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Dense flows of cohesive granular materials

Using molecular dynamic simulations, we investigate the characteristics of dense flows of model cohesive grains. We describe their rheological behavior and its origin at the scale of the grains and of their organization. Homogeneous plane shear flows give access to the constitutive law of cohesive grains which can be expressed by a simple friction law similar to the case of cohesionless grains, but intergranular cohesive forces strongly enhance the resistance to the shear. Then we show the consequence on flows down a slope: a plugged region develops at the free surface where the cohesion intensity is the strongest. Moreover, we measure various indicators of the microstructure within flows which evidence the aggregation of grains due to cohesion and we analyze the properties of the contact network (force distributions and anisotropy). This provides new insights into the interplay between the local contact law, the microstructure and the macroscopic behavior of cohesive grains.

Introduction

Dense flows of cohesionless grains have a rich rheological behavior, as it has been pointed out during the last 20 years or so. However, real granular materials often present significant inter-particular cohesive forces resulting from different physical origins: van der Waals forces for small enough grains such as clay particles, powders [START_REF] Rietema | The dynamics of fine powders[END_REF][START_REF] Quintanilla | Interparticle contact forces in fine cohesive powders[END_REF][START_REF] Castellanos | The relationship between attractive interparticule forces and bulk behavior in dry and uncharged fine powders[END_REF] or third body in tribology [START_REF] Iordanoff | A review for recent approaches for modelling third bodies[END_REF][START_REF] Iordanoff | Solid third body analysis using a discrete approach : influence of adhesion and particle size on the macroscopic behavior of the contact[END_REF], capillary forces in humid grains as in unsaturated soils or wet snow, and solid bridges in sintered powders [START_REF] Miclea | Influence of forming pressure of compacted powders on densification of sintered body[END_REF] or when liquid menisci freeze [START_REF] Hatzes | Coagulation of particules in Saturn's rings : Measurements of the cohesive force of water frost[END_REF]. How do these cohesive forces affect dense granular flows ? Up to now, this question is largely ignored.

In this paper we provide new insights in the understanding of dense flows of cohesive grains. Flow characteristics are investigated through discrete numerical simulations (with a standard molecular dynamics method) which enable to easily control the intensity of cohesion and provide information at the level of the grains, most often inaccessible to experiments. We simulate model cohesive grains with a simple intergranular adhesive force which captures the main feature of any cohesion model, the tensile strength of contacts. From homogeneous plane shear flows, prescribing pressure and shear rate, we measure a strong evolution of the constitutive law as the intergranular cohesion is increased, and we relate this macroscopic behavior to the micro-mechanical properties of the grains and their microstructural organization. The understanding of the effect of intergranular cohesive force on constitutive law enables to discuss practically relevant flows down inclined planes, which are more complex since stresses are no more homogeneous. § 2 presents the knowledge about the effect of cohesion on granular flows. The flow geometries and the interaction model are described in § 3. From homogeneous plane shear flows and using dimensionless parameters identified in § 4, the macroscopic constitutive law of cohesive grains is measured and expressed in a simple manner in § 5. The consequences of this constitutive law for flows down rough inclined plane are discussed in § 6. We then come back to plane shear flows in § 7, to describe various microstructural quantities which evidence the development of space-time heterogeneities as the cohesion is increased. The link between the evolution of the microstructure and the macroscopic behavior is given in § 8. Conclusion are drawn in § 9.

Background

Granular flows are currently a very active research domain motivated by fundamental issues (see for example [START_REF] Hutter | On flow of granular materials[END_REF][START_REF] Rajchenbach | Granular flows[END_REF]) as well as practical needs such as the transport of minerals, cereals or powders [START_REF] Rietema | The dynamics of fine powders[END_REF], or in geophysical applications: rock falls, landslides [START_REF] Campbell | Large-scale landslide simulations: Global deformation, velocity and basal friction[END_REF], pyroclastic flows [START_REF] Félix | Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits[END_REF]) and snow avalanches [START_REF] Bouchet | Experimental determination of constitutive equations for dense and dry avalanches: presentation of the set-up and first results[END_REF][START_REF] Rognon | Rheology of dense snow flows[END_REF] involve large scale flows of particulate solids.

Dense flow of cohesionless grains

Up to now, most studies on granular flows focused on cohesionless grains, and both experimental and numerical approaches provided a good understanding of their behavior in various geometries (see for example the review by GDR MiDi 2004). Among them, homogeneous plane shear and inclined plane allowed to highlight some unusual flow characteristics (these geometries are described in figure 1).

Using discrete simulations, da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF] investigated the behavior of two dimensional quasi-rigid grains of mass m submitted to plane shear, prescribing pressure P and shear rate γ. Depending on the single inertial number I = γ m P , they highlighted three flow regimes called quasi-static when grain inertia is negligible (I 10 -3 ), collisional when the medium is agitated and dilute (I 0.3), and, between these two extremes, dense when grain inertia is important with a contact network percolating through particles. They pointed out a simple expression for the constitutive law in this dense flow regime: the apparent friction coefficient µ * = τ /P linearly increases with the inertial number I: µ * = µ * min + bI.

(2.1)

Both parameters µ * min and b depend on the properties of the grains. Also using discrete simulations of plane shear flows, [START_REF] Campbell | Granular shear flows at the elastic limit[END_REF] distinguished two kinds of dense flows depending on the contact stiffness of the grains: an elastic-inertial regime for rather soft grains and an inertial-non-collisional regime for rather rigid grains.

Several experimental and numerical studies focused on the flows of cohesionless grains down inclined plane (see for example [START_REF] Pouliquen | Dense flows of dry granular materials[END_REF][START_REF] Pouliquen | Friction law for dense granular flow : application to the motion of a mass down a rough inclined plane[END_REF]. Flows stop if the slope θ is lower than a critical slope (θ < θ stop ), accelerate if the slope is higher than θ acc and, in between these two limits, reach a steady and uniform regime in which stress components vary along the flow depth y hydrostatically: [P (y), τ (y)] ∝ (H -y) [cos θ, sin θ]. According to the constitutive law (2.1) integrated in this stress field, the shear rate profile follows a Bagnold scaling: γ(y) ∝ (θ -θ stop ) H -y,

(2.2)

with some deviation toward a constant shear rate profile for thin flowing layer [START_REF] Azanza | Ecoulements granulaires bidimensionnels sur plan incliné[END_REF][START_REF] Silbert | Granular flow down an inclined plane[END_REF][START_REF] Prochnow | Dense flows of dry grains[END_REF].

