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ABSTRACT

Accurate estimation of snow mass is important for the characterization of the hydrological cycle at
different space and time scales. For effective water resources management, accurate estimation of snow
storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth
in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken.
Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain.
Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are
ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been
used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural
snowpacks need to be understood if comparisons are to be made between a point SD measurement and
satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground mea-
surements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that
in comparing samples of ground-measured point SD data with satellite-derived 25 � 25 km2 pixels of SD
from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant
differences in yearly SD values even though the accumulated datasets showed similarities. Second, from
variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling
grid cell domain of 1° � 1° in the study terrain, 10 distributed snow depth measurements per cell are
required to produce a sampling error of 5 cm or better. This study has important implications for validating
SD derivations from satellite microwave observations.

1. Introduction
With the continued growth in world population and

industrial and commercial productivity, demands on
global water resources have increased greatly. For ef-
fective water resources management there is a need to
accurately quantify the various components of the hy-
drological cycle at different space and time scales. Snow
is a renewable water resource of vital importance in
large portions of the world and is one of the major
hydrological cycle components. It is also a major source
of water storage and runoff for many parts of the world.
For example, in the western United States snow con-
tributes over 70% of total water resources. To better
predict snow storage and detect trends in the variations
of water resources, accurate snowpack information
with known error characteristics is necessary.

Traditionally, rulers, fixed snow stakes, and snow
boards are used to measure the snow depth (SD) at a
point. In general, point measurements of SD produce
high quality data representative of a small location
(�10 m scale length). To monitor SD in a temporally
and spatially comprehensive manner, optimum interpo-
lation of the points must be undertaken (Brasnett 1999;
Brown et al. 2003). However, the spatial representativ-
ity of point measurements in a basin or at larger scale is
uncertain (Atkinson and Kelly 1997). Furthermore, the
spatial density of SD measurements in most parts of the
world is rather low. Thus, the accuracy of spatially in-
tegrated point measurements of SD needs to be as-
sessed carefully.

Spaceborne scanning microwave sensors, which
cover a wide swath and can provide rapid repeat global
coverage, are ideally suited to augmenting global snow
measurements. For example, passive microwave radi-
ometers such as the Scanning Multifrequency Micro-
wave Radiometer (SMMR) on Nimbus-7 and Seasat-A
and the Defense Meteorological Satellite Program
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(DMSP) Special Sensor Microwave Imager (SSM/I)
have been utilized to retrieve global SD. To assess the
representativity of satellite-derived SD, it is necessary
to determine how and whether the point SD measure-
ments can be compared with the spaceborne-derived
SD that typically represents about 25 � 25 km2 in area.

The uncertainties in point and areal SD measure-
ments of natural snowpacks need to be understood if
comparisons are to be made between point SD mea-
surements and satellite-derived SD. The statistical vari-
ability of the snow depth, as represented by the vari-
ogram, has a direct effect on the accuracy of SD derived
from satellite data. Consequently, it is essential that the
magnitude and cause of any variability is clearly de-
fined for robust global validation of satellite-derived
SD. In this paper we use sparsely distributed SD data
from the National Weather Service (NWS) cooperative
station network and SSM/I-derived SD data to study
large-scale snow distribution.

To understand the snow-distribution characteristics
from ground-measured SD, it is necessary to know the
density of point SD measurements and the defined SD
areal accuracy. Geostatistical analysis can be used to
gain a better understanding of the spatial variability of
snow depth in large areas, such as the northern Great
Plains. Although there are large portions of the world
where the spatial density of point-measured SD is less
then 1 per 10 000 km2 (approximately about the area of
1° latitude by 1° longitude), the aims of this study are to
understand and quantify statistically the uncertainties
associated with sparse sampling of SD over a regional
scale, and to determine how these uncertainties affect
the validation of global SD derivations from satellite
observations at a local to regional scale. The aim of this
study is to find out how well remote sensing–derived
SD can be validated by current ground-measured point
SD data, specifically

1) How well does ground-measured SD compare with
satellite-derived SD?

2) What are the characteristics of snow spatial distri-
bution?

3) What are the sampling criteria for making ground
snow measurements so they can be used to validate
satellite-derived SD, given a predefined accuracy re-
quirement?

Throughout the paper we refer to ground SD, which
refers to the measurement of snow depth at a point
made by a temporary ruler or permanent ruled staff.
The snow depth is the accumulated vertical thickness of
snow from the ground to the snow–air interface at any
given moment.

2. Background

Any remote sensing technique that can estimate ac-
curately snow storage is of great benefit for global wa-

ter cycle research and water resources applications.
With spaceborne satellite sensor data, global snow
measurements can be achieved. Spaceborne sensors
can image the earth with spatial resolutions varying
from tens of meters (e.g., visible and infrared spectrom-
eter; synthetic aperture radar) to tens of kilometers
(e.g., passive microwave radiometers). Visible and in-
frared sensor applications to snow are limited to clear-
sky occurrences and are sensitive only to snow surface
properties, while passive microwave sensors are solar
illumination independent and are sensitive to snow vol-
ume properties. Both remote sensing approaches have
been used to monitor snow cover areas. With the im-
provement in satellite instrumentation, regional and lo-
cal scales can now be mapped effectively. Passive mi-
crowave sensors have been used to monitor continen-
tal-scale snow cover area extent in the Northern
Hemisphere for several years (Chang et al. 1987). How-
ever, passive microwave retrieval methods of snow wa-
ter equivalent (SWE) and/or SD are less mature than
visible (VIS)/IR sensor mapping approaches and often
result in large uncertainties from retrievals at the global
scale (e.g., Armstrong and Brodzik 2001, 2002).

