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S U M M A R Y
Successfully launched in 2002 mid-March, the goal of the Gravity Recovery And Climate
Experiment (GRACE) satellite mission is to measure the spatio-temporal variations of the
gravity field of the Earth to high accuracy (∼1 cm in terms of geoid height) and a spatial
resolution of ∼200–300 km, for a nominal period of 5 yr. The unprecedented precision of the
GRACE mission will enable us to detect tiny time variations of the gravity field related to
global redistributions of water and air mass inside fluid envelops at the surface of the Earth. In
this paper, we present a new approach based on linear inverse methods to separate the different
contributions of the main surface fluid reservoirs (oceans, atmosphere, total continental water
storage including snow, soil wetness, ground water and ice caps) from monthly synthetic
GRACE geoids. The synthetic geoids were computed from outputs of global models of different
climatic fields. Because of the non-uniqueness of the classical inverse problems in gravimetry,
independent information was added before inverting the synthetic geoids. Geoid solutions
associated with each fluid contribution were then converted into water-equivalent thickness
maps. Validation of the continental water storage solutions was performed by comparing
total soil water estimates [soil moisture (SM) plus groundwater] with predictions of a global
hydrological model in 71 different drainage basins of the world. Analysis of the a posteriori
errors of the solutions suggests that the inversion method developed in this study allows
recovering monthly water mass changes with a cm precision.

Key words: global hydrology, GRACE satellite, inverse problem, time-variable gravimetry.

1 I N T RO D U C T I O N

After a successful launch on the 2002 March 17, the Gravity Re-
covery And Climate Experiment (GRACE) mission developed by
NASA in the USA and Deutsches Zentrum fur Luft und Raumfahrt
in Germany is currently mapping the variations of the gravity field of
the Earth over its 5-yr lifetime. The gravity GRACE mission sched-
uled for ∼5 yr consists of two identical spacecrafts flying approxi-
mately 220 km apart in a polar orbit at an altitude of 400–500 km.
GRACE detects time variations of the global gravity field by mak-
ing accurate measurements of the varying relative speed between the
two satellites using a microwave Doppler system. For the very first
time, this satellite technique will provide an efficient way to mea-
sure time variations of the gravity field with an accuracy better than
∼1 cm rms in terms of geoid height and an unprecedented resolution
(200–400 km spatially and 1 month temporally). This will represent
crucial information about the distribution and flow of mass within
the Earth system and specially inside the surface fluid envelops. The
gravity variations that GRACE can detect include: changes as a re-
sult of surface and deep currents in the oceans; changes in soil and
ground water storage on land; mass changes of the ice sheets and
glaciers; air and water vapor mass change within the atmosphere;

and variations of mass within the solid Earth. The promising re-
sults from GRACE will make a huge contribution to global climate
change studies. The potentials of the GRACE mission to recover
hydrological signals are presented in the National Research Council
(NRC) report (Dickey et al. 1997) and ESA (2000).

However, one disadvantage is that GRACE products are values of
integrated mass over a vertical column of matter, thus it is not pos-
sible to distinguish between the different sources of geoid anomaly.
Numerically, separating each components is a problem that requires
supplementary information, e.g. other type of satellite data, in situ
measurements or forecasts of hydrological variables based on global
climate models.

In this paper, we present a new method based on an inverse ap-
proach using least-squares criteria to unravel the different contribu-
tions of the main surface fluid reservoirs: atmosphere, oceans and
total continental water storage. In this study, we ignore the ice sheets
and the solid Earth contributions. In order to stabilize the inversion
procedure, independent information derived from outputs of the
global atmospheric, hydrological and oceanic models is used. First,
we describe the direct and inverse procedures used for recovering
the harmonic coefficients of the main fluid contributions from the
gravity field. In the following section, we apply the proposed inverse
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814 G. Ramillien, A. Cazenave and O. Brunau

method to unravel long-time series of synthetic GRACE geoids that
are constructed using gravity data derived by combining outputs of
climatic models, because GRACE geoid data are not yet available
to the scientific community. In order to assess the ability of GRACE
for monitoring global hydrological signals such as total soil water
and snow cover over continents, we extract time-variable maps of
the solutions in some of the largest drainage basins of the globe.
We particularly focus on South American basins: Amazon, Paraná,
Orinoco, Araguaia, São Francisco and Uruguay basins. Finally,
a posteriori errors of inversion are evaluated by analysing the global
differences between the estimates of the four fluid contributions (at-
mosphere, oceans, soil water and snow cover) and the ones from the
starting models.