Effect of cohesive force on macroscopic behavior

It is well known that cohesion strongly affects the mechanical properties of a granular material in the solid regime (see for example, [START_REF] Nedderman | Statics and kinematics of granular materials[END_REF]. At the other extreme, the collisional regime of cohesive grains can be well described by extension of the kinetic theory [START_REF] Kim | Extension of kinetic theory to cohesive particule flow[END_REF]. By contrast, how cohesion affects the dense flow behavior previously described is much less understood. Static properties of a cohesive piling are extremely sensitive to its preparation, since depending on the quantity of agitation during the assembling phase, the cohesive sample is more or less heterogeneous. This loose structure is evidenced in plastic flows or in the compaction of the sample (see for example, [START_REF] Gilabert | Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states[END_REF]). The macroscopic shear strength τ max of the granular packing is strongly enhanced by cohesion [START_REF] Richefeu | Shear strength properties of wet granular materials[END_REF][START_REF] Taboada | Additive decomposition of shear strength in cohesive granular media from grain-scale interactions[END_REF]. This is usually described by the Coulomb criterion, τ max = µ c P + C where µ c is the apparent friction coefficient of the assembly submitted to pressure P and C represents the macroscopic intensity of cohesion, which [START_REF] Rumpf | Grundlagen und Methoden des Granulierens. 1.Teil : Begriffe Anwendungen und Eigenschaften der Granulate[END_REF] has related to the microstructure (solid fraction and coordination number) and the strength of inter-granular cohesive force. Cohesion also strongly increases the angle of avalanches, above which a static assembly of grains flows, and the angle of repose, below which the flow stops. This has been shown through rotating drum experiments using wet glass beads [START_REF] Fraysse | Humidity effect on the stability of sandpile[END_REF][START_REF] Tegzes | Liquid-induced transitions in granular media[END_REF][START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF][START_REF] Bocquet | Physics of humid granular media[END_REF] as well as powders [START_REF] Castellanos | Flow regimes in fine cohesive powders[END_REF][START_REF] Castellanos | Aggregation and sedimentation in gas-fluidized beds of cohesive powders[END_REF][START_REF] Valverde | Avalanches in fine, cohesive powders[END_REF], through heap flow experiments [START_REF] Mason | The critical angle of wet granular sand piles[END_REF]Samandani & Kudrolli 2001), and through crater experiments and simulations using wet glass beads or powder [START_REF] Hornbaker | What keeps sancastles up[END_REF][START_REF] Tegzes | Liquid-induced transitions in granular media[END_REF][START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF][START_REF] Mattutis | Particule simulation of cohesive granular materials[END_REF]. [START_REF] Castellanos | Flow regimes in fine cohesive powders[END_REF][START_REF] Castellanos | Aggregation and sedimentation in gas-fluidized beds of cohesive powders[END_REF] showed that dense flows cannot be achieved using too small grains such as fine powders (d 10 -4 m), since they are directly fluidized by the interstitial fluid from a solid to a suspension of fragile clusters. However, dense cohesive flows can be experimentally observed with large enough grains such as wet glass beads, as in [START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF]; [START_REF] Tegzes | Avalanche dynamics in wet granular materials[END_REF][START_REF] Tegzes | Development of correlations in the dynamics of granular avalanches[END_REF], or with natural snow [START_REF] Rognon | Rheology of dense snow flows[END_REF]. Rotating drum experiments using wet glass beads or powders highlighted the development of correlated motion which leads to an irregular free surface and an increase of avalanche size (Samandani & Kudrolli 2001;[START_REF] Tegzes | Avalanche dynamics in wet granular materials[END_REF][START_REF] Tegzes | Development of correlations in the dynamics of granular avalanches[END_REF][START_REF] Alexander | Avalanching flow of cohesive powders[END_REF]. Discrete simulations also pointed out the aggregation of cohesive grains in various flow geometries [START_REF] Ennis | A microlevel-based characterization of granulation phenomena[END_REF][START_REF] Talu | Use of stress fluctuations to monitor wet granulation of powders[END_REF][START_REF] Weber | Discrete-particle simulations of cohesive granular flow using a square-well potential[END_REF], which was evidenced by measuring the increasing fluctuation of local solid fraction [START_REF] Mei | Concentration non-uniformity in simple shear flow of cohesive powders[END_REF] or the increasing time of contact between grains [START_REF] Brewster | Plug flow and the breakdown of Bagnold scaling in cohesive granular flows[END_REF]. Using annular shear flows, [START_REF] Klausner | Experimental investigation of cohesive powder rheology[END_REF] measured an increase of the apparent friction coefficient of powders from 0.2 for rather weak cohesion, up to 0.8 for rather strong cohesion. This cohesion enhanced friction was also observed in plane shear simulations by [START_REF] Iordanoff | Numerical study of a thin layer of cohesive particles under plane shearing[END_REF]; [START_REF] Aarons | Shear flow of assemblies of cohesive and non-cohesive granular materials[END_REF]; [START_REF] Alexander | Avalanching flow of cohesive powders[END_REF]. [START_REF] Brewster | Plug flow and the breakdown of Bagnold scaling in cohesive granular flows[END_REF] simulated the flow of a thick layer of cohesive grains down an inclined plane, and pointed out a breakdown of the Bagnold scaling for the shear rate profile (2.2) due to the development of a plugged region at the surface of the flow, whose thickness increases with cohesion.

Existing studies thus indicate that cohesion stongly affects the behavior of dense granular flow as well as its microstructure. However, the constitutive law of dense cohesive flow has not yet been formulated, and the interplay between microstructure and macroscopic behavior is still an open question. 

Simulated system

The review by GDR MiDi ( 2004) revealed a good agreement between two dimensional simulations and three dimensional experiments of cohesionless granular flows. Consequently, we choose to simulate two dimensional systems which favor low computational time without affecting the results qualitatively. The granular material is an assembly of n disks of average diameter d and average mass m. A small polydispersity (±20%) is introduced to prevent crystallization.

Flow geometry

Two flow geometries are studied: the homogeneous plane shear (without gravity) and the rough inclined plane. The length L and the height H of the simulated systems are summarized in Tab.1. In both cases, periodic boundary conditions are applied along the flow direction (x) and rough walls are made of contiguous grains sharing the characteristics of the flowing grains: same polydispersity and mechanical properties (especially same cohesion), but without rotation.

Plane shear flows are performed prescribing pressure and shear rate through two kinds of boundary conditions along the transverse direction y. First, the material is sheared between two parallel rough walls distant of H (figure 1 a). One of the wall is fixed while the other moves at the prescribed velocity V . The other method was introduced by [START_REF] Lees | The computer study of transport processes under extreme conditions[END_REF] to avoid wall perturbations: it consists in applying periodic boundary conditions along y, as shown in figure 1 (b). The top and bottom cells move with a velocity ±V (t), which is adapted at each time step t to maintain a constant shear rate γ = V (t)/H(t). The control of the pressure is achieved by allowing the dilatancy of the shear cell along y (H is not fixed), either through the motion of the moving wall, or through a global dilation of the cell (in the absence of walls). The evolution of H is: Ḣ = (P 0 -P )L/g p [START_REF] Campbell | Stress-controlled elastic granular shear flow[END_REF][START_REF] Gilabert | Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states[END_REF], where g p is a viscous damping parameter, and P 0 is the pressure exerted by the grains on the moving wall, or the average pressure in the shear cell (in the absence of walls). Steady state corresponds to P 0 = P , where denotes an average over time.

Flows down rough inclined plane are driven by gravity -→ g (Figure 1 c). Grains constitute a layer of thickness H flowing along a rough inclined wall (slope θ).

Contact law

Let us consider the contact between two grains i and j of diameter d i,j , mass m i,j , centered at position r i,j , with velocity v i,j and rotation rate ω i,j . We call the reduced mass m ij = m i m j /(m i + m j ) and the reduced diameter

d ij = d i d j /(d i + d j )).
Let n ij denotes the normal unit vector, pointing from i to j ( n ij = r ij /|| r ij || with the notation r ij = r j -r i ), and t ij a unit tangential vector such that ( n ij , t ij ) is positively oriented.