Microwave brightness temperature measured by
spaceborne sensors originates from radiation from 1)
the underlying surface, 2) the snowpack, and 3) the
atmosphere. The atmospheric contribution is usually
small at microwave frequencies and can be neglected
over most snow-covered areas, especially at higher lati-
tudes. In this paper, therefore, we neglect the atmo-
spheric effects when extracting snowpack parameters
from satellite data. Snow crystals within snowpacks are
effective at scattering upwelling microwave radiation,
and the microwave signature of a snowpack depends on
both the number of scatterers and their scattering effi-
ciency. The degree of scattering is frequency depen-
dent, with higher frequency (shorter wavelength) radia-
tion scattered more than lower frequency (longer wave-
length) radiation. The deeper the snowpack, the more
snow crystals there are available to scatter microwave
energy away from the sensor. Hence, microwave bright-
ness temperatures are generally lower for deep snow-
packs, with a larger number of scatterers, than they are
for shallow snowpacks, with fewer scatterers (Matzler
1987; Foster et al. 1997). The scattering effect increases
rapidly with effective snowpack grain size; for example,
when a depth hoar layer is present. Such large snow
crystals often develop in thin snowpacks that are sub-
ject to cold air temperatures at the snow surface and a
large thermal and vapor gradient through the pack.
This can result in very strong signals from thin snow-
packs, as observed by Josberger et al. (1996) in a com-
parison of microwave observations and snowpack ob-
servations from the upper Colorado River basin. Based
on radiative transfer theory, Chang et al. (1987) suc-
cessfully developed a method to derive SWE using
SMMR observations. SSM/I data have been used rou-
tinely to infer the SWE in prairie and boreal forest
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regions of Canada (Goodison and Walker 1995; Goita
et al. 2003). Derksen et al. (2002) found that the time
series of SSM/I SWE remains within 10 to 20 mm of
surface measurements in the Canadian prairie. Walker
and Silis (2001) reported derived snow cover variations
over the Mackenzie River basin. Their algorithm was
tested using “ground truth” in situ data and shows that
the inferred SWE estimates generally underestimate
the measured SWE by between 10 to 30 mm. The deri-
vation of an accurate algorithm is complicated by the
snow crystal metamorphism that occurs through the
winter. To model this effect, Josberger and Mognard
(2002) and Mognard and Josberger (2002) developed
an algorithm for the U.S. northern Great Plains that
includes a proxy for crystal growth based on air tem-
perature. Kelly et al. (2003) coupled a spatially and
temporally varying empirical grain growth expression
with a radiative transfer model to derive SD in the
Northern Hemisphere. All of these results encourage
us to study further the interaction of microwaves with
snow parameters to derive a validated algorithm with
known errors.

Ideally, it is recognized that SWE is closely related to
the volume of snowpack stored in a basin. However,
global SWE datasets are not available; rather SD is the
quantity that is recorded at many weather station loca-
tions. Snow depth is measured at a point, usually from
a ruler or snow board. In the high latitudes the distri-
butions of liquid precipitation (rain) and solid precipi-
tation (snow) are very similar. Precipitation gauges also
have been used to record accumulated snowfall, al-
though such devices are often subject to large uncer-
tainties (Yang et al. 1998, 1999, 2000). Precipitation
gauges are also sparsely distributed around the globe
with large regional variations in spatial density. For ex-
ample, in Germany there may be three–five stations in
a 25 � 25 km2 area (Rudolf et al. 1994). In the United
States there are some areas with one station in 25 � 25
km2 while in some areas of Russia, for example, there is
typically only one station in area 100 � 100 km2. Snow
courses provide more detailed measurements of snow
parameters located at discrete sites along a defined
transect; however, they are even sparser in occurrence.
Thus, with ground SD data more readily available for
comparison with satellite derivations, ground SD mea-
surements are the prime validation source used in this
study. Also, since SD is the most widely measured vari-
able, we use the SD form of the microwave retrieval
algorithm from Chang et al. (1987) in this study.

3. Snow field descriptions and data used in
the study

The northern Great Plains study region covers a geo-
graphical area from 42° to 49°N and 91° to 104°W. The
test area is about 800 000 km2. This encompasses the
states of North Dakota, South Dakota, and Minnesota.

The geomorphology of this area is rather homoge-
neous. For example, the Roseau River in Minnesota
and Manitoba, Canada, is a typically small basin that
flows into the Red River. The Roseau basin has rela-
tively low relief (�500 m) with a mixture of cropland
and forests (hardwoods and conifers). Recently Jos-
berger et al. (1998) reported a comparison of the sat-
ellite and aircraft remote sensing snow water equivalent
estimates in this region. They found that in this prairie
ecosystem passive microwave observations could be
used to derive SWE. This area, therefore, is ideal for
studying the characteristics of ground SD measure-
ments and microwave-derived snow depths.