2 P R E V I O U S S T U D I E S O N T H E
P R E PA R AT I O N O F G R A C E
DATA A N A LY S I S

Several authors have already demonstrated the ability of GRACE
to monitor water storage variability over continental areas of sev-
eral hundreds of km or larger, anywhere in the world (Dickey et al.
1997; Wahr et al. 1998; Rodell & Famiglietti 1999, 2002, 2001;
Velicogna et al. 2001; Swenson & Wahr 2002). Wahr et al. (1998)
previously used outputs from global atmospheric, oceanographic
and hydrological models to estimate the variability of the gravity
field resulting from those sources. These authors proposed a for-
ward method for using the gravity information from GRACE to
infer time changes in surface mass and estimate the corresponding
accuracy at monthly intervals. Their method is based on the filter-
ing of spherical harmonic coefficients for constructing global maps
of surface mass variations from synthetic GRACE data and taking
the deformation of the surface of the Earth into account (i.e. intro-
ducing elastic Love numbers in the evaluation). Time changes of
GRACE geoid coefficients δCnm and δSnm (of degree n and order m)
are constructed as spatial averaging of surface mass coefficients us-
ing an arbitrary weighting function W , such as the gaussian operator
proposed by Jekeli (1981). According to Wahr et al. (1998), using
an operator with a large enough radius of averaging (i.e. hundreds
of km) should reduce the leakage of energy between the oceanic
and continental domains while recovering water mass variations on
land. Leakage oscillations at the continent/ocean boundaries would
represent an important source of errors in water mass recovery, es-
pecially for small river basins. This early work largely inspired sub-
sequent studies addressing the accuracy of recovering water mass
signals in continental basins from synthetic GRACE geoids (Rodell
& Famiglietti 1999, 2001, 2002; Velicogna et al. 2001; Swenson
& Wahr 2002). The results of these simulations suggest that final
accuracy of the recovered soil water would increase with the size
of the monitored river basin at the monthly, seasonal, annual and
interannual timescales. Comparing variations of soil moisture (SM)
and ground water (GW) contents from a network of stations in Illi-
nois (∼145 800 km2), Rodell & Famiglietti (1999, 2001) concluded
that SM and GW signals would be detectable by GRACE for basin
sizes greater than 200 000 km2 with a precision of a few mm in wa-
ter height. According to these authors, the uncertainty of the mean
variations of GRACE-derived GW in the High Plain aquifer, that
represents ∼450 000 km2, is approximately 8.7 mm, whereas the
amplitudes of water height is 19.8 and 45.2 mm for annual and 4-yr
periods, respectively (Rodell & Famiglietti 2000). Latest develop-
ments by Swenson & Wahr (2002) addressed the need of using an
averaging kernel to cancel the effects of the short oscillations of

high amplitude while recovering water storage variations. However,
this stabilizing procedure has the disadvantage of leakage as a result
of the gravitational influence of masses outside the studied area that
yields underestimated prediction. Another source of errors resulting
from high-frequency atmospheric perturbations has been identified
by Velicogna et al. (2001) while extracting the GRACE signals over
continental areas by direct subtraction of the atmospheric contri-
bution. Removing the effects of the atmosphere needs the 30-day
mean surface pressure to be known to an accuracy of ∼1 mbar
(i.e. 1 cm of equivalent water height) or less, whereas short-period
errors in the pressure field would be aliased in the GRACE data
and can potentially contribute to errors of ∼1 cm in terms of water
thickness.

3 M E T H O D

3.1 The direct problem: from water mass distribution to
geoid anomaly maps

The basic data set provided to GRACE users is expected to be time-
series of spherical harmonic coefficients, up to degree N = 100 at
monthly intervals. Thus, the first step for studying the fluid contribu-
tions to the gravity field will consist of extracting monthly variations
of each contribution.

The stationary component of the geoid G 0 that characterizes the
main contribution to the gravity field (nearly 99 per cent) as a result
of the solid part of the Earth, is merely evaluated by computing the
mean geoid map from several geoids G(t) that concern a long enough
period of time, such as several years of GRACE observations.

The monthly time-variable geoid δG(t) corresponds to the differ-
ence between the monthly geoid G(t) measured by GRACE and the
static mean component G 0:

δG(t) = G(t) − G0, (1)

whose δCnm(t) and δSnm(t) are the normalized Stokes coefficients
expressed in terms of millimeters of geoid, which depend upon time
t. It will be these coefficients that will be provided to the GRACE
users. n and m are the harmonic degree and order respectively, so
that the corresponding harmonic coefficients can be summed up to
a given maximum degree N for constructing the map of the geoid
anomaly:

δG(t) =
N∑

n=1

n∑
m=0

(δCnm(t) cos mλ + δSnm(t) sin mλ)Pnm(cos θ ),

(2)

where θ is the co-latitude, λ is longitude and Pnm is the normalized
associated Legendre function, which is dimensionless (see Heiska-
nen & Moritz 1967).
In the following, we consider δG(t) corresponding to the sum of
the k = 1, 2, . . . , K contributions δGk(t) of different independent
fluid reservoirs, but neglecting those from mass variations inside the
solid Earth induced by tectonics such as earthquakes, postglacial
rebound and mantle convection. Moreover, we assume that the fluid
contributions are not correlated in time and space in order to simplify
the modelling approach:

δG(t) =
K∑

k=1

δGk(t) = AδGk, (3)

where A is the separating matrix formed by a column of identity
matrices (see below).