The intergranular force F ij exerted by the grain i onto its neighbor j is split into its normal and tangential components,

F ij = N ij n ij + T ij t ij .
The contact law relates N ij and T ij to the corresponding components of relative displacements and/or velocities. The relative velocity at the contact point is equal to

V ij = v i -v j + 1/2(d i ω i + d j ω j ) t ij . Its normal component V N ij = n ij • V ij
is the time derivative of the normal deflection of the contact (or apparent overlap of undeformed disks): The different models which represent the various physical origins of cohesive interaction generally oppose to the repulsive force an attractive force N a (h). The shape of the total static normal force N (h) = N e (h)+N a (h) involves at least three parameters: a maximum attractive force N c , an equilibrium deflection h c (for which N (h c ) = 0), and a range D of the attractive interaction (N a (h) = 0 for h ≤ -D). Direct adhesion between solid surfaces associated to van der Waals forces was well characterized in [START_REF] Tabor | Friction -the present understanding[END_REF][START_REF] Kendall | Significance of interparticle forces to powder behaviour[END_REF][START_REF] Kendall | Adhesion : molecules and mechanics[END_REF][START_REF] Gady | Identification of electrostatic and van der Waals forces between a micrometer-size sphere and flat surface[END_REF]. It can be fully described by the model of [START_REF] Maugis | Adhesion of spheres : the JKR-DMT transition using a Dugdale model[END_REF] whose two limits give rise to the simpler models plotted in figure 2 (a). The DMT [START_REF] Derjaguin | Effect of contact deformation on the adhesion of particules[END_REF]) and the JKR [START_REF] Johnson | Surface energy and contact of elastic solids[END_REF]) models respectively apply for soft or hard grains whose contacts are slightly or strongly defromed by cohesion. In the DMT model, the attractive force N a (h) is constant and its range D is null. In the JKR model, the attractive force is proportional to the contact area, and a neck formation when the grains recedes for -D ≤ h ≤ 0, thereby leading to an hysteresis. The capillary cohesion was fully described experimentally in [START_REF] Pitois | Assemblies of lubrificated grains : development of an experimental model system and study of the contact law[END_REF]; [START_REF] Bocquet | Physics of humid granular media[END_REF] and theoretically in [START_REF] Elena | Pendular, funicular, and capillary briges : results for two dimensions[END_REF]; [START_REF] Chateau | Micromechanics of unsaturated granular media[END_REF]. It also presents an hysteresis which corresponds to the difference between the formation and the breaking distance of a liquid meniscus (Figure 2 b). In both cases, the roughness of the surface plays an important role in cohesive contact. The asperities decrease the effective surface where the short range van der Waals force is significant (see [START_REF] Fuller | The effect of surface roughness on the adhesion of elastic solids[END_REF][START_REF] Thornton | Coefficient of restitution for collinear collisions of elastic perfectly plastic spheres[END_REF][START_REF] Tomas | Fundamentals of cohesive powder consolidation and flow[END_REF], and, in the case of humid grains they give rise to different scales of liquid menisci [START_REF] Bocquet | Physics of humid granular media[END_REF]. Moreover their plastic deformation leads to aging process for the contact [START_REF] Ovarlez | Slow dynamics and aging of a confined granular flow[END_REF]. In their simulations, Gilabert et al. We choose a simple cohesive force which captures the main feature of the previous cohesion models: the maximum attractive force N c . We consider the limit of D = 0 and we do not take into account any hysteretic behavior or contact plasticity. As previously proposed by [START_REF] Mattutis | Particule simulation of cohesive granular materials[END_REF] and [START_REF] Radjai | Cohesive granular texture[END_REF], we choose the smooth function :

h ij = (d i +d j )/2-|| r ij ||. Its tangential component V T ij = t ij • V ij
-1 0 1 -1 0 1 2 -1 0 1 -1 0 1 -1 0 1 N/N c D D (c) (d) (b) (a) D h/h c
N a ij (h ij ) = -4k n N c h ij . (3.1)
In the static limit (N v ij = 0), this model leads to a maximum attractive force N c and to an equilibrium deflection h c = 4N c /k n (see Figure 3). [START_REF] Richefeu | Frictional contact and cohesion laws for Casagrande's shear test on granular materials by 3D DEM -comparison with experiments[END_REF] showed that the shape of N a (h) does not have influence on provided it leads to the same N c . In [START_REF] Rognon | Rheophysics of cohesive granular materials[END_REF], we compared the previous function N a (h) with the DMT model N a (h) = -N c and checked that they give rise to similar flow properties.

Polydispersity µ e kt/kn ±20% 0.4 0.1 0.5

Table 2. List of fixed material parameters.

As usual [START_REF] Radjai | Cohesive granular texture[END_REF][START_REF] Richefeu | Frictional contact and cohesion laws for Casagrande's shear test on granular materials by 3D DEM -comparison with experiments[END_REF][START_REF] Wolf | Compaction of cohesive powders[END_REF][START_REF] Gilabert | Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states[END_REF], friction between grains is described by a Coulomb condition enforced with the sole elastic part of the normal force :

|T ij | ≤ µN e ij , (3.2) 
where µ is the coefficient of friction between grains. The tangential component of the contact force is related to the elastic part δ e ij of the relative tangential displacement δ ij :

T ij = k t δ e ij
, with a tangential stiffness coefficient k t . δ e ij satisfies :

δe ij = 0 if |T ij | = µN e ij and T ij V T ij > 0, V T ij otherwise, (3.3)
and vanishes when the contact opens. The contact is termed sliding in the first case in (3.3) (the condition that T ij and V T ij share the same sign ensuring a positive dissipation due to friction) and sticking in the second case. Rolling friction could also be considered [START_REF] Gilabert | Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states[END_REF]). However, this mechanism is significant for very small particles, less than one micron [START_REF] Jones | Frictional forces between cohesive powder particules studied by AFM[END_REF]. For much larger particles (of the order of hundred microns), this mechanism should not be relevant. In fact, an analysis of the influence of rolling friction, keeping sliding friction, was performed in [START_REF] Gilabert | Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states[END_REF] in the case of the isotropic compaction of an assembly of cohesive grains, and it was found that the inclusion of small rolling friction has only a small quantitative effect, but no qualitative influence.

Table 3.2 summarizes the list of material parameters which are fixed in all our calculations. The friction coefficient between grains is fairly realistic (µ = 0.4), except in § 8.2 where the case of frictionless grains (µ = 0) is discussed. e = 0.1 corresponds to a rather strongly dissipative material, which favors dense flows. da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF] showed that the values of µ and e do not significantly affect the characteristics of cohesionless granular flows, except for the extreme case µ = 0. [START_REF] Johnson | Contact Mechanics[END_REF] showed that k t is of the same order of magnitude as k n , and [START_REF] Silbert | Granular flow down an inclined plane[END_REF]; [START_REF] Campbell | Granular shear flows at the elastic limit[END_REF] pointed out that it has a very small influence on the results for cohesionless grains. k t it then fixed to k n /2 in all our calculations. The values of the stiffness coefficient k n and of the maximum attractive force N c will be discussed in § 4.

Simulation method

Numerical simulations are carried out with the molecular dynamics method, as in [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF]; [START_REF] Silbert | Granular flow down an inclined plane[END_REF]; Roux & Chevoir (2005); da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF]. The equations of motion are discretized using a standard procedure (Gear's order three predictor-corrector algorithm [START_REF] Allen | Computer simulation of liquids[END_REF]). The time step is chosen equal to τ c /50 where τ c is the collision time for a pair of cohesionless equal-sized grains :

τ c = m(π 2 + ln 2 e)/(4k n ).

Dimensional analysis

The grains and the flow geometries are described by a list of independent parameters. It is convenient to use dimensional analysis to extract dimensionless numbers which express the relative importance of different physical phenomena and enable quantitative comparison with real materials.

Grains are described by their diameter d, mass m, coefficient of restitution e and coefficient of friction µ, elastic stiffness parameters k n and k t and maximum attractive force N c . d and m respectively constitute the length and mass scales. Since the dimensionless number µ, e and k t /k n are fixed, there remain two dimensional parameters that describe grains: k n and N c . The flow geometries are described either by the gravity -→ g , the slope θ and the thickness H of the flowing layer for the inclined plane, or by the prescribed pressure P , the prescribed shear rate γ, and the viscous damping parameter g p for plane shear. The dimensionless number g p / √ mk n = 1 is chosen, which ensures that the time scale of the fluctuations of H is imposed by the material rather than the wall, and the wall sticks to the material. Consequently, the shear state is described by pressure P and shear rate γ. Among the various possible choices (see [START_REF] Campbell | Granular shear flows at the elastic limit[END_REF][START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF], we use the following dimensionless numbers. 2004) showed that the shear state of cohesionless rigid grains is controlled by the single inertial number I, combination of the shear rate γ and of the pressure P , whose expression is (for a two dimensional system):

I = γ m P . (4.1)
I compares the inertial time m/P with the shear time 1/ γ and is called inertial number.