Snow depth retrievals were performed using obser-
vations from SSM/I instruments aboard DMSP F-8,
F-11, and F-13 platforms. Ground snow depth measure-
ments, archived by the NWS and obtained from the
cooperative network of observers, were collected for
the study region. These ground measurements consist
of daily weather observations of temperature, precipi-
tation, snowfall, and snowpack thickness at more than
351 stations in the area, although this number varies
from year to year. Typically, the snow depth informa-
tion is collected daily but with a long time lag before the
data become available. Cooperative station data for 12
February each year from 1988 to 1997 were used in the
analysis. Figure 1 shows the location of the ground SD
data within the northern Great Plains (NGP) study re-
gion. All data were georeferenced to the equal area
scaleable earth grid (EASE-grid). The SSM/I data were
obtained from the National Snow and Ice Data Center
(NSIDC) in 25 � 25 km2 EASE-grid projection (Arm-
strong and Brodzik 1995). For the SSM/I, with the ex-
ception of 1994, our analysis focused on the mean of 3
days (10–12 February) for each year of 10 yr (from 1988
to 1997). This averaging process ensured complete cov-
erage of the study region for the selected date. In 1994,
because of incomplete SSM/I coverage, the 3-day mean
was shifted to 27–29 January. Only morning SSM/I
passes were used in the analysis (approximately 0400–
0600 local time).

The NWS cooperative station data can take some
time to become available. This time frame represents a
10-yr period when paired observations of SSM/I data
(launched in 1987) and NWS cooperative station data
were available. These 3 days were chosen since they
represent a time in winter when the snowpack is poten-
tially at its most stable and extensive, with minimal
liquid water content. Figure 2 shows five time series
plots of mean daily minimum air temperature and mean
daily snow depth from 1 January to 28 February at the
five selected cooperative stations identified in Fig. 1.
The data demonstrate that not only were the mean
daily minimum temperatures well below 0°C, at this
time of year the standard deviation of snow depth was
generally small, as shown by the error bars in the snow
depth time series. By undertaking the analysis for the
same time in consecutive years, potentially consistent
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biases in the data (either satellite or ground) could be
identified. It was also decided that the analysis would
focus only on midwinter snow packs. It is recognized
that SSM/I-derived SDs in the early season underesti-
mate field-measured conditions because snow is often
highly discontinuous in space and time (Armstrong and
Brodzik 2001). Also, in late winter and early spring, the
presence of melt–refreezing events and snow that con-
tains free liquid water is known to be a very challenging
environment for SD estimates from passive microwave
instruments (Stiles and Ulaby 1980). To investigate in-
stances when confidence was high that only relatively
stable and dry snowpacks were present, therefore, this
research is concerned with SD estimates derived from
passive microwave instruments during midwinter con-
ditions only (January and February).

4. Data analysis

a. Comparisons of paired ground snow depth
measurements and passive microwave snow
depth estimates

Statistical analysis of paired ground SD and SSM/I
SD for each year (from 1988 through 1997) and the
10-yr composite show that the SSM/I estimates gener-
ally compare well with the ground SD measurements.
Table 1 gives summary statistics for each year plus com-
posite means. The mean ground SD is highly variable
from year to year (1.5 to 45.4 cm). In the 10-yr period,
there are 3 yr when SD is less than 10 cm, 5 yr when SD

is between 10 and 30 cm, and 2 yr when SD is greater
than 30 cm. The corresponding range of SSM/I-derived
mean SD (1.7 to 43.4 cm) is similar to the ground SD
measurements, with the total composite mean SD from
SSM/I estimates almost identical to that of the ground
data. The correlation between yearly mean ground SD
and SSM/I SD values for the period is 0.82.

The difference between ground SD and SSM/I-
derived SD varies from year to year. The maximum
difference of the means was 18.4 cm (1994). The mini-
mum difference of the mean was found to be 0.1 cm in
1990. Generally there is a greater variation of snow
depths observed for the ground data than the satellite-
derived data. This is because the variability of snow at
a point tends to be greater than that observed for a
footprint that is a smoothed, integrated signal from
within an instantaneous field of view. A statistical hy-
pothesis test, the paired t test, was used to determine
whether or not there were significant differences be-
tween the ground and SSM/I-derived SD. The paired t
statistic (t) is defined as

t �
�

���N1�2�
, �1�

where � and � are the mean and standard deviation of
the paired differences of the two variables (ground SD
and SSM/I SD), and N is the number of data pairs
(McClave and Dietrich 1979). For N 	 30, in this case
N 	 250, t follows approximately a normal distribution.
The hypothesis of difference is rejected if | t | � 1.96 at

FIG. 1. Shaded relief map showing the location of the snow depth measurement points
within the northern Great Plains study region. The highlighted and numbered stations are sites
used in Fig. 2.
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the 95% confidence level. The paired t statistics are
included in Table 1. Inspection of the t values shows no
systemic pattern from year to year. There are 8 yr with
| t | 	 1.96 and 2 yr (1990 and 1997) with | t | � 1.96. For
those years where the value of t is larger than 1.96,
there is a significant difference between the ground SD
and SSM/I-derived SD at 95% level confidence. The
paired t-test value is –1.13 for the composite 10-yr
dataset. The mean difference between the ground SD
and satellite SD is 0.4 cm. However, the standard de-
viation of the difference is 18.7 cm, which is slightly
larger than both the accumulated ground and SSM/I
snow depth means (17.9 and 18.3 cm, respectively).
Overall, for half of the years the SSM/I-derived SDs are
less than the ground SDs, and for the remaining 5 yr

they are more than the ground SDs. No significant ex-
planation could be found to explain this feature for
these bulk statistics. It is possible, however, that snow-
pack stratigraphy variations at the local scale (and
within the 25 � 25 km2 SSM/I pixels) have an important
effect on microwave responses from the snow. While
we assume in the retrieval algorithm that grain size and
density are constant, spatial and temporal variations in
snow stratigraphy can play a significant role in attenu-
ating the upwelling radiation (Matzler 1987). Changes
in the vertical properties of the snowpack are generally
caused by thermal and vapor gradients through the
snowpack along with the surface melt and refreezing of
water (Colbeck 1982). Unfortunately, no information in
the data is available on these properties for this re-