For a given surface density of mass δh(t) at the surface of
the Earth, expressed in terms of equivalent-water height, the
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Global time variations of hydrology from GRACE 815

Table 1. Characteristics of the available global data sets used in the inversion.

Reservoir Model Parameters Period

Atmosphere ECMWF Surface pressure from global re-analysis 1979–1993
NCEP of ground observations 1979–1996

Oceans POCM Variations of ocean bottom 1979–1997
OPA pressure predicted by global 1992–1999
MIT ocean circulation model 1985–1996

Land waters LaD soil water and ground water 1981–1998
GSWP 1987–1988

H96 soil water 1979–1998

corresponding geoid anomaly coefficients can be predicted from
the the surface density ones δCh

nm(t) and δδSh
nm(t), using a fast linear

filtering:{
δCnm(t)

δSnm(t)

}
= W 0

n

{
δCh

nm(t)

δSh
nm(t)

}
, (4)

where W 0
n is an isotropic (i.e. not depending upon order m) and

stationary function that weights the harmonic coefficients. Its simple
expression is as follows (e.g. Ramillien 2002):

W 0
n = 4πG Rρw

(2n + 1)γ (θ )
(1 + zn). (5)

Figure 1. Seasonal variations of the synthetic geoids for 1987 computed using global model forecasts for the same period: atmosphere from ECMWF; oceans
from POCM; total land water plus snow from LaD.

zn represent the Love numbers for the elastic response of a surface-
loaded Earth andγ (θ ) is the normal gravity on the reference ellipsoid
at co-latitude θ , respectively. G ≈ 6, 67 10−11 m3 kg−1 s−2 is the
gravitational constant and R (≈6378 km) is the mean radius of the
Earth. ρW (≈1000 kg m−3) and ρ E (≈5517 kg m−3) are mean water
and Earth density, respectively.

The approximated values of γ (θ ) are given by the theoretical
formula adopted by the International Association of Geodesy (IAG)
for Geodetic Reference System (Blakely 1995):

γ (θ ) = 9.7803267714
1 + 0.00193185138639 cos2θ√
1 − 0.00669437999013 cos2θ

. (6)
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A priori errors of the GRACE instrument
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Figure 2. A priori error spectrum of the GRACE instrument deduced from modelling of perturbations of the GRACE orbit and analysis of co-variances
(Pérosanz, private communication, 1995).

A priori uncertainties of the global hydrological models
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Figure 3. A priori uncertainties on the time variations of geoid height of the four hydrological contributions obtained by statistical comparisons of all the
global model outputs available in our database: (i) atmosphere (data from ECMWF, NCEP for 1979–1993); (ii) ocean (bottom pressure from POCM, OPA,
MIT for 1992–1996); (iii) soil moisture (GSWP, LaD and H96 for 1987–1988); (iv) snow cover (from GSWP, LaD and NSIDC for 1981–1987).
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Global time variations of hydrology from GRACE 817

Another expression for the predicting filter was also proposed by
Wahr et al. (1998):

W 0
n = 3ρw

(2n + 1)ρE
(1 + zn). (7)

One can easily check that both expressions of W 0
n (eqs 5 and 7)

are numerically equivalent. Eq. (5) is used here to compute the
harmonic coefficients of the synthetic geoids. The synthetic geoids
themselves are derived from global climatic model outputs. The cor-
responding Stokes coefficients are defined as (Heiskanen & Moritz
1967):{

δCnm(t)

δSnm(t)

}
= 1

(2n + 1)M Rn

×
∫∫∫

V

[
δρ(r ′, θ ′, λ′, t)r ′n Pnm(cos θ )

{
cos

sin

}
(mλ′)

]
dV, (8)

where M (≈5,97602 1024 kg) is the mass of the Earth and δρ (r ′,
θ ′, λ′(, t ′) is the variable density inside the volume V of the Earth.
Redistributions of mass δρdV inside the volume V produces vari-
ation of the δCnm(t) and δSnm(t) coefficients. Because we consider
here that the mass redistribution δρ (r ′, θ ′, λ′) mostly occurs inside
surface δCnm(t) and δSnm(t) coefficients, by R2δq dS, where δq(θ ′,
λ′, t ′) is the surface load and S is the surface of the Earth. Taking
into account the elastic deformation of the solid Earth under the
variable load via the Love numbers zn, the latter equation becomes

Figure 4. Example of recovery of seasonal variations of the global fluid mass for 1987 from a synthetic GRACE geoids of Fig. 1: for the atmosphere (a); the
oceans (b); total continental waters including soil moisture and snow pack (c).