Small values (I 10 -3 ) correspond to the quasi-static regime where the grain inertia is not relevant. Inversely, large values (I 0.3) correspond to the collisional regime where grains interact through binary collisions.

Cohesion numbers Bo g and η

Different dimensionless numbers are used to quantify the intensity of cohesion. They compare the maximum attractive force N c to a typical force scale in the system. In the presence of gravity, [START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF] introduced the Granular Bond Number : Table 3. Ranges of dimensionless numbers explored.

Bo g = N c mg , ( 4 
z 0 a molecular distance, of the order of 2 Å). In the presence of gravity, the pressure P is given by ρ p νgH, at the bottom of a layer of height H = N d, with a solid fraction ν ≈ 0.6. Considering glass beads for which ρ ≈ 2500kg/m 3 , we get η ≈ 10 -5 /(N d 2 ) for capillary cohesion and η ≈ 710 -8 /(N d 2 ) for van der Waals adhesion (where d is expressed in m). This means that a value of η ≈ 100 at the bottom of a layer of 10 grains is relevant if d = 10 -4 m for capillary cohesion or if d = 10 -5 m for van der Waals adhesion. However this estimation does not take into account the screening of cohesion bu the roughness of the grains.

Stiffness number h *

The third dimensionless number measures the average relative deformation of the contacts in the system: h * = h/d. Without cohesion, this deformation is merely due to the pressure and limited by the stiffness: h * 0 = P/k n . Cohesive force enhances this deformation :

h * (η) = h * 0 H(η) (4.4) with H(η) = 1 + 2η + 2 η + η 2 .
For strong cohesion h * measures the deformation of grains due to the sole cohesive force (without pressure): N c /(k n d) and ranges from 10 -5 for powders [START_REF] Israelachvili | Intermolecular and surface forces[END_REF][START_REF] Aarons | Shear flow of assemblies of cohesive and non-cohesive granular materials[END_REF] down to ≈ 10 -12 for wet glass beads.

Range of dimensionless numbers explored

Plane shear flows are performed prescribing six values of I between 10 -2 and 0.3 and 36 values of η from cohesionless grains, η = 0, up to η = 85 (Table 3). It was shown that the properties of cohesionless granular packings as well as flow characteristics do not depend on the value of h * 0 once it is small enough (h * 0 10 -4 ) [START_REF] Roux | Quasistatic rheology and the origins of strain[END_REF][START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF]. We choose h * 0 = 10 -5 so that the systems are in this rigid limit at least for low cohesion: h * (η) 10 -4 for η 2.5. For larger values of η, there might be an influence of the deformation of the grains, which is specifically discussed in [START_REF] Campbell | Granular shear flows at the elastic limit[END_REF]; [START_REF] Aarons | Shear flow of assemblies of cohesive and non-cohesive granular materials[END_REF]. However lowering the value of h * 0 below 10 -5 would strongly increase computational time.

Flows down inclined are performed with slopes varying between 15 • and 39 • , and with a thickness H = 30d, in order to get steady and uniform regime. Six value of Bo g are set starting from cohesionless grains, Bo g = 0, up to Bo g = 200. This corresponds to the range of Bo g which was experimentally reached by [START_REF] Nase | Discrete characterization tools for cohesive granular material[END_REF] varying the size of glass beads (0.5 < d < 10 mm, ρ ≈ 2500kg/m 3 ) and the surface tension of the liquid (40 < γ l < 72 mN/m).

Measurement of the macroscopic constitutive law

Using homogeneous plane shear flows, we present in this section the measurement of the effect of cohesive force on the macroscopic behavior of grains. Such a method was successfully used to measure the rheological behavior of cohesionless grains (see for example da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF][START_REF] Campbell | Granular shear flows at the elastic limit[END_REF]), and to explore the effect of grains stiffness on cohesive flows [START_REF] Aarons | Shear flow of assemblies of cohesive and non-cohesive granular materials[END_REF].

Steady homogeneous shear state

The preparation which has been used most of the time consists in starting from a configuration where the disks are randomly deposited without contact and without velocity. The average solid fraction is around 0.5. Then the prescribed shear rate and the prescribed pressure are applied. After a sufficient amount of time, the flowing layer reaches a steady shear state characterized by constant time-averaged kinetic energy, stress tensor and solid fraction. This contrasts with the static case [START_REF] Gilabert | Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states[END_REF], where if P is slowly decreased, a hysteresis is observed, with a microstructure which strongly depends on the maximum value of P applied to the packing in the past. These steady flows do not depend on the initial solid fraction or on the initial velocity profile (plug or linear). A great advantage of the bi-periodic boundary conditions is that the convergence toward a steady state is around ten times faster than with walls.

When a continuous steady state is reached, the simulation is carried out during a sufficient amount of time ∆t, so that the relative displacement of two neighboring layers is larger than around ten grains ( γ∆t ≥ 10). In this steady state, we consider that the statistical distribution of the quantities of interest (structure, velocities, forces. . . ) are independent of time and uniform along flow direction, so that we proceed to an average in space along the flow direction and in time on 100 time steps distributed over the period ∆t. Using averaging methods described in [START_REF] Lätzel | Macroscopic material properties from quasistatic, microscopic simulations of a two-dimensional shear-cell[END_REF]; [START_REF] Prochnow | Dense flows of dry grains[END_REF], the figures 4 plots the profiles of solid fraction ν(y), shear rate γ(y), pressure P (y), and shear stress S(y). The stress tensor is dominated by the term associated to contact forces between grains (da Cruz et al. 2005) :

Σ = 1 LH Sym( i<j F ij ⊗ r ij ).
(5.1)

For every steady and homogeneous shear flows, we observe that Σ xx ≃ Σ yy , implying that stress tensors share common principal directions. Consequently, the pressure P given by (Σ xx + Σ yy )/2 ≈ Σ yy .

The figures 4 also compare the profiles for the two kinds of boundary conditions, with and without walls. Except in the five first layers near the walls, where the granular material is organized, the two kinds of boundary conditions give rise to consistent shear states. Even when starting from a localized velocity profile near one of the walls, we systematically observed a relaxation toward an homogeneous shear state. The conclusion is that the granular material is completely sheared and that the shear is homogeneous. This allows to define average (along time and space) solid fraction ν, shear rate γ, pressure P and shear stress S. The following measurements are done in the whole system using simulations without walls.

In the range of I and η explored (see table 3), the flows are homogeneous as it was previously described. Figure 5 shows some pictures of such flows. For strong enough cohesion (η larger than around 100), the shear state becomes heterogeneous. Between two walls, the flow is made of a single rigid block which sticks alternatively to one of the two walls [START_REF] Forsyth | Effect of cohesive interparticle force on the flow characteristics of granular materials[END_REF][START_REF] Iordanoff | Numerical study of a thin layer of cohesive particles under plane shearing[END_REF]). In the absence of walls, the shear is localized in a few layers between two rigid assemblies. These localized shear flows would require specific studies. They are not discussed in this paper.