FIG. 2. Graphs of mean daily snow depth and mean daily minimum air temperature for Jan
and Feb for 1988–97. The five selected sites are identified in Fig. 1. The error bars in the mean
snow depth represent the standard deviation for the 2-month period.
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search. It is probable, however, that variations in den-
sity and grain size contributed to variations in SSM/I-
derived SD in addition to variations in SD accumula-
tion.

Measurement error is an important factor explaining
why ground and satellite data have different statistical
characteristics. Snow depth measured at a point reflects
snow accumulation subject to local microscale pro-
cesses, while SSM/I-derived SD reflects mean snow
conditions, subject to controls at the local to regional
scale. For example, wind speed is the most important
environmental factor contributing to the undermea-
surement of snow at a point (Goodison et al. 1989). In
the NGP region, high wind speeds are common and
cause a system bias error. At cooperative stations, typi-
cally snow rulers or snow boards are used to measure
SD. To obtain a representative SD measurement under
snow drifting or snow scouring conditions, careful judg-
ment by the observer is required. Assuming that such
processes occurred with equal frequency over the study
domain, a varying positive (drifting) or negative (scour-
ing) bias from year to year might also help to explain
why for half of the years the bias is positive and the
other half negative.

b. An assessment of the spatial variation of
ground-measured and passive-microwave-derived
snow depth

Large spatial and temporal variations exist in global
and local snow cover extent and volume (Frei and Rob-
inson 1999). Errors of these variations are not very well
understood, although it is important for better climate
observation. It is necessary to better understand the
spatial characteristics of different scales of SD. Jacob-
son (1999) defined five spatial-scale lengths of weather
parameters: planetary scale (	10 000 km), synoptic
scale (500 to 10 000 km), mesoscale or regional varia-
tion (2 to 2000 km), microscale (2 mm to 2 km), and
molecular scale (�2 mm). In the NGP study region, we
are concerned with the characterization of snow distri-
bution at the microscale and mesoscale.

From the t-test values of the previous section, meso-

scale (SSM/I) and microscale (ground) comparisons of
snow depth revealed that for 8 out of the 10 yr, signifi-
cant differences existed between these two datasets.
However, when the data were aggregated over a longer
time period (10 yr), the | t | value was less than 1.96,
suggesting that when averaged over successive years
the two datasets are not significantly different. To fur-
ther understand these characteristics, analysis of the
spatial variability of the two datasets was undertaken.

The variogram, the central tool of geostatistics, can
be used to examine the spatial dependency of a vari-
able. It provides an unbiased description of the scale
and pattern of spatial variation. Observations of a se-
lected property are often modeled by a random vari-
able, and the spatial set of random variables covering
the region of interest is known as a random function
(Isaaks and Srivastava 1989). A sample of a spatially
varying property is commonly represented as a region-
alized variable (e.g., as a realization of a random func-
tion). The semivariance (
) may be defined as half the
expected squared difference between the random func-
tions Z(x) and Z(x � h) at a particular lag h. The semi-
variogram (hereafter referred as variogram), defined as
a parameter of the random function model, is then the
function that relates semivariance to lag:

��h� � 1�2 E��Z�x� 
 Z�x � h��2�, �2�

where E is the ensemble mean of pairs. The sample va-
riogram 
(h) can be estimated for p(h) pairs of obser-
vation or realizations, [Z(xl � h), l � 1, 2, . . . . p(h)], by

��h� � 1�2p�h� �
l�1

p�h�

�Z�xl� 
 Z�xl � h��2. �3�

A mathematical function or model is usually fitted to
the experimental values, which are discrete, to repre-
sent the true variogram of the region, which is continu-
ous. The experimental values are often erratic because
they are subject to error. In general, the variogram
model is either unbounded (increases indefinitely with
lag) or bounded (increases to a maximum value of
semivariance, known as the sill, at a finite positive lag,

TABLE 1. Ten years of mean (�) and standard deviation (�) of paired ground and SSM/I snow depth estimates and the paired
t-test values.

Year N Pairs Ground m (cm) Ground s (cm) SSM/I m (cm) SSM/I s (cm) Paired t value

1988 256 23.1 17.1 19.5 11.6 4.04
1989 265 16.3 19.0 14.3 11.6 2.24
1990 339 1.8 5.6 1.7 4.2 0.68
1991 351 1.5 4.1 4.4 11.3 
5.57
1992 281 6.7 9.5 7.8 11.8 
1.99
1993 269 19.5 11.0 29.4 15.5 
9.54
1994 266 39.1 19.3 20.7 10.5 18.02
1995 271 10.3 12.2 22.7 19.5 
12.15
1996 254 20.3 23.7 24.9 17.3 
2.80
1997 275 45.4 29.9 43.4 13.8 0.96
1988–97 2762 17.9 21.9 18.3 17.9 
1.13
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known as the range a). The sill is equal to the a priori
variance (that defined for an infinite region) of the
random function (RF), while the range indicates the
limit to spatial dependence, beyond which data are sta-
tistically uncorrelated. Often the model approaches
and intercepts the ordinate at some positive value of
semivariance known as the nugget variance c0. The nug-
get variance results from measurement error (Atkin-
son 1993), the uncertainty in estimating the variogram
from a sample, the uncertainty in model fitting, and
spatially dependent variation acting at scales finer than
the sampling interval. The structured component of
variation c1 is then the sill minus the nugget variance, so
that c0 � c1 � sill.

