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Abstract 

By delivering monthly maps of the gravity field, the GRACE project allows the determination of 

tiny time-variations of the Earth gravity and particularly the effects of fluid mass redistributions at 

the surface of the Earth. However, GRACE data represent vertically integrated gravity 

measurements, thus are the sum of all mass redistributions inside the Earth system (atmosphere, 

oceans and continental water storage, plus solid Earth). In this paper, we apply a generalized least-

squares inverse approach, previously developed by Ramillien et al., (2004), to estimate, from the 

monthly GRACE geoids, continental water storage variations (and their associated uncertainties) 

over a two years time span (April 2002 to May 2004). Tests demonstrating the robustness of the 

method are presented, including the separation between liquid water reservoirs (surface waters + 

soil moisture + groundwaters) and snow pack contributions. Individual monthly solutions of total 

land water storage from GRACE, with a spatial resolution of ~660 km, are presented for the 2-year 

time span. We also derive the seasonal cycle as well as a trend map over the period of analysis. We 

further estimate water volume changes over eight large river basins in the tropics and compare with 

model predictions. Finally, we attempt to estimate an average value of the evapotranspiration over 

each river basin, using the water balance equation which links temporal change in water volume to 

precipitation, evapotranspiration and runoff.  Amplitudes of the GRACE-derived evapotranspiration 

are regionally consistent to the predictions of global hydrological models.  

 

Keywords: GRACE satellite gravimetry, global hydrology, least-squares inversion. 

 

1. Introduction 

In March 2002, a new generation of gravity missions was launched: the Gravity Recovery and 

Climate Experiment (GRACE) space mission (Tapley et al., 2004 a,b). The objective of GRACE is 

to measure spatio-temporal variations of the gravity field with an unprecedented resolution and 

precision, over time scales ranging from a few months to several years. As gravity is an integral of 

mass, these spatio-temporal gravity variations represent horizontal mass redistributions only to the 

extent they are assumed to be caused by surface water changes. On time scales from months to 

decades, mass redistribution mainly occurs inside the surface fluid envelopes (oceans, atmosphere, 

ice caps, continental reservoirs) and is related to climate variability. The main application of 

GRACE is quantifying the terrestrial hydrological cycle through measurements of vertically-

integrated water mass changes inside aquifers, soil, surface reservoirs and snow pack, with a 

precision of a few mm in terms of water height and a spatial resolution of ∼400 km (Wahr et al., 

1998, Rodell and Famiglietti, 1999, Swenson et al., 2003). 

 Until the launch of GRACE, no direct measurements of time-varying storage of snow, soil and 

underground waters were available globally. Therefore, the global distribution and spatio-temporal 



 3 

changes of land water mass were essentially estimated from modelling. The main motivation for 

developing global land surface models (LSMs) over the recent decades was to provide realistic 

temperature and humidity boundary conditions to atmospheric models developed for climate 

modelling. In effect, many land surface parameters exert a strong influence on water and energy 

surface fluxes and as a consequence on the atmosphere. Among these parameters, soil moisture and 

snow mass are most important since they affect low-atmosphere state on both short and long 

(seasonal and inter-annual) time scales. Besides, land water storage and snow mass are themselves 

affected by atmospheric conditions and climate variability. In the recent years, a number of state-of-

the-art LSMs have provided global gridded time series of soil water, underground water and snow 

mass, typically on a monthly basis and a geographical resolution of ~ 1°x1° (among others, 

Ducoudre et al., 1993, Douville et al., 1999, Douville and Chauvin, 2000, Milly and Shmakin, 2002, 

Ngo-Duc et al., 2004, Doll et al., 2004). These global hydrological data sets are currently derived 

from model runs either in a coupled mode or in a stand alone mode forced by observations, in 

particular precipitation. Due to the lack of global information on soil water and snow depth, model 

validation is in general performed by comparing predicted runoff with in situ measurements in a 

number of river basins. Besides, international projects for inter-comparing the global hydrological 

models have been initiated in the recent years (e.g., PILPS, Shao and Henderson-Sellers, 1996; 

GSWP1, Dirmeyer et al., 1999). However, these approaches remain limited and do not provide a 

global evaluation of the models accuracy. Thus, direct comparison of models outputs with 

independent observations, in particular the GRACE-based hydrological products, could be very 

instructive. However at present, such comparisons first serve to evaluate the precision of the 

GRACE products. Besides, they will provide the basis for future space data assimilation into the 

global hydrological models.  