Constitutive law

The homogeneous shear states give a direct access to the rheological law of the granular materials through the measurement of two fundamental dimensionless quantities, the solid fraction ν and the apparent friction coefficient µ * = S/P , which adjust in response to the two prescribed dimensionless numbers: the inertial number (0.01 ≤ I ≤ 0.3) and the cohesion number (0 ≤ η ≤ 85). For cohesionless grains, the influence of I on ν and µ * was measured by da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF]. We are going to show the strong influence of the cohesion number η on those two quantities.

We call friction law the variations of the effective friction coefficient µ * as a function of I and η (figure 6 a). The first general observation is that cohesion strongly increases We call dilatancy law the variations of the solid fraction ν as a function of I and η (figure 6 c). The first general observation is the strong expansion of the material due to cohesion. da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF] showed that the solid fraction of cohesionless granular materials decreases approximately linearly as a function of I, starting from a maximum value ν max : ν(I) ≃ ν max -aI. We observe that this law may be extended to cohesive grains : ν(I, η) ≃ ν max (η) -a(η)I.

(5.3)

Figure 6 (d) plots both functions ν max (η) and a(η) which have the same shape. They strongly decrease for weak cohesion η 2, then still decrease but more slowly. On the one hand, the decrease of ν max (η) means that cohesion tends to dilate the flows, especially for low η. On the other hand, the decrease of a(η), down to zero for the highest cohesion, means that the solid fraction does not depend any more on the inertial number I for strong cohesion.

Starting from both variations of solid fraction and apparent friction as function of I and η, we draw on figure 7 the variation of the apparent friction as a function of solid fraction instead of I and η. We observe an approximate collapse of the data on a master curve made of complementary zones of high solid fraction (low η) and smaller solid fraction (higher η). The apparent friction strongly decreases when the solid fraction increases. This tendency of the data, which was previously observed for cohesionless grains by [START_REF] Craig | An experimental study of the rapid flow of dry cohesionless metal powders[END_REF] and da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF], appears as a robust feature which shows the importance of solid fraction in granular flows and may be of great help in rheological models (see for example [START_REF] Josserand | Stationary shear flows of dense granular materials : a tentative continuum modelling[END_REF].

The constitutive law is usually written as the dependencies of the pressure and shear stress on the shear rate and solid fraction. With cohesion, we should also include the dependency on the cohesion intensity η. From the definition of I (4.1) and the friction law (5.2), this leads to the following expression of the shear stress S : (5.4) which corresponds to a viscoplastic constitutive law, with a Coulomb friction term and a viscous term. The apparent viscosity b(η) √ mP depends on the cohesion intensity through the parameter b(η) (Figure 6 b). We shall then define a low cohesion regime (η 10) where the cohesion does not affect the apparent viscosity and a high cohesion regime (η 10) where the apparent viscosity is strongly enhanced by cohesion.

S = µ * min (η)P + b(η) √ mP γ,

Quasi-static limit

In the quasi-static limit (I → 0), the extrapolation of the constitutive law 5.4 predicts that S = µ * min (η)P . Figure 6 (b) shows that µ * min (η) is roughly linear, µ * min + αη with α ≈ 0.012, so that constitutive law can be expressed as:

S = µ * min P + αN c /d, (5.5)
This is reminiscent of the Coulomb criterion described in § 2.2. µ * min then identifies to the apparent friction coefficient µ c and αN c /d to the macroscopic intensity of cohesion C. Assuming that all the contacts break at the shear threshold, [START_REF] Rumpf | Grundlagen und Methoden des Granulierens. 1.Teil : Begriffe Anwendungen und Eigenschaften der Granulate[END_REF] related C to the microstructure (solid fraction ν and coordination number Z) and the strength of intergranular cohesive force N c through the following formula (written in two dimensions): C = ZνN c µc πd . Considering the following values (Z ≈ 3, ν ≈ 0.8, µ c ≈ µ * min ≈ 0.3) provides C ≈ 0.2N c /d. The form is similar but the factor α estimated from quasi-static flows is much smaller (by a factor around 20 than the value predicted by Rumpf formula. We shall try to interpret this difference in section 8.4, after having analyzed the microstructure of the flow.

Cohesive flows down an inclined plane

It is clear that the homogeneous plane shear cannot be achieved in real situations because of gravity g. Nevertheless, it provided a good understanding of the macroscopic behavior which can now be used to discuss flows down inclined planes. This geometry is closer to practical needs but more complex since stresses are no more homogeneous along the depth. This section presents the behavior of cohesive grains flowing down rough inclined plane, focusing on steady and uniform regime. The dimensionless number that measures the cohesion intensity is the Granular Bond Number Bo g , defined in section 4.

Steady and uniform flow regimes

An important feature of cohesionless granular flows down inclined is that they reach a steady and uniform regime in a large range of slope [START_REF] Pouliquen | Scaling laws in granular flows down a rough inclined plane[END_REF]. In this regime, friction exactly compensates the gravity driving force. In presence of cohesion, this regime also exists, as detailed in this section.

The preparation which was used most of the time consists in starting from an initial configuration where the disks are randomly deposited without contact and without velocity. The average solid fraction is around 0.5. Then the gravity is applied so that the plane is inclined with a slope θ. After a sufficient amount of time, the flowing layer may reach a steady shear state characterized by constant time-averaged kinetic energy, stress tensor and solid fraction. A second method consists in starting from a steady uniform regime at given slope and cohesion, then changing either slope or cohesion. The final flow does not depend on the initial state.

The figures 8 plots the profiles of solid fraction, stresses and velocity along the depth for flows of similar thickness (H ≈ 30d), same slope (θ = 25 • ) but with different cohesion Bo g . Without cohesion (Bo g = 0), as previously shown by [START_REF] Silbert | Granular flow down an inclined plane[END_REF]; [START_REF] Prochnow | Dense flows of dry grains[END_REF], the solid fraction ν(y) is constant along the depth except for a thin layer (few grains) near the rough wall where oscillations reveal the organization of grains in layers. As cohesion increases, ν(y) remains constant in the bulk and oscillates near the wall, but its mean value decreases. Figure 8 (b) compares the stresses measured within the flow using (5.1) with the hydrostatic stresses under gravity: P h (y), τ h (y) = ρ p g y y1=0 ν(y 1 )dy 1 [cos θ, -sin θ] and reveals a good agreement (ρ p is the mass density of the grains). Shear stress τ compensates the gravity stress τ h , which reveal that the flow is in a uniform regime. Neglecting the small fluctuations of solid fraction around its mean value ν, stresses follows :

P (y) τ (y) = ρ p gν(H -y) cos θ sin θ . (6.1)
Consequently, the apparent friction coefficient µ * = τ (y)/P (y) is constant along the depth and directly prescribed by the slope: µ * = tan θ. Furthermore, since the pressure in- creases along the depth, the cohesion number η varies according to η(y) = Bo g d/ (ν cos θ(H -y)) so that the cohesion increases close to the free surface.

Constitutive law deduced from flows down inclines

Steady and uniform flows down inclines consist in applying through the slope θ an apparent friction coefficient µ * = tan θ to the material. The local constitutive law of the granular material can be deduced from the measurements of the inertial number profiles at various slope. The following method is used to explore different slopes: for various cohesive intensity Bo g , steady and uniform flows are initially performed at a given slope ; then, the slope is decreased (or increased) at a low enough rate so that flows can be considered as steady and uniform at each time step, until the flows stop (or accelerate).

