman et al., 1984) are well known solutions to handle incomplete data sets
but they rely on the assumption that data are MAR. The problem is that MCAR and
MAR assumptions are hard, if not impossible, to test. On the other hand, one cannot
simply infer the missing entries from the observed ones anymore when the data is
IM. Hence the need for a general approach dealing with the IM worst case censoring
mechanism.

3. A conservative Markov blanket

The solution we propose is based on the idea that, even with no information on
the missing data mechanism, an incomplete data set D constrains the set of estimates
that can be induced from its consistent completions. Following this principle, we in-
troduce the conservative statistical test with no assumptions about the missing data
mechanism. It is conservative in the sense that makes always the worst case assump-
tion by assuming dependency when independency cannot be guaranteed in all the
distributions associated with the consistent data completions. Let Assoc(X; Y |Z;Dc)
be the value of Assoc(X; Y |Z) evaluated on complete set Dc.

Definition 1 Let Assoc(X; Y |Z) be an conditional association measure.
ConsAssoc(X; Y |Z) is called a conservative association measure with respect
to Assoc(X;Y |Z) if, for all incomplete database D, ConsAssoc(X;Y |Z;D) ≥
Assoc(X;Y |Z;Dc) for every consistent data completion Dc obtained from D.

Using ConsAssoc(X; Y |Z;D) yields a conservative test in the sense that it al-
ways take the worst-case assumption about the missing data mechanism to decide
whether X and Y are conditionally independent. It is implicitly assumed in the defi-
nition that ConsAssoc(X; Y |Z;Dc) = Assoc(X;Y |Z;Dc) for any completion Dc

obtained from D. In general, whatever the way the missing database is completed, we
would want an edge to mean a direct dependency when the CB algorithm is run on
these data. As we know, the faithfulness entails this. The following theorem shows
that a conservative Markov blanket can be obtained using IAMB(T,D, ConsAssoc)
(i.e., IAMB run with the conservative test) as shown next :

Theorem 1 Suppose the independence tests are correct and that the learning data-
base Dc is an independent and identically distributed sample from a probability dis-
tribution P faithful to a DAG G. Suppose given an incomplete database D that was
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obtained from Dc by some missing data mechanism. Then, IAMB(T,D, ConsAssoc)
returns a conservative Markov blanket of X .

Proof : If X ∈ PCT (where PCT denote the set of parents and children in G)
then X remains dependent on T conditioned on any set Z ∈ U \ {X,Y }. Therefore,
from definition 1, we have α < Assoc(X; Y |Z;Dc) ≤ ConsAssoc(X;Y |Z;D) for
all Z ∈ U \ {X, Y }. So X is necessarily in the output of IAMB(T,D) run with the
conservative test. Now, if X ∈ MBT \PCT (where MBT denote the MB of T ), then X
is spouse of T owing to the faithfulness assumption. So there is a variable Y ∈ PCT

such that T 6⊥ X|Z∪Y for all Z ∈ U\{T,X}. Recall that IAMB works in two steps.
In the first stage, candidate nodes are added sequentially to the current candidate MB
set when they are not found independent on T conditioned on the current MB. The
extra nodes are removed from MB in the second step. As Y will enter this set during
the first stage, X will also enter but it will never leave this set in Phase II because
T 6⊥ X|{Z ∪ Y } for all Z ∈ U \ {T,X}. ¤.

4. A conservative independence test

This section shows how to design practically a conservative test based on the
G statistic. For sake of clarity, Z is supposed empty. The case Z non empty will
be discussed in the sequel. As a shorthand, we note

∑p
j=1 n(i, j) = n(i, ·) and∑m

i=1 n(i, j) = n(·, j). Let n0(i, j) be the number of non missing cases in cell (i, j)
and let xij (resp. yij and zij) be the number of additional cases that are affected to cell
(i, j) owing to n(?, j) (resp. n(?, j) and n(?, ?)). The value that would be computed
from the complete data set (if known) is

n(i, j) = n0(i, j) + xij + yij + zij , ∀i, j. [2]

The information conveyed by the incomplete cases impose several constraints on
the variables xij , yij and zij . In order to identify the maximum estimate of G, we
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have to consider the problem of maximizing G subject to equality and inequality
constraints :

(P)





Max G = 2
p∑

i=1

m∑

j=1

n(i, j) ln
n(i, j)

n(i, ·)n(·, j)/n
,

subject to
p∑

j=1

xij = n(i, ?), ∀i,
m∑

i=1

yij = n(?, j), ∀j,
m∑

i=1

p∑

j=1

zij = n(?, ?),

n(i, j) = n0(i, j) + xij + yij + zij , ∀i, j,
xij ≥ 0, ∀i, j,
yij ≥ 0, ∀i, j.
zij ≥ 0, ∀i, j.