This paper presents results of monthly land water change over two years (from April 2002 to May 

2004) from the GRACE geoids recently released by the GRACE project (Tapley et al., 2004a).   

The method developed in this study differs from previously published GRACE results (Tapley et 

al., 2004b; Wahr et al., 2004, Schmidt et al., 2005) in that it  tries to separate mass signals from  

four different surface reservoirs (soil plus underground plus surface water reservoirs, snow pack, 

atmosphere and ocean) through an inverse modelling based on generalized least-squares adjustment 

(Tarantola, 1987). The inverse approach which combines the GRACE observations with stochastic 

properties of the hydrological (or oceanic) signal significantly reduces the recovered land (or ocean) 

water signal compared to the direct conversion of  geoid anomalies into water mass, because of 

noise reduction and elimination of unrelated signal (e.g., atmospheric noise).  

 

2. The GRACE geoids 

The data set recently provided to GRACE users by the GRACE project consists of monthly sets of 
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spherical harmonic geoid coefficients (and associated uncertainties), up to degree and order 100,  

for the period ranging from April 2002 to May 2004. These coefficients derived from raw tracking 

measurements (GRACE consists of a pair of satellites whose distance, absolute positions and 

velocities are continuously monitored) are currently computed by two groups: the Center for Space 

Research (CSR) in the USA and the GeoForschungsZentrum (GFZ) in Germany. The geoid 

coefficients are corrected for atmospheric loading and oceanic tides. An a priori model for the 

oceanic variability was also removed during the GRACE data processing. Therefore, temporal 

changes of the geoid coefficients mainly represent change in continental water storage, non-tidal 

oceanic effects and residual atmospheric noise. In this study, we use the CSR geoid data, spanning 

from April 2002 to May 2004. Fig.1 displays the temporal coverage of this data set. The length of 

the horizontal bars corresponds to the numbers of days used to construct each monthly geoid from 

the raw measurements. Because of too few usable raw measurements, a single monthly geoid is 

provided for April-May 2002. For 2003, the May geoid is a combination of April plus May data. 

Although the spherical harmonic coefficients of each monthly geoid are given up to degree and 

order 100, in this study we follow earlier studies (Tapley et al., 2004b, Wahr et al., 2004, Schmidt et 

al., 2005) and only consider harmonic coefficients up to degree 30 (half horizontal wavelength of 

660 km). In effect as shown by Tapley et al. (2004b) and Schmidt et al. (2005), at higher degrees -

shorter wavelengths-, the signal to noise ratio is too low due to residual errors in the data processing 

that are not yet totally controlled. As in previous studies, we also fix the degree 2, order 0 harmonic 

(half wavelength of 10 000 km) to zero because of the current large uncertainty associated with this 

coefficient.  

 

3. Methodology 

3.1. The direct problem 

3.1.1 Modelling geoid variations from the different global model forecasts 

The static component of the gravity field G0 corresponds to nearly 99 per cent of the total field, 

mainly due to solid Earth contributions. This term can be easily evaluated and removed by 

computing the temporal mean of a long enough series of GRACE monthly geoids, or considering a 

single geoid computed with a long period of time of satellite observations. In this study, the 

monthly time-variable geoid δG(t) is merely computed as the difference between the monthly geoid 

G(t) measured by GRACE at time t, and the static mean field component: 

 

0G)t(G)t(G −=δ        (1) 

 

Using the 20 monthly geoids, we computed a 2-year mean geoid which was further removed to each 

individual monthly geoid. This allows removal of the static geoid contributions related to the Earth 
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internal structure as well as to any ‘long-term’ surface fluid signal (e.g., deep, slowly-varying 

aquifers) that cannot be extracted with only 2 years of data. Thus, the corresponding geoid 

differences (also called monthly GRACE geoids in the following) only reflect short-term geoid 

change associated with surface mass redistributions.  