The figures 9 plots the profiles of solid fraction, velocity, and inertial number I for various slope and cohesion intensity Bo g . According to the relation µ * (ν) (Section 5.2), the solid fraction is set by the slope and is constant along the depth (except near the free surface and near the rough base). Without cohesion, as shown by [START_REF] Silbert | Granular flow down an inclined plane[END_REF], the velocity profile satisfies the Bagnold scaling, since the inertial number is approximately constant along the depth, except in the first bottom layers where I increases (probably due to the organization of the grains in layers near the wall, leading to a sliding velocity), and the first free surface layers where I diverges due to the low pressure. With cohesive force, the shear rate drops to zero in a solid layer near the free surface. The thickness of this layer increases as Bo g increases. This breakdown of the Bagnold scaling, observed by [START_REF] Brewster | Plug flow and the breakdown of Bagnold scaling in cohesive granular flows[END_REF], is evidenced by the variation of the inertial number which is no more constant along the depth, and drops to zero in the solid surface layer. Since each layer into the flows is submitted to a shear with a prescribed µ * = tan θ, but a varying cohesion intensity η(y), the constitutive law can be deduced by measuring the inertial number profile I(y) and extracting µ * (I(y), η(y)). The figures 10 plot µ * (η) for various I, and compare the results obtained using inclined plane with the constitutive law measured using plane shear flows. Results are in good agreement, although data from inclined plane are scattered. This is not surprising since they are not averaged over time, neither over transverse direction. The great difference between these two approaches is that the shear rate is prescribed in plane shear whereas the shear stress is prescribed in flows down inclined plane. As a consequence, large value of I combined with strong cohesion, which can be explored using plane shear, cannot be reached within flow down inclined since the most cohesive part of the flow is plugged. Since the apparent viscosity of cohesive grains is strongly enhanced by cohesion above η 10 but is not affected for lower values, the thickness of the plugged layer is of the order of Bo g /10 grains. 

Microstructure

The two previous sections have shown the strong effect of cohesion on the macroscopic rheological law. We now turn to the evolution of the microstructure of the flow. As shown in figure 5, when the intensity of cohesion increases, large voids appear separating dense areas. This was also observed in [START_REF] Mei | Concentration non-uniformity in simple shear flow of cohesive powders[END_REF]; [START_REF] Weber | Discrete-particle simulations of cohesive granular flow using a square-well potential[END_REF]. Experimentally, [START_REF] Tegzes | Avalanche dynamics in wet granular materials[END_REF][START_REF] Tegzes | Development of correlations in the dynamics of granular avalanches[END_REF] observed correlated motions of grains in dense flows of humid grains. We notice that there is a large literature on the formation of aggregates in agitated dilute systems, such as fluidized powders [START_REF] Castellanos | Aggregation and sedimentation in gas-fluidized beds of cohesive powders[END_REF] or coagulation of dusts in astrophysical situation [START_REF] Dominik | The physics of dust coagulation and the structure of dust aggregates in space[END_REF]). In the present section, we measure various microstructural indicators showing the development of space-time heterogeneities within the granular flow submitted to homogeneous plane shear.

Coordination number Z

The first quantitative indicator is the average number of contacts per grain, called coordination number Z. The variations of Z as a function of I and η are shown on figure 11. In the low cohesion regime (η 10), Z strongly increases when I decreases and tends to a maximum value when I → 0. This is consistent with the dilatancy of the granular material when going from the quasi-static regime to the collisional regime. This behavior is similar to what is observed with cohesionless grains [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF]. For higher cohesion, the dependency of Z on I becomes smaller, and Z is around 2.5 even for highest value of I. This indicates that cohesion tends to increase the value of I for the transition between dense and collisional regime As cohesion increases, the coordination number first strongly increases while η 5, then increases more slowly to reach a maximum value. The increase of Z(η) whereas the solid fraction ν(η) decreases is unexpected, and reveals that cohesive grains agglomerate in dense areas where the coordination number is high, while, on the whole, the granular material is becoming more porous, which decreases the average solid fraction.

Distribution of local solid fraction, length scale ℓ ν

As a way to characterize quantitatively the increasing heterogeneity of density induced by cohesion, we measured the distribution of local solid fraction [START_REF] Richard | Analysis by x-ray microtomography of a granular packing undergoing compaction[END_REF][START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF]. At each time step, we performed a radical tesselation. The local solid fraction around each grain is defined as the ratio of the areas of the grain and of its Voronoi cell (the points which are closer from this grain than from any other grain). This defines the field of local solid fraction ν( r). Figure 12 (a) shows the distribution of local solid fraction for a given I and for various η. The small polydispersity allows high values of solid fraction (ν( r) → 0.9). With cohesion, dense areas still exist, whereas the local solid fraction of the grains close to the voids decreases (ν( r) → 0.2). The standard deviation ∆ν of the distribution may be used to characterize the heterogeneity of density.

Figure 12 (b) shows that cohesion enhances ∆ν.

The auto-correlation F ( R) of the fluctuating solid fraction field δν( r) :

F ( R) = δν( r)δν( r + R) δν 2 , ( 7.1) 
gives access to a characteristic length scale of the heterogeneities, associating dense areas and voids. We observe that F is isotropic, and apart from a small peak around R = d, decreases approximately exponentially with R, as shown in figure 12 (c). In order to quantify this effect, we define the correlation length ℓ ν as the distance where the correlation is equal to 0.4 (other values give similar qualitative results). Figure 12 (d) shows that cohesion enhances ℓ ν .

Distribution of porosity, length scale ℓ p

Another indicator of the organization of the granular material is given by the distribution of pore sizes. The first step is a discretization of the picture of the granular flow at each time step, with a pixel size of d/20. This allows to distinguish the pixels lying on voids from those lying on grains. Then, using an invasion algorithm, it is possible to make a list of the connected voids, and to measure their area S. Figure 12 (e) shows the proportion of void space G(S) belonging to a pore of area larger than S. G(S) decreases approximately exponentially with S: G(S) ≃ exp(-S/S p ). Then ℓ p = √ S p characterizes the length scale of the pores, but does not account for their anisotropy (the pores may be elongated). Figure 12 (f) shows that cohesion strongly enhances ℓ p . This length also increases with the inertial number, which is not surprising because increasing I decreases the solid fraction (dilatancy law) i.e increases the void fraction, so the connecting void probability.

7.4. Persistence of contacts, strain scale p ℓ ν and ℓ p provide information on the spatial organization of the granular material. We now present another quantity associated to the time correlation of the contact network. Starting from a population of contacts at time t, we define the function P (T ) as the proportion of contacts which have not been broken at the time t + T (an average over time t is performed). We notice that a similar quantity, called topological correlation function was defined in [START_REF] Choi | Diffusion and mixing in gravity-driven dense granular flows[END_REF], to measure the diffusion in granular flows. This function obviously starts from the value 1. Figure 12 (g) shows that it decreases exponentially to zero with time T or the associated strain = γT : P ( ) ≈ exp(-/ p ). p is the characteristic strain scale of persistent contacts. Figure 12 (h) shows that p is lower than 1 for cohesionless grains, and that cohesion increases it above 1. This means that the persistent time of the contacts becomes larger than the shear time.

7.5. Velocity correlations, length scale ℓ v Correlated motions of grains and transient rigid clusters were evidenced with cohesionless grains [START_REF] Bonamy | Multiscale clustering in granular surface flows[END_REF][START_REF] Gdr Midi | On dense granular flows[END_REF][START_REF] Pouliquen | Velocity correlation in dense granular flows[END_REF], and found to affect the rheological properties of the granular flows [START_REF] Ertas | Granular gravitational collapse and chute flow[END_REF][START_REF] Mills | Transient rigid clusters in dense granular flows[END_REF].

Pouliquen ( 2004) measured the fluctuating velocity field δ v( r) at the surface of a flow down an inclined plane and showed that its correlation length ℓ v strongly increases as the inclination decreases near jamming. This observation suggests that jamming mechanism is connected to the development of space-time correlations within the flow when going from the collisional regime to the quasi-static regime. It is then tempting to measure this correlation length ℓ v within an homogeneous shear flow, as a function of the two dimensionless numbers I and η.