[3]

(P) is combinatorial problem with 3mp variables. If we relax the integrity
constraints the problem may be solved using nonlinear programming techniques.
From Karush-Kuhn-Tucker (KKT) Theorem, the problem of maximizing G sub-
ject to equality and inequality constraints is obtained by optimizing the Lagrange
function L with respect to 3mp + m + p + 1 parameters subject to an extended
condition set. Let x = (x11, . . . , xmp) ∈ <mp, y = (y11, . . . , ymp) ∈ <mp and
z = (z11, . . . , zmp) ∈ <mp be a candidate solution in C. From the KKT conditions,
if x is a local extrema of the Minf(x) subject to hi(x) = 0 for i = 1, . . . , n and
gj(x) ≥ 0 j = 1, . . . , p, there exist λ = (λ1, . . . , λn) ∈ <n and a positive vector
µ = (µ1, . . . , µm) ∈ <m such that ∇f(x) +

∑m
i=1 λi∇hi(x) +

∑p
i=1 µi∇gi(x) = 0

and µigi(x) = 0,∀i.
We need to express ∇G by taking the derivative of G with respect to xij (yij and

zij play a symmetric role),

1
2

∂G

∂xij
=

1
2

∂G

∂yij
=

1
2

∂G

∂zij
= ln

n(i, j)
n(i, ·)n(·, j)/n

− 1 [4]

Define λx
i and µx

i (resp. λy
i and µy

i ) and λz and µz
i , the Lagrange multipliers asso-

ciated to the constraints. From the KKT conditions, the maximum is obtained when

n(i, j) = eβij · n(i, ·)n(·, j)/n, ∀i, j. [5]
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where the parameters βij are solution of





βij = ln n− (λx
i + µx

ij),
βij = ln n− (λy

j + µy
ij),

βij = ln n− (λz + µz
ij).

[6]

with µx
ij , µy

ij and µz
ij solution of

{
µx

ijxij = 0, µy
ijyij = 0, µz

ijzij = 0,

µx
ij ≥ 0, µy

ij ≥ 0, µz
ij ≥ 0.

[7]

This is a nonlinear system that does not seem to admit a closed-form solution.
βij 6= 0 is interpreted as a local deviation of cell (i, j) to independence. βij > 0 when
n(i, j) is over-represented and vice-versa. The next theorem will help characterize G’s
maximum.

Theorem 2 If (x,y) is a solution of (P), then the following assertions hold :

– For all i, there is unique j? such that xij? 6= 0 and ∀j 6= j?, βij ≤ βij? ,

– For all j, there is unique i? such that yi?j 6= 0, and ∀i 6= i?, βij ≤ βi?j ,

– There is unique pair (i?, j?) such that zi?j? 6= 0,and ∀(i, j) 6= (i?, j?), βij ≤
βi?j? ,

Proof : Consider Gijk(x) = G(n11, . . . , nij − x, . . . , nik + x, . . . , npm) for all
(i, j, k) over the domain 0 ≤ x ≤ min (nij , ni,?). G′(x) = 0 iff n(i, j)/n(·, j) =
n(i, k)/n(·, k). This is the minimum of G. From KKT conditions, the maximum is
reached only when an inequality is active (at x = 0 or at x = min (nij , ni,?)). The
same results hold for Gijk(x) = G(n11, . . . , nij − y, . . . , nkj + y, . . . , npm). The
maximum of G requires all Gijk(x) to be locally maximized, otherwise G can be
increased by permuting the missing cases across lines or columns. The maximum
for G can be characterized further. Let i and j be such that xij 6= 0 and yij 6= 0.
βij = ln n− λx

i = ln n− λy
i , since µx

ij = 0 and µy
ij = 0. Therefore, λx

i = λy
i . For all

k 6= i, βkj ≤ βij and for all k 6= j, βik ≤ βij . This completes the proof.

Owing to Theorem 2, to maximize G, a single cell (i, j?) along each line i (resp.
column j) of the contingency table should receive all the missing entries n(i, ?) (resp.
n(?, j)). In addition, a single cell (i?, j?) increases the most the G value. (i?, j?)
is such that βij ≤ βi?j? for all (i, j). In order to avoid the burdensome numerical
resolution of the optimization problem P , we propose in the next section a simple
heuristic that greedily completes the missing entries for the test to be conservative.
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4.1. Extension to conditional G-tests

While the previous section only discussed the case where Z is empty, Theorem 2
can easily be generalized to conditional tests ConsAssoc(X;Y |Z;D) although it is
not discussed here for sake of conciseness. With the above result in mind, we devised a
greedy heuristic termed GreedyGmax in order to approximate the maximum in order
O(n) when n stands for the number of cells in the contingency table. The idea is
to select sequentially the triple (i, j, k) that increases most G. From Theorem 2, we
know the cell that will increase G the most is the one for which β(i,j,k) is the largest.
Since the β(i,j,k) depend on the missing entries, they are unknown. Our idea is to
estimate β(i,j,k) by β0

(i,j,k) using the available data only in Equation 5 and fill all the
possible missing entries in the cell with the highest β0

(i,j,k) value. This procedure is
then repeated until the database is completed. The Greedymax heuristic is depicted in
Algorithm 2. β0

(i,j,k) are computed at line 5 and they are sorted in decreasing order at
line 7.