Let δCnm(t) and δSnm(t) be the “normalized” Stokes coefficients expressed in terms of mm of geoid 

height, where n and m are the degree and order respectively, the time-variable geoid is also 

expressed as : 

 

)(cosP))msin()t(S)mcos()t(C()t(G nmnm

N
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n
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   (2) 

 

where N is the maximum degree of the decomposition, θ is the co-latitude, λ is the longitude and 

Pnm is the associated Legendre polynomial  which is dimensionless. Assuming the global fluid 

contributions are not correlated in time an space, we consider that δG(t) is the sum of k=1, 2,..., K 

fluid contributions: 
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where Ω is the "separating" matrix formed by a column of identity-blocks that ensures the non-

correlation between the geoid coefficients of the different fluid contributions. Let δq(t) be a surface 
density of surface water mass, expressed in terms of equivalent-water thickness at time t, whose 

harmonic coefficients, δAnm(t) and δBnm(t), can be used to evaluate the corresponding geoid 
anomaly coefficients by filtering: 
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where Wn is an isotropic spatial filter that weights the surface density coefficients, and which 

analytical expression is (Ramillien, 2002):  
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where zn represents the Love numbers that enables to take into account elastic compensation of the 

Earth to surface load. γ(θ) is the normal gravity on the reference ellipsoid at the co-latitude θ. G 

(~6,67.10
-11
 m

3
kg

-1
s
-2
) is the gravitational constant and Re (~6378 km) is mean Earth’s  radius. ρW 

(~1000 kgm
-3
) is the water density. The latter equation is used to compute the geoid harmonic 

coefficients from monthly surface density grids δq(θ, λ, t) provided either by global 

oceanic/hydrological models or atmospheric surface pressure observations. The corresponding 

Stokes coefficients are defined by (Heiskanen and Moritz, 1967): 
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since redistributions of fluid mass δqδS on the surface of the sphere produce variations of the 

Stokes coefficients, taking the elastic compensation of the Earth’s crust into account. M is the total 

mass of the Earth (~5,97602.10
24
 kg).  

Note that in case of atmospheric surface pressure or ocean bottom pressure δp(θ, λ, t) data, 

commonly expressed in Pa or N/m
2
, the corresponding surface density variation δq(θ, λ,t) is: 

 

)(

)t,,(p
)t,,(q

W θγρ
λθδλθδ =         (7)   

 

In practice, once δq is computed for each time step from model outputs using Eq.6 and Eq.7, each 

surface density grid is decomposed into spherical harmonics δAnm(t) and δBnm(t), and then 

converted into corresponding geoid coefficients δCnm(t) and δSnm(t) by applying the direct filtering 

procedure (Eq. 4).  

These time-series of “model/data” coefficients represent the a priori information that will be used 

as input in the inversion (described in the next section). For each fluid contribution k and for each 

time step t, it consists of: an initial solution used as “first guess”; an a priori model uncertainty 

matrix; and a model covariance matrix that described the statistical relationship between the geoid 

coefficients of a given fluid reservoir k at time t.  

 

3.1.2 Estimation of the a priori model uncertainties 

A priori uncertainties on model harmonic coefficients are derived from statistical comparisons 

between the geoid coefficients derived from the different oceanic/hydrological models associated 

with each reservoir k. They are simply computed as the time variances of these coefficients for each 

month of the year and over the longest time span available. These variances are used as the diagonal 

elements satellites of the model covariance matrix CM. 

 

3.1.3 Estimation of the a priori model covariances 

To estimate   the model covariance matrix Ck(t) from geoid coefficients, we consider Dk(t), the 

matrix formed by the list of all geoid coefficients previously computed for the fluid reservoir k and 

over a time period ∆t. By construction, the matrix Dk(∆t) is such that each row corresponds to a 

particular month and each column to a given coefficient δCnm(t) or δSnm(t). Then, the model 

covariance matrix Ck(t) is simply estimated by computing  the product: 
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where kD  is the time-mean value of the model coefficients computed during ∆t months. Several 

previous tests made by inverting synthetic geoid data have suggested that an optimal value for ∆t 

would be the 2-3 months centred around the considered month t (see Ramillien et al., 2004). Greater 

values of this time span parameter give rise to numerical smoothing, and thus provide a less precise 

geoid solution. To estimate the spatial correlations between couples of geoid coefficients of degrees 

and orders u, v, n, m,  respectively, the elements of Ck(t) are multiplied by the weighting function  ψ 

defined by: 

( ) ( ) 11
1vm21un2)m,n,v,u(

−− +−+−=ψ       (9) 

 

3.2. The inverse approach for separating the fluid mass contributions 

The numerical strategy for separating the contributions of the different reservoirs was previously 

presented in Ramillien et al. (2004). It is based on the matrix formalism of the generalized least-

squares criteria developed by Tarantola (1987). It consists of estimating separately the spherical 

harmonic coefficients, in terms of equivalent-water heights, of different fluid reservoirs 