(e.g. Chao et al. 1987; Chao 1994):{
δCnm(t)

δSnm(t)

}
= (1 + zn)R2

(2n + 1)M

∫∫
S
δq(θ ′, λ′)

{
cos

sin

}
(mλ′)Pnm(cos θ ′) d S.

(9)

3.1.1 Atmospheric loading

Atmospheric mass redistribution is classically deduced from atmo-
spheric surface pressure data. The variable load δq(θ , λ, t) is related
to the pressure variations δ p(θ , λ, t) through:

δq(θ, λ, t) = δp(θ, λ, t)

ρW γ (θ )
, (10)

where γ (θ ) is the mean surface gravity at co-latitude θ computed
using eq. (6).

3.1.2 Ocean loading

We will use the ocean bottom pressure data derived from ocean
general circulation models (OGCM). The variable load δq is thus
also given by eq. (10).

3.1.3 Land water loading

Land water considered here will include soil water, ground water
and snow load. These three contributions will be expressed in terms
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818 G. Ramillien, A. Cazenave and O. Brunau

Figure 4. (Continued.)

of equivalent water height δh(θ , λ, t) such that corresponding load
will be given by:

δq(θ, λ, t) = ρW,Sδh(θ, λ, t), (11)

where ρW,S can be either liquid water or snow density.

3.2 The inverse problem: separation of several fluid
contributions

The basic linear system to solve for the separate fluid contributions
corresponds to eq. (3). According to this expression, there are K
times more Stokes coefficients to adjust than observed ones. There-
fore, the problem is highly underdetermined. For example, if we
decide to separate four contributions with a maximum harmonic
degree of N = 100, the total number of observations being N 2 +
2N = 10 200, so there are ∼41 600 coefficients to adjust. Because
of non-uniqueness of this inverse problem, new a priori information
need to be included as new constraints for recovering the coefficients
of all water mass contributions.

In order to combine GRACE data and model prognostics, we pro-
pose to adapt the scheme previously developed by Tarantola (1987),
which is based on the generalized least-square inversion for estimat-
ing the Stokes coefficients of K fluid contributions. In this formal-
ism, the estimates are built as linear combinations of optimal fitted
parameters:

�k(t) = �0
k (t) + Ck A

(
CD + CM + ACk AT

)−1 [
�obs(t) − A�0

k (t)
]
,

(12)

where �obs(t) is the vector formed by the list of all the observed geoid
coefficients and �0

k(t) represents its initial guess. CD and CM are the
matrices of the a priori error covariance for the GRACE observa-
tions and the chosen model corresponding to the fluid contribution
number k, respectively. Ck is the covariance matrix that describes the
statistics of the water mass variations in the reservoir k, which are
determined by the analysis of available models. The corresponding
treatment of external constraints is described in Section 4.3.

As a result of the particular structure of the separating matrix
A, eq. (12) can be split and then simplified into a system of two
dependent equations:

�k(t) = �0
k (t) + Ckξ, (13)

where the vector ξ is the solution of the expression(
CD + CM + ACk AT

)
ξ = �obs(t) − A�0

k (t). (14)

Moreover, the a posteriori covariance matrix is computed using:

C ′
k = Ck − Ck AT

(
ACk AT + CD + CM

)−1
ACk . (15)

The a posteriori uncertainty associated with each fitted Stokes co-
efficient are given by the root-mean square of the diagonal elements
of this latter matrix:

σk(t) =
√

C ′
k(diag), (16)
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Global time variations of hydrology from GRACE 819

Figure 4. (Continued.)

where diag stands for individual diagonal elements of the C ′
k matrix.

Note that in the latter expressions, AT CkA represents the sum of the
model covariance matrices Ck .

In practice, the left-hand matrix in brackets to inverse in eq. (14) is
always symmetric by construction and often definite positive. Here,
the fast procedure of the Cholesky factorizations (Press et al. 1998)
can be used to find ξ . However, as a result of even numerical in-
stabilities of high-degree coefficients (i.e. short wavelengths of the
geoid) estimated from the models and/or bad matrix conditioning,
this configuration matrix is no longer definite positive and some-
times ill-conditioned. In these particular cases, one can use either
schemes of pre-conditioning, singular value decomposition (SVD),
or lower–upper (LU) factorization to ensure to find a stable solution
ξ . This solution vector is replaced in eq. (13) to estimate the Stokes
coefficients afterwards.