Algorithm 1 GreedyGmax
Require: X, Y : testing variables ; Z : conditioning set ; D : an incomplete data set ;
Ensure: Gmax : an upper bound for the G-statistic ;
1: for all i, j, k do
2: Compute no(i, j, k)
3: end for
4: for all i, j, k do
5: β0

(i,j,k) = n0(i, j, k)n0(·, ·, k)/n0(i, ·, k)n0(·, j, k)
6: end for
7: Cell=Sort {β0

(i,j,k)}
8: idx = 1
9: repeat

10: Fill Cell(idx) with as much as possible missing entries
11: idx = idx + 1
12: until D is complete
13: Gmax = G-statistic on completed data

It should be noted that the method is not yet conservative strictly speaking, as
the greedy maximization heuristic is not guaranteed to find the global maximum.
We shall argue, however, that the probability of a completion mechanism to yield
G > GreedyGmax is sufficiently small that it can be considered as zero in practice.
For sake of illustration, Table 3 shows the completion obtained when GreedyGmax
is applied to data shown in Table 1. In this simple example, the heuristic yields the
maximum for G.

5. Experimental evaluation

This section reports the results of an experiment based on real-world data with
missing entries. The aim of these experiments is to show that the MB returned by the
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conservative method can reveal interesting dependencies that may have been missed
by standard approaches. This raises an interesting question : is a conservative MB lear-
ning algorithm useful in the context of feature selection ? In other word, can we design
more efficient probabilistic classifiers by use of a conservative Markov blanket ? What
are the missing rates and/or the missing mechanisms for which the methods works
best ?

In this section, we consider the Interleaved Incremental Association Markov Boun-
dary (Inter-IAMB) (Tsamardinos et al., 2003; Aliferis et al., 2003) as our reference
Markov boundary discovery algorithm. Inter-IAMB is variant of IAMB that has been
proposed to improve its data efficiency while still being correct under faithfulness
assumptions. Inter-IAMB seeks directly the minimal subset of V (the full set) that
renders the rest of V independent of T , then MBT as IAMB does (Tsamardinos et
al., 2003). The key difference between IAMB and Inter-IAMB is that the shrinking
phase is interleaved into the growing phase in Inter-IAMB.

The original G-test is applied using the available case analysis technique, i.e.,
using for the estimation of Ind(X,Y |Z) only the instances where X , Y and Z are
non missing. The significance level for the independence tests is 0.01. We compare the
accuracy of Inter-IAMB with the standard G-test versus Inter-IAMB with the conser-
vative G-test based on GreedyGmax(X,Y |Z). In our implementation, Inter-IAMB
considers both tests to be reliable when the number of instances in D is at least ten
times the number of degrees of freedom and skips it otherwise. Skipping the test means
the variables are assumed to be independent without actually performing the test.

5.1. Limits of the conservative test

Before we assess the benefits of this approach, let us first gauge its limits on a
simple example. Consider two discrete variables X and Y with 5 modalities each. 200
databases were generated, each containing 2000 independent and identically distribu-
ted samples. Figure 1 plots the average and standard deviation of the p-values obtained
from the conservative Gmax test between 2 independent variables as a function of the
ratio of missing data. The missing mechanism is MCAR. As may be seen, both va-
riables are considered dependent for a significance level of 0.01 as soon as the ratio of
missing data is superior to (say) 3%. So the present approach will surely be inefficient
for larger missing rates.

5.2. Synthetic data

This section reports the results of an experiment on a toy problem. The aim is
to evaluate the effectiveness of the Gmax approach when the data is informatively
missing. The toy Bayesian network applied for this experiment is composed of four
random variables as depicted in Figure 2. All variables were subject to a deletion
process. We associated several pairs (i, j) of variable with a dummy variable Rij
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Figure 1. p-values obtained from the conservative Gmax test between 2 independent variables
as a function of the ratio of missing data.

that took on one of the two values 0 and 1 with some probability. As seen in Fig.
2, the original graph was augmented by the 4 variables RAB , RAD, RBC , RCD. The
dummy variables have all the same probability table. They were chosen such that :
when the parents of the dummy variable have different values, no data is removed.
Otherwise, the entry for both parents have MR% chances to be removed. Since the
distribution of the variables Rij depends of the unobserved values in the data set, all
values removed with this process is IM. This deletion process was repeated with ten
times with different missing rates. As may be seen, the conservative approach returns
lesser and lesser false negatives as the missing rate increases. The price to pay in terms
of false positives nodes seems affordable for the missing rates that we are considering.