For each dataset, variograms were computed for the
ground and SSM/I data using GSTAT software
(Pebesma and Wesseling 1998). As an example, Fig. 3
shows the variograms with spherical models of SD fit-
ted for the ground data and the SSM/I data for 1988.
For the variograms of ground measurements, the vari-
ograms were calculated using the sparsely distributed
ground data for each year. The experimental vari-

ograms were, therefore, not always smooth in defini-
tion. In the case of the SSM/I data, all pixels in the
study region were used for each year to produce the
variograms. Therefore, the variograms are “smooth” in
character. Authorized models were fitted to all experi-
mental variograms using a least squares criterion
(Pebesma and Wesseling 1998) with the exception of
the ground data for 1990 and 1991 when the experi-
mental variograms were unbounded. The reason for the
lack of structure for these 2 yr is probably because there
was so little snow accumulated at the stations (means of
1.8 and 1.5 cm). These means are substantially com-
posed of 0-cm measurements such that very little spatial
variation was present. For two datasets (1996 ground
and 1997 SSM/I), data were detrended using first-order
polynomials; this was because a trend in the data pro-
duced unbounded variograms. Unlike the 1990 and
1991 data for the ground SD measurements, appre-
ciable snow accumulation was present in both 1996 and
1997, and clear-direction snow accumulation gradients
were present (NE to SW in the case of the 1996 ground
data and NW to SE for the SSM/I-derived SD). These
directional trends were caused by the presence of syn-
optic-scale variations of snow depth, which can be
present at the large regional scale. As stated earlier, this
research aims to test passive-microwave-derived SDs,
which are calculated at the local to regional scale, so
larger synoptic-scale variations are considered an un-
wanted trend in the data. Figure 4 shows the SSM/I-
derived SD for 1997 and kriging interpolation of
ground-measured snow depth for 1996, based on the
variogram derived using the method below. The SSM/
I-derived SD data reveal a northwest to southeast
trend, while the ground-measured data reveal a south-
west to northeast trend of snow depth.

The main parameters of interest for the comparative
analysis were the nugget variance and the range. Vari-
ograms were computed and estimated to a maximum
lag of 1000 km at 25-km lag separations (the support of
the SSM/I data). Spherical variogram models were fit-
ted to the variograms using the weighted least squares
criterion. Table 2 shows the model ranges and nugget
variances for the ground and the satellite snow depth
dataset. The mean values are also shown. Note that
the SSM/I means are area integrated and are different
from the means of the ground-measured SD, which are
the means of sparsely distributed snow depth measure-
ments. The variograms for the SSM/I and ground
SD data for each of the 10 days show some broad simi-
larity with respect the mean snow depths for each year.
For example, the nugget variance increases with in-
creasing mean snow depth for both datasets, suggesting
that representation of microscale effects of snow distri-
bution is not possible for thicker snowpacks. The range
decreases with increased mean snow depth in both
ground and SSM/I datasets, also suggesting that snow
depth variability is smaller over short distances only

FIG. 3. Variograms of (a) ground measurements of snow depth
and (b) SSM/I estimates of snow depth for the Red River basin for
12 Feb 1988.
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when the snow is thick. For shallower snowpacks, the
spatial variability is small over comparatively larger dis-
tances.

With respect to differences in variogram structure
between ground- and satellite- derived snow depth
data, four variogram pairs (SSM/I-derived and ground-
measured) have range differences less than 200 km, one
pair has a range difference between 200 and 300 km,
two have differences between 300 and 400 km, and one
pair has a difference between 400 and 500 km. Further-
more, applying the paired t test to the SSM/I and
ground SD variogram range data in Table 2 gives a | t |
value of 0.32, and the critical t value for a sample of 8 is
2.37. These results suggest that there is an overall gen-
eral agreement between the spatial correlation length
of SD derived from the SSM/I retrievals and ground
measurements for the 10-yr period. This agreement re-

flects the fact that in both datasets the range tends to be
larger for shallower snowpacks while it is smaller for
thicker snowpacks. However, it should be noted that
this is a generalized pattern and that there are differ-
ences in spatial correlation lengths between ground SD
measurements and SSM/I SD estimates at the interan-
nual scale. The range differences are probably caused
by the differences in snow accumulation processes act-
ing at the local scale (e.g., snow redistribution) that
affect point measurements made by a ruler and those
acting at a local to regional scale (e.g., development of
complex stratigraphy) that affect the snowpack micro-
wave responses.

c. Error analysis and determination of the required
sampling procedures of ground snow depth
measurements