Then the corresponding surface density coefficients, expressed
in terms of surface load variations, are computed using an inverse
filtering:

{
δCh

nm(t)

δSh
nm(t)

}
= W −1

n

{
δCnm(t)

δSnm(t)

}
, (17)

where W −1
n is the predicting filter constructed as a modified version

of the one from eq. (5) such as:

W −1
n = Vn

W 0
n

, (18)

if Vn is a stabilizing function that tapers the amplitudes of the filter
in the high degree for avoiding the development of short-wavelength
instabilities in the prediction.

For example, this latter low-pass function can be defined as:

Vn = 1 if n ≤ n1, Vn = 0 if n ≥ n2 and

Vn = 1

2

[
1 + cos

(
π

n − n1

n2 − n1

)]
otherwise.

(19)

This attenuates slowly the values of the predicting operator at the
cutting degree n1.

The disadvantage of smoothing the spatial resolution is to remove
short-wavelength features in the solution, as previously pointed out
by Wahr et al. (1998), who used a disc function to recover mean soil
water variations in continental basins.

4 DATA U S E D A S N E W I N D E P E N D E N T
S TAT I S T I C A L C O N S T R A I N T S

4.1 Global climatic data sets

As statistical constraints, as well as for generating synthetic GRACE
geoids, we used several global data sets corresponding to the four
contributions considered in this study: atmosphere, oceans, total soil
water and snow cover.

4.1.1 Atmosphere

Global maps of surface pressure from 6-hr re-analysis of ground
observations coupled with equations of general circulation are
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Global comparison between the solutions and models - March 1988
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Global comparison between the solutions and models versus time
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currently provided by National Centers for Environmental Predic-
tions (NCEP) and European Centre for Medium Weather Forecast
(ECMWF). Errors are around ∼1 mbar on the average for a monthly
gridded value, but this uncertainty may be regionally and locally
more important and correlated with the station distribution over the
globe. The quality of the data is poor in some regions like Antarc-
tica where observations are very sparse and sometimes non-existent.
Monthly mean surface pressure fields are available from 1979 to
1996 for NCEP and from 1979 to 1993 for ECMWF.

4.1.2 Oceans

We used ocean bottom pressure data provided by several
OGCM: Parallel Ocean Circulation Model 4C (POCM 4C), Océan

PArallélisé (OPA) and Massachussets Institute of Technology
(MIT), that are deduced from analysis of global oceanic circula-
tion combined with surface and subsurface observations.

(i) POCM 4C: the model is described in Semtner & Chervin
(1992), Stammer et al. (1996) and Tokmakian (1996). The model is
run from 1979 to 1998 forced by daily ECMWF re-analysis of heat,
freshwater flux (evaporation minus precipitation and river run-off)
and wind stress. The model resolution is approximately 1/4◦ lati-
tude and longitude, permitting resolution of the western boundary
currents. As of 1994, the forcing is prescribed by ECMWF opera-
tional forecasts. A correction to heat and fresh water flux is applied
within 20◦ of the equator to conserve global net annual heat and
freshwater fluxes in the model. POCM 4C is forced by ECMWF
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A posteriori uncertainties on water mass estimates - May 1987
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Figure 7. A posteriori uncertainties (a) and final errors (b) versus degree for each estimated water mass component of 1987 May: atmosphere (circles), oceans
(crosses), soil moisture (triangles) and snow cover (star). Errors are computed as the differences between model and predicted coefficients of water heights.
Uncertainties for continental water storage are greater than ∼1 mm of water thickness for low-degree coefficients but they decrease rapidly. Combining different
global models for estimating the four water reservoirs leads to errors >10 mm on each water mass coefficient.

re-analysed wind from 1979 to 1993 and by ECMWF operational
winds for 1994–1997.

(ii) OPA from Laboratoire d’Océanographie DYnamique et de
Climatologie (LODYC): this is a global ocean model solved in
Z coordinates on a modified world grid whose poles are situ-
ated on land to avoid singularities in the calculation (Madec &
Imbard 1996; Madec et al. 1999). The model is forced by the
European Remote Sensing (ERS) satellite-derived surface winds
and ECMWF heat and freshwater fluxes. The modelled period is
1992–2000 inclusive. The correction to bottom pressure as a result
of the Boussinesq approximation is applied (Greatbatch 1994).