Figure 2. Benchmark with extra dummy variables. The probability tables are shown. Values
represent percentages.

5.3. Real data

For the second experiment we used data on Congressional Voting Records, avai-
lable from the Machine Learning Repository at the University of California, Irvine
(Blake, Keogh, Merz, 1998). The data set describes votes for each of the 435 member
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Figure 3. Average missing and extra variables for learning Markov boundaries of all variables
of the toy problem in Fig.2. In black : the conservative InterIAMB using the GreedyGmax
heuristic. In grey : the standard InterIAMB. All results are averaged over 10 runs.

of the US House of Representative on the 16 key issues during the 1984. Hence, the
data set consists of 435 cases on 16 binary attributes and two classes that represent the
party affiliation. There are 289 values reported as unknown. Although these missing
entries amount to 4% of the data set, the number of incomplete cases is 203, more
than 45% of the total. An important feature of this data is that unknown entries, and
hence what member of the US House of Representative did not vote on, can be pre-
dictive. We have applied InterIAMB in this data set as a solution to the feature subset
selection for probabilistic classification. The table below shows the results of classifi-
cation using the variables selected by InterIAMB by applying the G statistic and the
GreedyGmax heuristic. One can see the same algorithm provides a better feature se-
lection for probabilistic classification when applying the GreedGmax heuristic. Stan-
dard InterIAMB outputs 4 variables : adoption-of-the-budget-resolution, physician-
fee-freeze, anti-satellite-test-ban and synfuels-corporation-cutback. InterIAMB with
Gmax outputs 5 variables : the same 4 except anti-satellite-test-ban plus 2 others :
synfuels-corporation-cutback and education-spending. It is interesting to note here
that the first MB is not included in the second as we would expect from Theorem 1.
This comes from an unwanted side-effect in practice : the cascading effect of early
test errors causes errors to be present in the output MB. Therefore, it is not surprising.
As may be seen, the Gmax technique slightly outperforms in terms of classification
accuracy by about 2% on average.

5.4. Real data : Nasopharyngeal Carcinoma epidemiological data

In this section, we apply the method on Nasopharyngeal Carcinoma (NPC) epide-
miological data that was made available to us by the International Agency for Research
on Cancer (IARC) (Feng et al., 2007; Aussem et al., 2007). This database is not yet
available in the public domain. The original data is made up from 1289 instances and
321 discrete features to evaluate the risk of factors of NPC. The variables have 2 or
3 modalities. Among the 321 variables, we selected only the ones that have less than
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Gtest Gmax
Correct classification rate 92.41% 94.25%
True positive rate 0.94 0.95
True negative rate 0.88 0.92
False positive rate 0.077 0.113
False negative rate 0.045 0.052
Kappa statistic 0.8391 0.8786

Tableau 4. Congressional Voting Records : 10-fold cross-validation results with a
naive Bayes classifier using the features selected by Inter-IAMB.

Gtest Gmax
Correct classification rate 0.6059 0.6160
True positive rate 0.6340 0.6717
True negative rate 0.5760 0.5568
False positive rate 0.4240 0.4432
False negative rate 0.3660 0.3283
Kappa statistic 0.2102 0.2292

Tableau 5. NPC data : 10-fold cross-validation results with a naive Bayes classifier
using the features selected by Inter-IAMB.

3% missing entries. This reduces the problem to 145 variables. The data was collec-
ted during a multi-center case-control study that has been undertaken in 2004 by the
IARC) in the Maghreb (Morocco, Algeria and Tunisia), the endemic region of North
Africa. Patients were interviewed according to a specific questionnaire. As all case
control studies in epidemiology, half of population is comprised of individuals that
are disease positive (the cases), and the other half (the control group) come from the
same population that gave rise to the cases. As observed in Table 5, the Gmax tech-
nique yields here again a slight improvement in terms of overall accuracy. The false
negative rate is important here as it represents a failure in detecting the disease. The
latter was reduced by 4%.

6. Conclusion

In this paper, we discussed a conservative constraint-based Markov blanket lear-
ning method from incomplete data. The method is conservative in the sense that it
constructs a Markov blanket that reflects the worst-case assumption about the missing
data mechanism. An application of the method on synthetic and real-world incomplete
data was carried out to illustrate its practical relevance. The method was shown to
yield a benefit for databases with no more than 5% missing data. Future substantiation
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through more experiments with other statistical association measures (e.g., Mutual In-
formation, G2 test) are currently being undertaken and comparisons with other data
analysis techniques will be reported in due course.
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