Before determining how many point snow depth
measurements are needed to achieve a specified SD
areal accuracy, it is necessary to understand the error
characteristics of satellite-derived SD and ground SD
measurements. Data from both SD sources are subject
to systematic and nonsystematic or random errors. For
ground SD measurements, there might be both system-
atic and random errors associated with each measure-
ment. Systematic errors from ground-measurement
data are attributed to the situation of the ruler and its
representativity of the local conditions (Goodison et al.
1981). Ideally, several measurements are needed to
produce a representative sample, but such information
is usually not available in the cooperative data archive
so that inferences about ground systematic errors can-
not be made. For satellite SD data, both systematic and
random errors are associated with the retrieval algo-
rithm and are referred to as retrieval errors (Bell et al.
1990). Systematic biases are known to exist in relation
to vegetation cover and snowpack parameterization of
the algorithms. While the quantification of these errors
is the focus of ongoing studies (e.g., see Derksen et al.
2003), in general, the error biases are consistent as con-
firmed by the results in Table 1. For the satellite SD
derivations, therefore, we assume a constant systematic
error because the study location and the study date
each year are constant. In this study, therefore, the er-
ror term in both datasets that we use to determine the
accuracy achievable from a predefined number of
ground SD points is the random error term of the total
error.

A technique for estimating the random error of rain-
fall estimates, described in Chang et al. (1993), requires
a pair of independent variables (i.e., precipitation
gauge measurements and satellite estimates). Applying
their methodology to snow depth retrievals, ground SD
estimates and satellite-derived SD values are denoted
as g and s, respectively, and it is assumed that there are
random errors associated with these estimates. Thus,
we can write

FIG. 4. Snow depth estimates from ground interpolated data for
(top) 10 Feb 1996 using a simple inverse distance weighted inter-
polation routine and from (bottom) SSM/I SD estimates for 10–12
Feb 1997. The circles in the top panel represent the locations of
ground point measurements.
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g � �g� � eg cm,

s � �s� � es cm, �4�

where � � represent ensemble averaging over different
number of ground SD categories, and eg and es are the
random errors associated with independent SD esti-
mates of the ground and satellite variables. Assuming
that the estimates are unbiased with uncorrelated er-
rors,

�eg� � �es� � 0 and

�eg es� � 0. �5�

The error terms eg and es contain errors due to ground
point sampling and satellite retrievals from the ensem-
ble averaging. We can express the mean square differ-
ence of ground measurements and satellite estimates as

��g 
 s�2� � ��g� 
 �s��2 � ��eg 
 es�
2� cm2. �6�

Equation (6) states the mean square difference be-
tween the ground SD and satellite-derived SD values is
the variance due to the random error.

For the 10-yr dataset (1988–97), 1° � 1° grid cells of
latitude and longitude (approximately 104 km2) were
used as the study framework to investigate the random
errors. The center of each grid cell was located at every
half degree of latitude and longitude with the origin of
each grid cell located at the southwest corner. All grid
cells were classified according to the number of point
ground SD measurements within the cell, a measure of
the spatial density of SD sites. To ensure that no forest
cover was included in the analysis, using a map of forest
cover identified in Foster et al. (1997), any 1° � 1° grid
cell containing a forest fraction greater than 1% was
discarded. The frequency distribution of sites per cell
varied from 1 SD site to 10 SD sites per cell and is
plotted in Fig. 5. The most frequent category was three
SD sites per cell, which had 159 cells. Typically 22
SSM/I SD retrieval points were located within each

TABLE 2. Variogram characteristics of ground-measured SD and SSM/I-retrieved snow depth data. Note SSM/I � are area averages
rather than the paired averages shown in Table 1.

Ground data SSM/I data Difference

Year
Ground �

(cm)
Range a

(km)
Nugget c0

(cm2)
SSM/I �

(cm)
Range a

(km)
Nugget c0

(cm2)
Absolute range
difference (km)

1988 23.1 863 116.0 17.5 389 5.3 474
1989 16.3 836 1.0 13.8 595 2.5 241
1990 1.8 N/A N/A 5.2 952 2.0 N/A
1991 1.5 N/A N/A 11.5 1040 3.4 N/A
1992 6.7 459 3.3 12.6 776 5.0 317
1993 19.5 727 61.8 26.9 667 0.0 60
1994 39.1 365 45.7 17.7 533 0.8 168
1995 10.3 756 7.3 22.6 563 2.1 193
1996 20.3 645 54.1 26.5 541 0.0 104
1997 45.4 334 245.8 35.9 662 24.5 328

FIG. 5. Frequency distribution of number of ground SD measurement sites per cell.
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1° � 1° grid cell and linearly averaged to produce a cell
mean.

Table 3 shows the number of cells with N ground SD
sites, the mean and standard deviation of ground SD
and satellite SD, the mean difference between the
ground SD and satellite SD (mean difference � �g� 

�s�) and the standard deviation of the differences, the
root-mean-square of the difference (rmsd) between
ground and satellite SD [rmsd � �(g 
 s)2�1/2]. By re-
arranging Eq. (6) above, the total error (�(eg 
 es)�) was
calculated and is also shown in Table 3. The total error
can also be written as

�e2�1�2 � ��eg
2� � �es

2��1�2 cm. �7�

The paired t statistic of the means was also computed.
Overall, in Table 3, the mean difference and rmsd

between ground and satellite SD was 1.1 and 16.0 cm,
respectively. The mean difference between ground SD
and SSM/I SD for each category is relatively small.
From the paired t test, none of the | t | values were
greater than 1.96, suggesting there was no significant
difference between the mean ground and satellite-de-
rived SD values. Additionally, the standard deviation of
the mean difference (16.1 cm) is about the same as the
mean of satellite and ground SD for each category (18.2
cm). An important characteristic of these data is that
the rmsd decreases as the number of ground SD sites
per cell increases, suggesting that the number of sites
within a box might influence estimated random error.
The total error decreases from 20.4 cm for one ground
SD site to 10.0 cm at nine sites, supporting the possi-
bility that the number of SD sites might influence the
estimated error.