(iii) MIT: the model is described in Marshall et al. (1997a,b,
1999, 2001). Model resolution is 1◦. The model is forced with real
NCEP parameters (daily heat and fresh water fluxes; twice daily
wind stress) and relaxed to monthly Levitus mean temperature and
salinity fields. The model was run from 1985 to 1995.

4.1.3 Land water mass

Land water mass data used in this study are based on outputs of
global hydrological models. The data consist of water stored in the
root-zone (i.e. SM), water in shallow aquifers (underground water)
and snow. We used data from three models:

(i) The Huang et al. (1996) model, further denoted as H96. This
model provides only soil water for the upper 2-m-thick surface layer.
Neither snow nor ground waters are calculated by the model. The
time span of data covers 1979–1998. Grid size is 1.875◦ in longitude
and 1.9◦ in latitude. This is an old generation model in that it uses

Thornthwaite’s empirical equation for estimating evapotranspiration
and monthly meteorological forcing. Besides, the soil wetness data
present (unexplained) temporal discontinuities, occurring at the be-
ginning of the year, although not systematically. We considered this
model nevertheless because it covers a long time span.

(ii) The Land Dynamics (LaD) model developed by Milly &
Shmakin (2002). LaD provides global (exclusive of Antarctica and
Greenland) monthly 1◦ × 1◦ gridded time series of snow depth, SM
and underground water for 1981–1998.

(iii) Global Soil Wetness Project (GSWP) developed by Douville
et al. (1999) in the context of the GSWP project and based on the
Interactions between Soil Biosphere and Atmosphere (ISBA) land
surface scheme (Noilhan & Planton 1989). This model provides
monthly 1◦ × 1◦ gridded time-series of snow depth and SM for two
years (1987–1988). As for LaD, GSWP also excludes Greenland
and Antarctica.

Main characteristics of all these global models are summarized
in Table 1.

4.2 Construction of the synthetic monthly geoids

The steps for generating synthetic monthly geoids are:

(i) linear interpolation of the model values onto a global 1◦ grid
if necessary;

(ii) conversion of the gridded model values into surface load
variations in terms of equivalent-water heights;

(iii) expansion of the gridded data from step (ii) into spherical
harmonics, up to degree and order 100;
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Final errors of water mass estimates - May 1987

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

lo
g 1

0(
m

m
 o

f e
qu

iv
al

en
t-

w
at

er
 h

ei
gh

t)

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Harmonic degree

1-mm uncertainty level

Figure 7. (Continued.)

Figure 8. Geographical locations of the 71 main drainage basins in the world. These are mainly located in the Northern Hemisphere. General geographical
information about each of them are provided in Table 2.

(iv) filtering the corresponding geoid coefficients using eq. (4);
(v) estimate of the time-average of geoid coefficients over the

time span of each climate model data and removing it to each
monthly geoid coefficient;

(vi) computation of the sum of the coefficients of four contribu-
tions (atmosphere, oceans, soil water and snow) for a given month,
over a given time span.

The starting monthly synthetic geoids were constructed using the
following climatic fields:

(i) Atmosphere: surface pressure fields from ECMWF.

(ii) Ocean bottom pressure from POCM 4C.

(iii) Continental waters (soil and ground waters plus snow) from
LaD.

We consider below two complete years 1987–1988, which is the
common time span of the above models. Fig. 1 shows for the four
seasons of 1987 the synthetic geoids constructed with these data. In
these maps, the dominant signals arise from atmosphere and con-
tinental hydrology, which is about 10 times larger than the oceanic
signals.
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Table 2. General information on the 71 drainage basins that are considered in the present study. They are listed by
increasing size order.

Name Area Mean latitude Name Area Mean latitude
(millions of km2) (degree) (millions of km2) (degree)