(atmosphere, oceans, soil waters and snow pack) from the monthly GRACE geoids. For each water 

mass reservoir, the solution is a linear combination of the coefficients measured by GRACE, of the 

a priori information from climate models and optimal coefficients fitting: 
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where Γk(t) is the vector formed by the list of all spherical harmonic coefficients of the geoid to be 

solved for the k-th contribution, ΓOBS(t) is the vector formed with the geoid coefficients from 

GRACE, Γk0(t) corresponds to the initial solution coefficients vector (i.e. "first guess"). CD and CM 

are the a priori covariance matrices of the GRACE geoid coefficients, and of the models, 

respectively. The latter matrix and the vector Γk0(t) are estimated from the geoid coefficients 

derived from global model outputs for each month (see previous section).  

In practice, the matrix to be inverted (terms in parenthesis in Eq.10) is symmetric by construction, 

and often positive definite. We used a strategy of fast Cholesky factorisation to solve this system, 

instead of a LU decomposition. In extreme conditions of ill-conditioning of the system, we also 

chose to apply a complete Singular Value Decomposition (SVD) but this is a more time-consuming 

option. 

After solving the linear system (Eq.10), the a posteriori covariance matrix Ck
POS

 is computed using: 
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The a posteriori uncertainties associated to the fitted geoid coefficients of the reservoir k are given 

by the root-mean square values of the diagonal elements of Ck
POS

:  
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where "diag" stands for individual-diagonal element of the a posteriori matrix. 

The estimated surface density coefficients δAnmPOS(t) and δBnmPOS(t), expressed in terms of 

equivalent-water height, are then estimated by filtering the fitted geoid coefficients δCnmPOS(t) and 

δSnmPOS(t) listed in the solution Γk(t)  of each reservoir k using: 
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where Wn
-1
 is the inverse predicting filter of Eq.4. It is tapered by a stabilizing function Vn that 

apodises the amplitudes of Wn
-1
 for degrees between n_min and n_max, in order to avoid the 

development of spurious short-wavelength undulations. Obviously, the main disadvantage of using 

such a smoothed operator is to remove short-wavelength details in the solution, but this is necessary 

to avoid numerical instabilities in the matrix inversion of the system (Eq.10), and to cancel the 

effects of noise for high-degrees (typically n_min= 25 and n_max=30). 

An iteration process was implemented. Tests have shown that convergence was obtained after ∼ 5 

iterations. Thus solutions presented in section 4 correspond to the 5
th
 iteration.   

 

3.3. Model outputs used for the inversion 

To construct the “first guess” as well as the Ck covariance matrices, we considered the following 

models: 

 

Land hydrology 

- LaD model (Milly and Shmakin, 2002) 

- WGHM model (Döll et al., 2003) 

The Land Dynamics (LaD) model developed by Milly and Shmakin (2002) estimates the time-
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varying storage of snow, root-zone soil water and ground water by solving water and energy 

balance equations which relate temporal change in storage to rainfall, snowfall, evapostranspiration, 

sublimation, snow melt, soil water drainage and ground water discharge to streams.  The model 

provides 1°x1° monthly global grids of snow, root-zone soil water, underground waters (from the 

shallow and dynamic unconfined saturated zone) for 1981-2003. 

The Water GAP Global Hydrology Model (WGHM) (Döll et al., 2003) was specifically designed to 

estimate river discharge for water resources assessments. It computes 0.5°x0.5° gridded time series 

of monthly runoff and river discharge and is tuned against time series of annual river discharges 

measured at 724 globally distributed stations. Other products of the model are monthly gridded time 

series of snow depth, soil water within the root zone, ground water and surface water storage in 

rivers, lakes and wetlands. The data are available for 2002 to 2004. 

 

Ocean bottom pressure 

We used ocean bottom pressure data derived from two Ocean Global Circulation Models 

(OGCMs): 

- POCM-4C (Parallel Ocean Circulation Model) (Stammer et al., 1996, Tokmakian (2001) 

- ECCO (Stammer et al., 2002)  

While initial resolutions and time spans of ocean bottom pressure grids provided by these models 

are different, we interpolated the data onto 1°x1° grids and constructed a climatology (standard 

year). 