We start by measuring the auto-correlation function C( R) of the fluctuating velocity field δ v( r) :

C( R) = i,j δv i δv j g( r ij -R) i,j g( r ij -R) , (7.2) 
where δv i = |δ v i |, and g is a Gaussian function of width w = 0.4d. We checked that the results do not depend significantly on w, and are qualitatively the same when considering only one component of δ v. We observe that C( R) is isotropic and decreases exponentially with R: C(R) ∝ exp(-R/ℓ v ), which defines the correlation length ℓ v . Figure 13 (a) shows ℓ v as a function of I for cohesionless grains. Consistently with the measurements down an inclined plane performed by [START_REF] Pouliquen | Velocity correlation in dense granular flows[END_REF], ℓ v strongly increases when the inertial number I decreases, that is to say when going from the dense regime to the quasi-static regime. Figure 13 (b) shows ℓ v as a function of η for three values of I. For I 0.1, ℓ v is small for cohesionless grains and increases as a function of η. Conversely, for small I, there are already correlated motions for cohesionless grains, then as η increases, there is first an expansion of the material which decreases ℓ v before an increase for larger η.

Links between the microstructure and the macroscopic behavior

In § 5, we have shown the strong effect of the cohesion number η on two macroscopic quantities, the apparent friction µ * and the solid fraction ν. Then, in § 7, we have measured the dependencies of several indicators of the microstructure of the granular flow (Z, ℓ ν , ℓ p , ℓ v , p ) as a function of η. Their increase is a clear signature of the development of space-time heterogeneities induced by cohesion. In this section, we focus on the relation between the evolution of the microstructure and of the macroscopic behavior.

Distribution of normal forces

The cohesion seems to increase the apparent viscosity for η larger than around 10 (see section 5.2). This is surpinzing since estimating by P d the normal traction force necessary to separate two cohesive grains would predict an high cohesion regime for η ≃ 1. However, this assumption is rather crude since, like in cohesionless granular pilings (Radjaï et al. 1996) or granular flows [START_REF] O'hern | Force distributions near the jamming and glass transitions[END_REF], we observe a large distribution of normal forces N = N e + N a . Figure 14 (a) plots the distribution of N/N c . In cohesive granular systems, N/N c may be negative but is always larger than -1. For η ≤ 1, the force scale P d is larger than N c : the distribution is broad, so that contacts may be easily broken.

For much larger η, the force scale is given by N c : the distribution is much more peaked, so that most contacts cannot be broken. Figure 14 (b) shows that the standard deviation of the distribution slightly decreases when I increases but significant decreases when η increases. It becomes smaller than unity for η between 3 and 10. This suggests that the high cohesion regime transition might be controlled by the distribution of normal forces rather than by their average value.

Increase of apparent friction

Friction between grains is described by a Coulomb condition enforced with the sole elastic part of the normal force: |T /N e | ≤ µ (see section 3.2). When compared with the total normal force N = N e + N a , it is easy to show that |T /N | ≤ µH(|N c /N |), where the function H was defined in section 4.3. For N N c , which happens for small cohesion, H ≃ 1. Then the apparent friction coefficient between grains remains µ. However, for N N c which is frequent for large cohesion, H ≃ 4|N c /N | which means that the apparent friction coefficient between grains is strongly increased. For cohesionless grains, it was shown that an increase of µ significantly decreases ν max [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF]. Consequently, we predict that this increase of the apparent friction between grains induced by cohesion should result in an expansion of the granular flow. In order to evidence this effect, we have compared the evolution of solid fraction for frictional (µ = 0.4) and frictionless grains (µ = 0) on figure 15 (a). Contrarily to frictionless grains, the expansion of frictional grains starts for small η (η 2). Consistently, this increase of apparent friction between grains strongly reduces the proportion of sliding contacts in the same range of η, as shown in figure 15 (b). This suggests that conversion of sliding into sticking contacts might be responsible for this dilation [START_REF] Rivier | Granular matter with even circuits : ball-bearing and dry quicksand[END_REF].

Anisotropy

We now come back to the friction law and analyse the strong increase of the apparent friction µ * (η) above the agglomeration transition. It has been shown by da [START_REF] Da Cruz | Rheophysics of dense granular materials: Discrete simulation of plane shear flows[END_REF]; [START_REF] Campbell | Computer simulation of granular shear flows[END_REF] that µ * may be written as the sum of two contributions, associated to the angular distribution of normal and tangential forces :

µ * = - π 0 ζ N (φ) sin(2φ)dφ + π 0 ζ T (φ) cos(2φ)dφ. (8.1)
φ is the direction of a contact counted counterclockwise from the flow direction, between 0 and π. ζ N and ζ T are the products of the distribution of contact orientations by the intensities of normal and tangential forces respectively, normalized by the average normal force in the system, and are shown in figure 16. As expected, figure 17 (a) shows that the calculation of the apparent friction using (8.1) is in excellent agreement with the direct calculation. Figure 17 (a) highlights that both normal and tangential anisotropies significantly increase as a function of η, as was previously shown in quasi-static evolutions by [START_REF] Radjai | Cohesive granular texture[END_REF]. The increase of the amplitude of ζ N occurs for η 10, so that it seems related to the agglomeration transition: ζ N (φ) increases in the direction of force chain compression (φ ≃ 120), but decreases and may even become negative in the direction of force chain traction (φ ≃ 30). This evolution, strongly enhanced by the factor sin 2φ, leads to an increase of the normal contribution to the apparent friction µ * N . On the other hand, the enhancement of the amplitude ζ T (φ) starts for small η, so that it seems connected to the increase of apparent friction induced by cohesion. As well, this evolution, strongly enhanced by the factor cos 2φ, leads to an increase of the tangential contribution to the apparent friction µ * T . Figure 17 (b) shows that the relative contribution of normal forces to the apparent friction µ * N /µ * decreases with cohesion (going from around 90% for η = 0 to around 70% for η 10).

Basic mechanisms

We now summarize as simply as possible the previous quantitative analysis. The shear of dense cohesionless grains requires that each individual grain get over the neighbour grain in front of it (Figure 18 a). The macroscopic resistance to the shear is then merely due to the repulsive forces acting throughout the ascension. With cohesion, a second contribution enhances the macroscopic resistance to the shear: after the ascension, the cohesive contact must be broken. Naively, this reasoning predicts that the part of the shear stress due to cohesion should increase as the maximum attractive force is increased, and consequently that the part of the friction coefficient due to cohesion should increase as η increases. Our measurements show that when the cohesion intensity η increases from 0 to 85, µ * increases from 0.25 to 3. However, the agglomeration of cohesive grains must also be taken into account. Then the previous mechanism where a grain gets over the neighbour grain in front of it must be considered at the scale of the large clusters, rather than at the scale of individual grains (Figure 18 b). This leads to a strong expansion of the granular media since two scales of porosity appears: between and inside the clusters. Moreover, after the ascending phase, the separation of two clusters merely requires to break the contacts of the grains at the interface of the clusters, while the contacts inside the clusters are not broken. Consequently, the organization in clusters strongly favors the flow of cohesive grains.

The interpretation of the difference between our interpolation of the friction law in the quasi-static regime and the Coulomb criterion using Rumpf formula is now clear: since the flowing granular materials is made of aggregates with enduring contacts, all the contacts do not break simultaneously when the material is flowing but only those which are at the periphery of the aggregates. This may reduce the number of breaking contacts significantly. At the other limit, the aggregation of grains due to cohesion may affect the transition between dense and collisional flow regimes. Cohesion favors multiple enduring contacts within aggregates, and wether there exists a regime with binary collision at high I is an open question which requires a specific study.