Figure 6 shows a series of graphs of SSM/I-derived
snow depth, averaged for each 1° � 1° grid cell plotted
against the average snow depth from ground measure-
ments. Each graph represents data for each year. The
size of circles represents the number of ground samples

per cell for each year, and cells with more than five
ground measurements are shaded gray. The diagonal
line represents 100% agreement between SSM/I and
ground data. For 1988, 1989, and 1996, there appears to
be good agreement between datasets especially for cells
with more than five ground measurements per grid cell.
The unshaded circles, which have less than six sites per
1° � 1° grid cell, tend to be located farther away from
the line of agreement. For 1992, 1994, and 1995, the
biases indicated by the mean snow depth data in Table
1 are demonstrated; for 1992 and 1995, there is an over-
estimation of snow depth by the SSM/I, and in 1994
there is an underestimation. For the underestimation
bias in 1994, the smaller (open) circles tend to be lo-
cated within the complement of larger circles, while for
the overestimation years (1992 and 1995) the smaller
circles are more randomly distributed in the graphs. For
1993, the SSM/I tends to overestimate the ground-
measured snow depth, although the grid cells with a
greater density of ground measurements tend to be
clustered. Grid cells with fewer ground sites are more
widely dispersed in both graph dimensions. For 1997,
the SSM/I overestimates and underestimates the snow
depth (which explains why the difference between
means in Table 1 is small). In general, Fig. 6 suggests
that better understanding of the relationship between
SSM/I estimates and ground-measured snow depth data
can be obtained if a greater spatial density of ground
sites is available to undertake the comparison.

The number of point measurements needed to rep-
resent a physical parameter within a predefined error
range depends on the spatial variability within the area
and the accuracy requirements. For precipitation stud-
ies, there have been several studies that addressed the
sampling errors of the spatial variance of precipitation.
In precipitation estimates, sampling error dominates
the total error (Bell et al. 1990). Bell et al. (1990), Huff-
man (1997), and Chang and Chiu (1999) reported that

TABLE 3. The number of cells, mean, and standard deviation of ground SD and SSM/I SD estimates; mean difference between ground
and SSM/I SD estimates, and the standard deviation of these differences; rmsd between the ground and SSM/I SD estimates; the
nonsystematic errors of ground and SSM/I SD; and paired t-test value between ground and SSM/I SD for each ground SD measure-
ment-site category.

Category:
N sites
per cell

No. of
cells

Ground SD
mean (cm)

Ground SD
std dev

(cm)
SSM/I SD
mean (cm)

SSM/I SD
std dev

(cm)

Diff in
ground

and SSM/I
means (cm)

Std
dev of
mean

diff (cm)
Rmsd
(cm)

Total
error
(cm)

Paired
t value

1 39 24.6 19.5 19.1 15.6 
5.5 20.7 21.2 20.4 
1.67
2 107 21.1 20.9 21.9 16.2 0.8 18.7 18.6 18.6 0.38
3 159 22.3 21.2 22.2 17.3 
0.1 17.1 17.1 17.1 
0.02
4 155 18.5 19.7 20.4 16.7 1.9 17.6 17.7 17.5 1.34
5 93 13.3 18.0 15.4 16.7 2.1 11.6 11.7 11.5 1.74
6 77 13.3 17.1 16.3 18.0 3.0 13.8 14.1 13.8 1.91
7 46 8.6 15.8 9.6 15.3 1.0 11.0 11.0 10.9 0.60
8 19 11.0 13.4 14.6 12.8 3.6 11.0 11.3 10.7 1.43
9 11 13.1 14.6 14.7 15.3 1.6 10.5 10.1 10.0 0.52

10 8 20.1 17.2 24.8 15.0 4.7 15.1 14.9 14.1 0.88
Total 724
Avg 17.7 19.7 18.8 16.9 1.1 16.1 16 14.5 1.77
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FIG. 6. Scatterplots of SSM/I-derived snow depth against ground station snow depth for all years except 1990 and 1991 when there
was little snow accumulation. The size of circles represent the number of ground measurement sites per 1° � 1° grid cell. Shaded circles
represent grid cells with more than five snow depth ground measurements.
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the relationship between sample error of spatial vari-
ance (�) and the number of samples is of the form �2 �
1/n for precipitation. Rudolf et al. (1994) reported a
similar error estimation relationship of the form �2 �
1/n1.11 in a 2.5° � 2.5° grid domain of gauge precipita-
tion data. In this snow study we attempt to determine
the number of samples required for SD estimates at a
1° � 1° grid domain within a limit of sampling error �.
To be 95% confident that the true mean is within �� of
the observed mean, the number of samples (N) re-
quired is (Snedecor and Cochran 1967)