 

Atmosphere 

 Atmospheric loading effects were removed during the GRACE data processing. However, in order 

to account for any residual atmospheric signal in the GRACE geoid, we considered a ‘residual 

atmosphere’ reservoir for the inversion. Thus, to construct the corresponding covariance matrix, we 

used gridded differences between two atmospheric surface pressure data sets : NCEP (Kirstler et al., 

2001) and ECMWF.  

These gridded differences were further developed into spherical harmonics, and corresponding 

coefficients, in units of equivalent water height were further expressed in terms of geoid height (see 

Ramillien et al., 2004). 

 

3.4 Deriving time-series of water mass variations from monthly geoids: test results 

As indicated above, we solved for separating the contributions of four different ‘equivalent water’ 

mass reservoirs: soil plus underground plus surface waters reservoir (called ‘liquid reservoir’ in the 

following), snow pack, residual atmosphere and ocean, from each of the 20 months (from 

April/May 2002 to May 2004). For constructing the ‘first guess’ as well as the model covariance 
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and model-error matrices, the following models have been considered for defining the ‘nominal’ 

case : ECCO for the ocean bottom pressure, the difference ECMWF minus NCEP for the residual 

atmospheric signal, and WGHM for land waters (liquid water reservoirs and snow pack). The 

nominal land water solution (sum of liquid waters plus snow mass), up to degree 30, for April 2003, 

based on the inversion of the GRACE geoid, is presented in Fig.2a. It corresponds to the solution 

obtained after 5 iterations, when convergence was reached. For comparison, the WHGM prediction 

(sum of all water components) –up to degree 30- is shown in Fig. 2b. The error spectra as a function 

of harmonic degree for the input geoid, the solution and the model are plotted in Fig.2c. We note 

that the a posteriori errors of the solution are smaller (almost by a factor 10) than the model errors 

and GRACE input geoid errors. The a posteriori errors decrease with increasing degree up to degree 

15, and then increase progressively, following the spectrum behaviour of a priori observed 

uncertainties.  Fig.2d and Fig.2e show maps of the differences between the GRACE solution and 

the model, and the residual geoid based on the difference between the GRACE geoid and the geoid 

solution constructed using the solutions of the inversion for the four reservoirs (total soil water, 

snow, residual atmosphere and ocean). Fig.2d shows positive signal in a number of regions, in 

particular over the Amazon basin, an indication that the GRACE solution contains more power than 

predicted by the model. The residual geoid map (Fig.2e) is dominated by north-south strips of 

amplitude in the range +/- 300 mm (equivalent water height). These strips are also seen in the input 

GRACE geoid and may result from a combination of noise and Gibbs oscillations associated with 

the spherical harmonic cut-off at degree 30. The fact that the residual geoid presents the same strips 

as in the input geoid is comforting. It means that the GRACE geoid noise was not incorporated into 

the solution and that the inversion process was efficient.  

We further performed a series of tests – for April 2003 - to evaluate the robustness of the solution. 

The discussion here is limited to the land water storage solution.  The tests concern different first 

guesses (for land water storage) as input (WGHM and LaD,  and an extreme case with the first 

guess set to zero), an error-free model assumption (a priori covariance matrix CM set to zero), a 

model error larger than the nominal case (covariance matrix CM   elements multiplied by 100),  data 

errors set to zero, etc. The land water solution for the error-free model case is almost identical to the 

nominal solution while the large model error case provides a solution very close to the first guess 

(WGHM solution). The case with no error in the data gives rise to a very noisy (high-amplitude 

north-south strips) in the land water solution.  Finally the case with first guess set to zero is 

interesting. After one iteration, the solution shows the familiar pattern of the nominal solution and 

model but the amplitudes of the water mass anomalies are on the average a factor of 2 smaller. 

After 10 iterations, the solution displays anomalies amplitudes in good agreement with the nominal 

case (Fig.2f). We note, however, that the solution is slightly smoother (less short wavelength signal) 

than in the nominal case. This point needs further investigation. Finally, in Fig.2g is presented the 
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root mean square residuals between the GRACE geoid and the reconstructed geoid, as a function of 

iteration rank, for the nominal case and the case with the first guess set to zero. As expected, the 

convergence is slower when the first guess is set to zero. However, both cases provide similar 

convergence behaviour after ∼5 iterations. 