Conclusion

The existence of intergranular cohesive forces is found to strongly affect dense granular flows. The simulations of simple systems with a generic cohesion model enable to identify the rheological behavior of cohesive grains, and to provide a complete scheme on its origin at the scale of the grains and of their organization.

The simulation of a simple flow geometry, the homogeneous plane shear, and the use of dimensional analysis appears to be efficient to describe the behavior of cohesive granular flows. We point out that their constitutive law can be expressed by a simple friction law, similar to the case of cohesionless grains, but that the cohesion strongly enhances the resistance to the shear. The consequence on cohesive granular flow down a slope is that a plugged region develops at the free surface where the cohesion intensity is the strongest. Then, flows are made of a fluid bottom layer and a solid-like top layer, which thickness increases with the intergranular cohesive force.

Moreover, we reveal the strong interplay between the local contact law (friction and cohesion), the properties of the contact network (force distributions and anisotropy) and the rheological law (dilatancy and apparent friction). For small cohesion, due to the increase of the apparent friction between grains, the proportion of sliding contacts decreases which induces expansion of the material. For larger cohesion, the agglomeration of the grains results in the growth of heterogeneities (large voids separating dense granular areas), and in the increase of the contact force anisotropy, which strongly enhances the resistance to the shear. Then, for larger cohesion, the granular material breaks apart.

This study is a first step toward the understanding of the rheology of cohesive granular materials. It is clear that further studies are necessary to take into account other specificities of cohesive forces (range of interaction, hysteresis, viscous dissipation in liquid bridges, solid bridges...). It would be extremely interesting to compare those predictions with physical experiments on model materials such as wet glass beads, or controlled powders in vacuum.
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 1 Figure 1. Flow geometries: plane shear (a) between two rough walls and (b) without wall ; (c) rough inclined plane ; (-) periodic boundary conditions, (black grains) rough walls.

  is the time derivative of the tangential relative displacement δ ij . The normal contact force is the sum of three contributions, an elastic one N e , a viscous one N v , and a cohesive one N a . The linear (unilateral) elastic law reads N e ij = k n h ij with a normal elastic stiffness coefficient k n related to the Young's modulus E of the grains: k n ∼ Ed (Hertz 1881). A normal viscous force is added to dissipate energy during collisions: N v ij = ζ ij ḣij with a damping coefficient ζ ij related to the restitution coefficient e in a binary collision of cohesionless grains: ζ ij = m ij k n (-2 ln e)/ π 2 + ln 2 e.

Figure 2 .Figure 3 .

 23 Figure 2. Common cohesive interactions: (a) DMT (-) and JKR (--) models, (b) capillary force ; simplified models used in numerical simulation: (c) linear (-) and square(--), (d) plasticity.

  4.1. Inertial number I da Cruz et al. (2005); GDR MiDi (

  .2) which compares N c with the weight of a grain. For plane shear flows without gravity, we define, as in[START_REF] Wolf | Compaction of cohesive powders[END_REF];[START_REF] Gilabert | Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states[END_REF], another dimensionless number η : compares N c with the average normal force P d due to the pressure. According to this definition, the transition between a regime of low cohesion and a regime of high cohesion should depend on η and should occur for η of the order unity. Let us now give an estimation of the parameter η in realistic three dimensional situations. Then η = N c /(P d 2 ). N c can be estimated by πγ l d in the case of humid grains (where γ l is the surface tension of the liquid, of the order of 0.05 N/m) and by Ad/(24z 2 0 ) in the case of van der Waals adhesion (where A is the Hamaker constant, of the order of 10 -19 Nm and → 0.3 0 → 85 10 -5≈ 30 14 • → 39 • 0 → 200 10 -6
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 4 Figure 4. (Color online) Homogeneous shear state (P = 1, γ = 0.1, N c = 0): (a) shear rate γ(y), (b) pressure P (y), (c) shear stress S(y) and (d) solid fraction ν(y) ; Transverse boundary conditions with walls (...) and without wall (-).

Figure 5 .

 5 Figure 5. Homogeneous plane shear flows : picture from simulations for different values of inertial number I and cohesion intensity η.

Figure 6 .

 6 Figure 6. (Color online) Friction and dilatancy laws. (a,c) µ * (I) and ν(I) for η = 0 ( ), 10 (•), 30 (△), 50 (▽), 70 ( ) ; (b) µ * min (η) ( ) and b(η) (•); (d) νmax(η) ( ) and a(η) (•).

Figure 7 .

 7 Figure 7. Variation of the apparent friction coefficient µ * as a function of solid fraction ν measured in plane shear flows for various η and I. denotes data for a constant inertial number I = 0.05 and various η.

Figure 8 .

 8 Figure 8. Steady and uniform flows down inclined plane (θ = 25 • , H/d ≈ 30). For different values of the granular Bond Number Bo g , profiles of solid fraction ν(y) and comparison of profiles of measured stresses P and τ (-) with hydrostatic stresses P h and -τ h (surface). For clarity, pressures are plotted along the negative values and shear stresses along the positive values.

Figure 9 .

 9 Figure 9. For various slope and various cohesion intensity, profiles of solid fraction, velocity v * (in units of √ gd) and inertial number I.

Figure 10 .

 10 Figure 10. (Color online) Constitutive law measured in plane shear flows (•) and in flows down inclined plane ( ) ; µ * (η) for I = (a) 0.01, (b) 0.025, (c) 0.05, (d) 0.1.

Figure 11 .

 11 Figure 11. Coordination number Z. I = 0.01 ( ), 0.025 (•), 0.05 (△), 0.1 (▽), 0.2 ( ), 0.3 (⊳).

Figure 12 .

 12 Figure 12. (Color online) Heterogeneity of the microstructure. (a,b) Distribution of local solid fraction and its standard deviation ∆ν(η) . (c,d) Correlation of the local solid fraction F (R) and associated length scale ℓ ν /d. (e,f ) Distribution of pore size G(S) and associated length scale ℓ p /d. (g,h) Persistence of contacts P ( ) and typical strain of persistence p (η). Left column: I = 0.2, η = 0 ( ), 10 (•), 30 (△), 80 (▽). Right column: I = 0.01 ( ), 0.025 (•), 0.05 (△), 0.1 (▽), 0.2 ( ), 0.3 (⊳).

Figure 13 .Figure 14 .

 1314 Figure 13. Correlation of velocity fluctuations : (a) ℓ v (I), η = 0, (b) ℓ v (η), I = 0.01 ( ), 0.1 (•), 0.3 (△).

Figure 15 .

 15 Figure 15. Increase of apparent friction: (a) solid fraction ν(η), I = 0.2, µ = 0.4 (• ), µ = 0 ( ) ; (b) proportion of sliding contacts: I = 0.01 ( ), 0.025 (•), 0.05 (△), 0.1 (▽), 0.2 ( ), 0.3 (⊳).

Figure 16 .

 16 Figure 16. (Color online) Polar histogram (negative value inside the small circle) of (a) normal forces ζN (φ) and (b) tangential forces ζT (φ): I = 0.1, µ = 0.4, η = 0 (gray), η = 1 (..), η = 50 (-).

Figure 17 .

 17 Figure 17. (Color online) A pparent friction and anisotropy (a) Comparison between direct measurement (•) and calculation from Eqn.8.1 (+) (I = 0.01), (b) Relative contribution of normal force to the apparent friction.

Figure 18 .

 18 Figure 18. (Color online) Basic mechanisms involved in cohesive granular flows: (a) without aggregates and (b) taking into account the agglomeration of grains.
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Table 1 .

 1 Size of simulated systems: length L, height H and number of grains n.

		n L/d H/d
	Plane shear with walls	2000 50 40-60
	Plane shear without walls 800 40 20-30
	Inclined plane	1500 50 ∼ 30
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