�2 � �1.96��2�N � 4�2�N, �8�

where � is the standard deviation of the variable.
From Eq. (7), the total error �e2�1/2 can be calculated

by the square root of the sum of ground SD error �e2
g�

and satellite error �e2
s�. The ground SD mean error is

dominated by ground-site sample configuration, espe-
cially the site spatial density. The satellite error is
caused by algorithm error and is not directly related to
the ground-site spatial density. Since the snowfield of
the NGP area is rather uniform (relatively homoge-
neous low-height vegetation and snowpack properties),
it is possible to make the assumption that the satellite
algorithm error is probably about the same for all grid
cells. By calculating es using Eq. (8) for each grid cell
category (number of ground sites per cell in Table 3),
the calculated mean es for all categories is 8.8 cm (with
a standard deviation of less than 1.0 cm). By incorpo-
rating this value with the total error from Eq. (6) (also
shown in Table 3), eg can be individually estimated for
each category using Eq. (8). It is then possible to opti-
mize a model fit using the least squares criterion of e2

g in
proportion to 1/N. The result is e2

g � 466.7/N. Figure 7
shows the estimated sampling error for different num-
bers of ground sites per grid cell and the fitted model.
The ground SD error varies from about 20 cm for 1 site
per grid cell and decreases to 7 cm for 10 sites per cell.

In other words, in order to achieve 5-cm accuracy, more
than 10 ground SD measurement sites within a grid cell
are required. This is an important outcome since it de-
fines a limitation to the error characteristic as a func-
tion of the measurement-site spatial density at this grid
cell scale (i.e., 1° � 1° of latitude and longitude).

5. Summary and discussion

Ten years of ground SD data were used to evaluate
the single SSM/I-footprint-derived SD for northern
Great Plains snowfields during midwinter. From year to
year comparisons, 8 out of 20 yr had significant differ-
ences between ground and SSM/I derived SD data. The
mean ground SD for the 10-yr composite was 17.9 cm
with a standard deviation 21.9 cm, while the SSM/I-
derived SD was 18.3 cm with a standard deviation of
17.9 cm. The 10-yr mean difference between ground SD
and SSM/I-derived SD was 0.4 cm, which is not statis-
tically significant.

The variograms of ground SD and SSM/I derived SD
were comparable. The absolute geostatistical range dif-
ferences between ground SD and SSM/I SD is less than
500 km. In general, the ranges decreased as the snow
depth increased, suggesting that for thinner snowpacks,
the correlation lengths increase, while for thicker snow-
packs they decrease. Also, the nugget variances were
larger for thicker snowpacks, suggesting that there is
more unresolved variation at each sample point when
greater snow accumulations are present.

Comparisons of the 1° � 1° latitude–longitude grid-
ded data showed that the yearly differences of ground
SD and SMM/I SD were not significant. The 10-yr com-
posite mean and standard deviation of the ground SD
was 17.7 and 19.7 cm, respectively, and the SSM/I-
derived SD was 18.8 and 16.9 cm, respectively. The
mean difference between ground and satellite-derived
SD was 1.1 cm and was not significant. The standard
deviation of the difference between ground and SSM/I
SD was slightly smaller (16.1 cm) than the comparison
for point data (18.7 cm).

For the composite mean of the 10-yr period, this re-
search suggests that at the 1° � 1° grid cell scale, SSM/I
data can be used effectively to map snow depth in the
NGP area. At the interannual time scale, however,
there was both agreement and disagreement between
ground and SSM/I-derived SD data. When the spatial
density of ground SD measurements is increased, we
suggest that snow depth spatial variability can be cap-
tured by the SSM/I retrieval algorithm and has a calcu-
lated error of 8.8 cm. In comparing the SSM/I data with
ground measurements, the advantage of increasing the
number of measurements sites within a grid cell is re-
ported. The modeled sampling error curve of ground
SD measurements is about 22 cm for 1 site, 7 cm for 10
sites, and for more than 10 sites less than 7 cm on a
1° � 1° grid cell domain. This curve relating estimation

FIG. 7. Estimated ground SD error vs number of SD
measurement sites.
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error with number of measurements sites per cell shows
that for the northern Great Plains area, the sampling
error does not reduce quickly, even as the number of
ground SD sites approaches 10. In the context of global
snow depth estimates, this research demonstrates that it
is rather difficult to quantify the global SD accuracy by
using only the limited ground SD data where measure-
ment-site density is often less than one per 1° � 1° of
latitude and longitude. Perhaps, therefore, the only way
to use these spatially limited datasets is to scale up
(average) both the passive microwave data and the
ground measurements to a grid cell size that is in excess
of 1° � 1° of latitude and longitude. Even then, in
certain parts of the world where ground data are very
sparse, comprehensive validation of passive microwave
estimates of snow depth may not be possible without a
dedicated ground or aircraft field campaign.

The Advanced Microwave Scanning Radiometer
(AMSR) was launched on board the Japanese Ad-
vanced Earth Observing Satellite-II (ADEOS-II) and
the U.S. Earth Observation System (EOS) Aqua satel-
lite in 2002. AMSR can provide the best ever spatial
resolution multifrequency passive microwave radiom-
eter observations from space [18-GHz channel instan-
taneous field of view (IFOV) is 27 � 16 km2 and 36-
GHz channel IFOV is 14 � 8 km2]. This capability
provides us with an opportunity to estimate surface
snow mass quantities at finer spatial resolutions than
have been possible with previous microwave instru-
ments and so is an opportunity to improve snow depth
observations both with respect to spatial resolution and
accuracy of retrieval. However, for field experiments
designed to test satellite observations, the ground-
sampling network requires careful planning to ensure
snow cover parameters such as SD are accurately mea-
sured.
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