Amazon 6,035 −7 Senegal 0,3830 15
Congo 3,587 −3 Don 0,3790 50
Mississippi 3,091 41 Tarim 0,3653 39
Ob 2,862 57 Syr Darya 0,3507 43
Paraná-Uruguay 2,831 −24 Xi 0,3487 24
Nile 2,788 13 Khatanga 0,3189 71
Yenissei 2,472 59 Indigirka 0,3087 67
Lena 2,221 62 Godavari 0,2779 19
Niger 1,952 14 Pechora 0,2741 65
Amur 1,753 50 Salween 0,2341 26
MacKenzie 1,651 61 Churchill 0,2151 56
Volga 1,298 56 Tugaj 0,2120 50
Zambeze 1,235 −15 Yana 0,1973 67
Lake Eyre 1,162 −26 Fraser 0,1938 52
Saint-Lawrence 1,022 46 Rhin 0,1900 49
Nelson 1,012 52 Ural 0,1875 51
Murray 0,9893 −32 Anadyr 0,1710 65
Ganges 0,9490 26 Vistula 0,1645 51
Indus 0,8854 31 Olenek 0,1626 69
Orinoco 0,8315 6 Orange 0,1626 69
Chari 0,8185 11 Rufigi 0,1510 −8
Araguaia 0,7855 −10 Paranaiba 0,1487 72
Yukon 0,7665 64 Pyasina 0,1487 72
Danube 0,7360 46 Albany 0,1189 51
Okavango 0,7143 −19 Elbe 0,1136 51
Mekong 0,6930 19 Loire 0,0939 47
Euphrates 0,6843 35 Brazos 0,0873 33
Huanghe 0,6787 37 Anabar 0,0830 71
Columbia 0,6548 46 Rhône 0,0828 45
Kolyma 0,5826 65 Negro 0,0804 −39
Colorado-Arizona 0,5758 37 Back 0,0726 65
Brahmapurta 0,5742 28 Seine 0,0643 49
Rio Grande 0,5429 31 Penzina 0,0630 64
São Francisco 0,5325 −13 Alazeja 0,0449 69
Dniepr 0,4634 51 Po 0,0407 46
Amu Darya 0,4285 39

4.3 Covariance matrices construction

We assume that the surface fluid fields correspond to stationary
processes (i.e. their statistical properties, such as mean and standard
deviation, are stationary with time). We define as Dk(
t) the matrix
formed by the list of all the Stokes coefficients up to the maximum
degree N = 100, related to the global fluid model number k, for a
period of analysis of 
t months. By construction, this matrix is such
that each row corresponds to a particular month and each column
to a given coefficient of degree n and order m. An estimation of the
covariance matrix Ck related to the kth contribution for this period
of time is then:

Ck = [
Dk(
t) − D̄k

]T [
Dk(
t) − D̄k

]
, (20)

where D̄k is the time-mean values of the model coefficients com-
puted during 
t. Several tests have shown that 
t should be ∼2–3
months around the chosen month t of GRACE observations to be
inverted. Greater values of 
t (i.e. >3 months) lead to numerical
smoothing and so provide less precise geoid solutions.

In order to take into account the spatial correlation between cou-
ples of distinct harmonic coefficients of degrees n and u, and orders
m and v, the elements of the covariance matrix Ck are merely mul-

tiplied by the weighting function:

η(n, m, u, v) = (2|n − u| + 1)−1(2|m − v| + 1)−1. (21)

Estimates of a priori of GRACE instrumental errors versus har-
monic degree (Fig. 2) related to the covariance matrix CD were
provided by simulations of errors of orbit parameters and covari-
ance analysis (e.g. Pérosanz 1995). A priori model uncertainties
of the matrix CM are estimated from statistical comparisons of the
different climatic models of each contribution. A priori errors on
each model harmonic coefficients (i.e. diagonal elements of CM )
were computed as the temporal variances of these coefficients, so
that important variances indicate that global models, such as for
soil waters, remain very different. Model covariance matrices rep-
resenting fluid mass contributions were evaluated using eq. (20) for
nominal periods of 2–3 months of analysis and centred at the con-
sidered month. For this purpose, we used all the available climate
model data sets described in Table 1 and we considered their own
complete non-coincident time spans in the computation of the vari-
ances. Fig. 3 shows for each contribution the a priori uncertainty
spectra computed as explained above. According to the models used
here, we note that the largest errors arise from continental hydrol-
ogy. We also notice that beyond harmonic degree 30, the atmosphere
represents the smallest source of error.
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5 R E S U LT S

In this section, we present the results of the monthly inversion ac-
cording to Section 3.2, over 24 months (1987–1988) of the synthetic
geoids constructed in Section 4.2. Figs 4(a)–(c) present the four sea-
sons of the inversion solutions for the atmosphere, ocean and total
continental waters (soil plus ground waters and snow). All the maps
are expressed in equivalent-water height for purpose of comparison.
Note that for the ocean bottom and atmospheric pressures, ∼10 mm
of water height is equivalent to 1 hPa. Comparison with the input
data (not shown) reveals very good agreement. To illustrate this,
Fig. 5 presents for a single month (1987 May), the histograms of
the differences between the input model data and solutions for three
cases: (a) no model uncertainty are input; (b) only one model for each
fluid contribution is used to compute the model errors (ECMWF for
atmosphere; POCM for oceans; LaD for continental waters: SM +
ground water and snow depth); (c) all the available models are used
to estimate a priori model errors (note that the set of solutions pre-
sented in Fig. 4 corresponds to this latter case). As expected, the ideal
(but unrealistic) case (a) provides the smallest differences. Case (c)
is likely the most physically plausible result from the inversion. We
note that the largest uncertainty arises from the continental water
reservoirs.