We next present the individual solutions for liquid water (soil plus underground plus surface 

reservoirs) (Fig.3a) and solid water (snow pack) (Fig.3b). It appears that the inversion process does 

rather well in separating the liquid and solid water components, even though we note some 

contaminating signal in the snow map over the Amazon basin, which evidently should not be there. 

This means that some improvement in the inversion method is still needed. 

 

3.5 Comparison with the results provided by the Wahr et al. (1998) method 

The approach we propose differs from the Wahr et al. filtering by the fact it is an inversion, which 

combines different a priori information (i.e. model forecasts, errors and GRACE observations) to 

improve iteratively a "first guess". The solution is linearly corrected by GRACE data through 

covariance matrices in space and time. 

Early work of Jekeli (1981) inspired Wahr et al. (1998) to propose a method based on the Gaussian 

averaging of the Stokes coefficients observed by GRACE to remove the effects of the noise at high 

harmonic degrees. Given the half-height length L, the Jekeli's smoothing operator J versus degree n 

is defined by an iterative relation: 
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This filtering was lately used by Tapley et al. (2004b) and Schmidt et al., (2005) to compute the 

maps of the continental water storage changes from monthly GRACE geoids. These studies used a 

value of 750 km (degree 27) for L as a good compromise between spatial resolution and cancelling 

the noise. Wahr et al. (1998) predicting filter Wn to derive coefficients of equivalent-water from the 

geoid anomaly ones is: 
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where ρe is the mean Earth density (~ 5517 kg/m
3
). This latter operator is numerically equivalent to 

the one defined earlier in Eq. 5. 

Fig.4 presents results in the region of Amazon basin comparing the two approaches over the 

Amazon basin  for April 2003. For the Wahr et al. method, we used L= 650 km, which corresponds 

to our cut-off harmonic degree (degree 30).  
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Amplitudes of the two maps are comparable, and range between +/-300 mm of equivalent-water 

height. However, differences are regionally important (the rms difference is 86.83 mm over the 

Amazon basin), and mainly due to a shift of the principal maxima of the water storage changes 

from one solution to the other. The inversion-derived solution shows more short-wavelength details, 

with the positive anomaly in closer agreement with the model predictions (see Fig. 2), more centred 

over the basin with less leakage on the oceanic areas.  

 

4. Land water solutions from GRACE: results 

4.1 Time series of monthly solutions 

The six of the 20 monthly solutions for the total land water storage (sum of liquid water storage 

plus snow) are presented in Fig. 5a-f. These six maps correspond to the months of July 03, 

September 03, November 03, January 04, March 04 and May 04. The 20 solutions are based on the 

nominal case discussed in section 3. Because the year 2003 is almost complete (only January and 

June are lacking), compared to the other two years, we restrict our discussion to that particular 

period. The largest signals are observed in large tropical river basins (Amazon and Orenoco basins 

in South America, Congo and Niger basins in Africa, Ganges and Bramhapoutra basins in North 

Western India) as well as in several river basins of the northern hemisphere (Mississipi basin in 

North America, Ob and Lena rivers basins in northeast Asia, Volga basin in eastern Europe). In 

high latitude regions, month to month changes are also clearly visible (Alaska, eastern and western 

Canada, northern Asia). In these high latitude regions, the observed signal results from the 

combined contributions of total soil water and snow. In general, the solutions agree well with the 

models as far as the geographical positions of the anomalies are concerned. In terms of relative 

amplitude, the solution differs significantly from the models however, as do the models each other. 

We note however a better agreement with WGHM than with LaD (not shown). We computed maps 

of the differences between the GRACE solutions (total soil water plus snow) and the WGHM model 

(not shown, except for April 2003; see Fig.2c). Amplitude differences of individual months can 

reach up to +/- 100 mm in terms of water height. Comparisons with the individual solutions and 

model predictions indicate that there is no systematic underestimation by the model. It clearly 

depends on the region.   

 

4.2 Seasonal cycle and trend 

From the individual monthly solutions available, we have constructed a seasonal cycle solution.  

For that purpose, we assumed that the GRACE-derived changes of water continental mass δq(θ, λ, 

t) are the sum of a linear trend, a seasonal sinusoid (which pulsation is 
T
2πω= , with T~1 year) and 

water mass residuals )t,,(q
RES λθδ : 
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)t,,(q))],(tcos(),([)],(t),([)t,,(q
RES λθδλθϕωλθξλθβλθαλθδ ++++=    (17) 

The parameters which we adjusted for each grid point (θ, λ) are the linear trend (i.e. slope α(θ, λ) 

and β(θ, λ)), and then the seasonal cycle (i.e. amplitude ξ(θ, λ) and phase ϕ(θ, λ)) after being 

corrected from the temporal trend. For this purpose, we used a least-squares fitting to solve the 

system: 

X.Q Φδ =          (18) 

where the vector δQ is the list of the GRACE-derived LW values, Φ and X are the configuration 

matrix and the parameter vector, respectively. The latter two terms are successively: 

[ ]1t j=Φ  , and [ ]βα=X         (19) 

for adjusting the temporal trend, and: 

[ ])tsin()tcos( jj ωωΦ =  , and [ ]ϕξϕξ sincosX −=      (20) 

for fitting the seasonal amplitude and phase at each grid point. In both cases, according to the least-

squares criteria, the solution vector of the system is: 

Q)(X
T1TSOL δΦΦΦ −=          (21) 

The amplitude maps of the observed and model seasonal cycles are presented in Fig.6a and Fig.6b  

Looking at Fig.6a and 6b, we note that the GRACE seasonal cycle presents in some regions higher 

amplitude than WGHM, principally in the tropical river basins. In South America, the maximum 

GRACE signal is located at the southern edge of the Amazon river while in the model, it coincides 

with the river. Moreover, the GRACE seasonal amplitude map clearly shows a large signal over the 

Orinoco basin, not seen in WGHM.  

We further looked at the interannual signal. We first considered several couples of similar months 

of years 2002, 2003 and 2004 and computed the differences. In these cases, the signal is evidently 

smaller than at the seasonal time scale, but clear inter-annual anomalies are visible over several 

basins of the northern hemisphere (e.g., the Ob and Lena basins in Siberia) as well as over tropical 

basins (Orinoco, Amazonia, Niger, Congo and Ganges).  

 

5. Time-series of water volume change in large river basins 

At a given month t, the regional variation of water volume δV(t) over a given river basin S is the 

sum of the products of the GRACE-derived surface load δqj, with j=1, 2, … (expressed in terms of 

equivalent-water height) inside S, by the elementary surface Re
2 δλ δθ sinθj : 

 

)sin(),,()(
2

j

Sj
je tqRtV θλθδδλδθδ ∑=

∈
              (22)                              
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where δλ and δθ are the sampling grid steps along longitude and latitude, respectively. In practice, 

the points of S used in Eq.22 are extracted over eight drainage basins located in the tropics 

(Amazon, Orinoco, Tocantins, Parana, Congo, Niger, Ganges and Mekong). The contour of each 

basin is based on masks of 0.5° resolution from Oki and Sud (1998). The locations of the eight 

drainage basins are presented in Fig.7.  Fig.8 displays the temporal water volume change -spatially 

averaged- over each basin for the 2 years. The predicted volume change from the WGHM model is 

also shown. We note in general good amplitude agreement with the model predictions for some 

basins : Amazon, Orinoco, Congo, Mekong. For the Tocantins and Parana basins, the GRACE-

derived water volumes are larger than model predictions. Poor agreement is noticed for the Ganges 

and Niger basins. Additions model comparisons need to be performed in the future.  

We further attempted to provide an estimate of the mean evapotranspiration for each basin. For that 

purpose, we considered the water mass budget equation:  

 

                   REP
dt

dV −−=                  (23) 

 

with V : land water storage, P: precipitation, E: evapotranspiration, R: runoff. We computed the 

derivative, dV/dt, of the water volume change using the GRACE solutions, subtracted the 

precipitation P averaged over the basin (using data from the Global Precipitation Climatology 

Centre, Rudolf et al., 1994; Rudolf et al., 2003), and further subtracted the mean runoff R over the 

basin using outputs of the WGHM model. Finally we estimated the evapotranspiration E. For each 

basin, mean (i.e., averaged over the basin area) evapotranspiration curve is superimposed to the 

observed and model volume curves in Fig.8. Evapotranspiration is a key-component of hydrological 

budget at the local/regional scale. This parameter is presently poorly described due to lack of 

measurements and modelling complexity. Werth and Avissar (2004) summarize the contradictions 

of  several datasets of Amazonian evapotranspiration: Global Climate Models tend to produce an 

evapotranspiration cycle that follows the precipitation cycle – mostly during the rainy austral 

summer (December-February) and less during drier austral winter (June-August)- whereas models 

of evapotranspiration derived from observations of net surface radiation and atmospheric humidity 

provide a weak annual cycle that is out of phase with that of precipitation. Note however that the 

estimates of the mean evapotranspiration presented here for the Amazon basin are in relatively good 

agreement with the NCEP-derived evapotranspiration reported in Werth and Avissar (2004), both in 

phase and amplitude. From the results presented in Fig.8, we note that over equatorial basins (i.e. 