Differences between global monthly solutions and correspond-
ing model prognostics versus time (1987–1988) are presented on
Fig. 6. It shows that: (i) they are more severe while including model
uncertainties than neglecting this type of error; (ii) once again, the
largest a posteriori errors are for soil waters and snow cover.

Monthly residuals were also computed as the difference between
the input model coefficients and the sum of the estimates for each
degree and order. They represent the errors of de-correlation by
combining satellite gravity data and model forecasts.

Residuals should be close to zero if perfect separation of dif-
ferent geoid contributions was successful. However, this is not the
case in practice, first because of errors resulting from numerical ap-
proximations, as well as instability problems with the condition of
the co-variances matrices used in the inversion. This causes errors
intrinsic to the method that are revealed by analysing a posteriori
uncertainties versus harmonic degree. These uncertainties remain
important for degrees up to 10–15 and then decrease to less than
1-mm water height. Figs 7(a)–(b)present, respectively, a posteriori
error spectra and the difference between input data and solutions
for each harmonic degree. Using different sets of climate models
for computing a priori co-variances generates a significant long-
wavelength bias as well and increases the errors related to the geoid
and hence water mass estimates.

6 A P P L I C AT I O N F O R R E C OV E R I N G
S O I L WAT E R VA R I AT I O N S I N
D R A I N A G E B A S I N S O F T H E W O R L D

In this section, we explore the ability of GRACE in monitoring
regional variations of soil water in 71 drainage basins as listed in
Table 2 and shown in Fig. 8. The time-series of soil water (sum of
SM and underground water) in each basin were merely extracted
from the global monthly gridded solutions.

Monthly mean soil water solutions were compared to the cor-
responding mean values interpolated from the LaD model used as
input. Histograms of rms differences are plotted versus basin area in
Figs 9(a)–(b). There is no clear relationship between the errors for
soil water recovery and the size of the basin. A similar conclusion is
drawn with respect to the mean latitude of the drainage basin. This
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Figure 9. Rms differences between model and computed soil moisture
time-series versus basin area of less than 1 × 106 km2 (a) and greater than
1 × 106 km2 (b).

implies that: (i) our reconstruction of soil water is geographically
homogeneous because we used a global harmonic decomposition
on the whole terrestrial sphere, and (ii) each large drainage basin
keeps mainly its own characteristics, which do not depend upon
mean latitude.

Nevertheless, drainage basins in arid regions, like Euphrates and
Syr Darya basins, are generally associated with small errors (a few
mm in water height only). Differences typically range from <1 to
16 mm rms in water height, suggesting that soil water solution vari-
ations remain quite close to the forecasts made by the LaD model.

Profiles of soil water solutions in the largest drainage basins
of South America such as the Amazon basin are plotted on
Fig. 10 where the seasonal cycle and interannual variations are
clearly visible. Error bars of associated a posteriori uncertainty vary
with time, probably a result related to the high variability of soil wa-
ter signals in each basin.

7 C O N C L U S I O N

In this paper, we successfully applied a new least-square method
for solving a very unconstrained gravity inverse problem of de-
correlation of fluid contributions (i.e. atmosphere, oceans, continen-
tal waters) by introducing independent information from different
climate models. Instrumental errors and other a priori uncertain-
ties on GRACE data and the physical model were included in this
least-square approach.

Final errors on fitted harmonic coefficients of mass of each fluid
component are of a few mm of equivalent-water height when no
a priori uncertainty is included in the inversion. Besides, they are
more severe (reaching tens of mm) if the starting errors of all the
available global models are combined in the process, because the
prognostics of the models remain too different.
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Figure 10. Soil moisture time-series (1985–1987) for six river basins in South America (Amazon, Paraná, Orinoco, Araguaia, São Francisco and Uruguay)
computed by the least-square inversion (bold lines) and error bars. For comparison, superimposed (solid lines) is the mean soil moisture value obtained by
averaging data from three global hydrological models: H96, LaD and GSWP.

Technically, our inverse approach for separating fluid contribu-
tions would be improved by:

(i) Introducing more realistic spatio-temporal correlations be-
tween the fluid mass harmonic coefficients through the separating
matrix A (because there are obvious exchanges of mass and thus
correlations between the water reservoirs).

(ii) Including more independent information like satellite/in situ
data in the co-variance matrices such as extracting the ground water
variations from the total water storage on the continents. In oceanog-
raphy, GRACE data combined with satellite altimetry data will al-
low the extraction of ocean mass changes related to the eustatic from
the altimetry-observed contributions providing information on the
large-scale water balance.

(iii) Extending the time spans of the available global data sets
we have, which presently remain an important limiting factor of our
method, especially to the recent period of measurements made by
GRACE.
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