Amazon, Congo), the annual cycle is not well marked whereas a strong annual cycle is present in 

the tropical basins (i.e., Parana, Orinoco, Tocantins, Niger, Ganges and Mekong). Besides, the 

annual cycle of evapotranspiration appears correlated with the precipitation cycle in the latter 
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regions. Over the Amazon basin, annual variations of the evapotranspiration rate are on the order of 

600 km
3
/month or 3.3 mm/day. These values can be compared with the modelled and observational 

estimates of Costa and Foley (1997) who have found respectively 3.66 and 3.27 mm/day for the 

whole basin, 4.18 and 4.12 over the rain forest.  

 

6. Conclusion 

In this study, we present new solutions of time-variations in continental water storage from the 

available GRACE geoids, over the period April 2002 to May 2004. These solutions, with a spatial 

resolution of 660 km, are based on a generalized least-squares inversion that combines different 

model and data errors information. The iterative version of the inversion scheme rapidly converges 

towards a unique land water solution. Moreover, the algorithm efficiently filters out the spurious 

undulations present in the input GRACE geoids. However, resolution and precision of the computed 

land water maps still need to be improved, hopefully when uncertainties on the observed GRACE 

coefficients (especially beyond degree 30) will be reduced. From monthly land water time series, 

we also estimate the temporal variation of the mean evapotranspiration over eight large drainage 

basins located in the tropics. It is based on the water balance equation and the use of observed 

precipitation and predicted run-off data. Since evapotranspiration remains a poorly known 

hydrological parameter (because neither well-measured nor modelled), its estimate based on 

monthly land water maps derived from GRACE represents an interesting contribution to global 

hydrology. 

The entire series of maps of the 20 monthly “Land Waters” solutions can be downloaded from our 

laboratory web site: http://www.obs-mip.fr/umr5566/ 
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FIGURE CAPTIONS 

 

Figure 1: Temporal coverage of the GRACE geoids provided by CSR (Univ. of Texas) covering 

the period from 04/2002 to 05/2004 (each bar corresponds to ~1-month time span).  

 

Figure 2: (a) Land water solution for April 2003 for the nominal case after 5 iterations; (b) WGHM 

land water storage for April 2003; (c) Log of errors for the input geoid (upper curve), model 

(middle curve) and nominal solution (lower curve) for April 2003, as a function of harmonic 

degree; (d) difference in land water storage between GRACE and WGHM; (e) residual geoid for 

April 2003; (f) land water solution after 10 iterations with first guess set to zero , (g) convergence 

curves for the nominal case and first guess set to zero. 

 

Figure 3: Example of an efficient separation of hydrological components for April 2003 (5-iteration 

solutions, deg. max. 25-30): (a) total (liquid) water solution (surface waters + soil moisture + 

groundwater) and (b) snow depth solution. 

 

Figure 4: Continental water storage variations over the Amazon basin for April 2003 derived using 

two approaches: (a) linear filtering from Wahr et al. (1998) (L=650 km); (b) land water solution 

after 5 iterations using the proposed inverse method. 

 

Figure 5: Monthly land waters (sum of liquid water reservoirs and snow pack) solutions (after 5 

iterations) for six months of the 20 computed solutions (nominal case). 

 

Figure 6: Results of the least-squares adjustment of the seasonal amplitudes: (a) for land water 

storage from GRACE; and (b) for the WGHM model. 

 

Figure 7: Locations map of the eight studied drainage basins. 1: Orinoco; 2: Amazon; 3: Tocantins; 

4: Parana; 5: Niger; 6: Congo; 7: Ganges; 8: Mekong. 

 

Figure 8: Time series of total water volume (average over the basin area) based on GRACE (solid 

curve), on the WGHM model (dashed curve) and estimate the mean evapotranspiration (dotted 

curve), for each of the eight studied basins.  

 


