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We study the existence of a maximal solution of -∆u + g(u) = f (x) in a domain Ω ⊂ R N with compact boundary, assuming that f ∈ (L 1 loc (Ω))+ and that g is nondecreasing, g(0) ≥ 0 and g satisfies the Keller-Osserman condition. We show that if the boundary satisfies the classical C1,2 Wiener criterion then the maximal solution is a large solution, i.e., it blows up everywhere on the boundary. In addition we discuss the question of uniqueness of large solutions.

Introduction

Let Ω denote a subdomain of R N , N ≥ 2, ρ ∂Ω (x) = dist (x, ∂Ω), ∀x ∈ R N , and g ∈ C(R) is nondecreasing. In a preceding article [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF], we studied existence and uniqueness of solutions of the problem Such a function u is called a large solution. In this article we extend the study to the equation with forcing term,

(1.3) -∆u + g(u) = f (x) in Ω,
where f ∈ L 1 loc (Ω) is nonnegative. We assume throughout the paper that g satisfies the following conditions: (1.4) g ∈ C(R), g non decreasing, g(0) ≥ 0.

By a solution of (1.3) we mean a locally integrable function u such that g(u) ∈ L 1 loc (Ω) and (1.3) holds in the distribution sense. Accordingly, if u is a solution of (1.3) then ∆u ∈ L 1 loc (Ω) and consequently u ∈ W 1,p loc (Ω) for some p > 1 (see [START_REF] Brezis | Semilinear elliptic equations in L 1[END_REF]). Therefore, if Ω ′ is a smooth bounded domain such that Ω′ ⊂ Ω, then u possesses an L 1 trace on ∂Ω ′ and, if φ is a non-negative function in C 2 0 ( Ω′ ), i.e., φ ∈ C 2 ( Ω′ ) and φ = 0 on ∂Ω ′ , then (1.5)

Ω ′ (-u∆φ + g(u)φ) dx = Ω ′ f φ dx - ∂Ω ′ u∂φ/∂n ′ dS,
where n ′ denotes the external unit normal on ∂Ω ′ . The boundary blow-up condition should be understood as an essential limit: u is bounded below a.e. by a function u 0 which satisfies (1.2). In a well known paper [START_REF] Brezis | Semilinear equations in R N without condition at infinity[END_REF] Brezis proved that, for any q > 1 and f ∈ L 1 loc (R N ), there exists a unique solution of the equation (1.6) -∆u + |u| q-1 u = f in R N .

The proof was based upon a duality argument which implied local L q loc (R N )bounds of approximate solutions.

In the present paper we investigate this problem, for f ≥ 0, for a large family of nonlinearities and arbitrary domains with compact boundary satisfying a mild regularity assumption. When Ω R N , we shall concentrate on the existence and uniqueness of large solutions, i.e. solutions which blow up on the boundary. Other boundary value problems may have no solution when f ∈ (L 1 loc ) + . For instance, if Ω is a smooth, bounded domain and the boundary data is in L 1 (∂Ω) then the boundary value problem for (1.3) possesses a solution (in the L 1 sense) if and only if f ∈ L 1 (Ω; ρ), where ρ(x) = dist (x, ∂Ω). In fact, in this case, if f ∈ C(Ω) and f ≥ c 0 ρ -2 for some positive constant c 0 , then every solution u of (1.3), such that u ≥ 0 in a neighborhood of the boundary, is necessarily a large solution. However one can establish a partial result, namely, the existence of a minimal solution of the equation which is also a supersolution of the boundary value problem, (see Theorem 1.2 below).

The problem of existence of large solutions is closely related to the question of existence of maximal solutions. A maximal solution (if it exists) need not be a large solution. It is well known that, for equation (1.6) with f = 0, a maximal solution exists in any domain. This is a consequence of the estimates of Keller [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and Osserman [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] as it was shown in [START_REF] Loewner | Partial differential equations invariant under conformal or projective transformations[END_REF]. In a recent paper, Labutin [START_REF] Labutin | Wiener regularity for large solutions of Nonlinear equations[END_REF] presented a necessary and sufficient condition on Ω, for the maximal solution of (1.6) with f = 0 to be a large solution.

A function g satisfies the Keller-Osserman condition (see [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF]) if for every a > 0

(1.7) ∞ a t 0 g(s) ds -1/2 dt < ∞.
Our first result concerns the existence of maximal solutions.

Theorem 1.1. Let Ω be a domain in R N and let g be a function satisfying (1.4) and the Keller-Osserman condition. In addition assume that (1.1) possesses a subsolution. Then (1.3) possesses a maximal solution, for every non-negative f ∈ L 1 loc (Ω).

Remark. If Ω is bounded or if g(r 0 ) = 0 for some r 0 ∈ R then equation (1.1) possesses a solution. In fact it possesses a bounded solution.

If g remains positive and the domain is unbounded, some conditions for the existence of a solution of (1.1) can be found in [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF].

The existence of a maximal solution implies that the family of all solutions of (1.3) is locally uniformly bounded from above. By [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] and [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF] the Keller Osserman condition is necessary for this property to hold. Furthermore this property implies that a family of solutions which is locally uniformly bounded from below is compact.

In the next result we consider boundary value problems with L 1 boundary data.

Theorem 1.2. Suppose that g satisfies (1.4) and the Keller-Osserman condition. (i) Assume that Ω is a smooth bounded domain, f ∈ (L 1 loc ) + (Ω) and h ∈ L 1 (∂Ω). Then there exists a minimal supersolution u h ∈ L 1 loc (Ω) of the boundary value problem

(1.8) -∆u + g(u) = f in Ω, u = h on ∂Ω.
The function u h satisfies (1.3) and, if f ∈ L 1 (Ω; ρ), it is the unique solution of (1.8).

(ii) Assume that Ω is a bounded domain satisfying the classical Wiener condition, f ∈ (L 1 loc ) + (Ω) and h ∈ C(∂Ω). Then there exists a minimal supersolution u h ∈ L 1 loc (Ω) of (1.8). The function u h satisfies (1.3) and, if f ∈ L ∞ (Ω), it is the unique solution of (1.8).

For the definition of a supersolution of the boundary value problem (1.8) when f is only locally integrable see Section 3. The definition of a sub/super solution of equation (1.3) is standard:

Definition 1.3. A function u ∈ L 1 loc (Ω) is a subsolution (resp. supersolu- tion) of equation (1.3), with f ∈ L 1 loc (Ω), if g(u) ∈ L 1 loc (Ω) and -∆u + g(u) -f ≤ 0 (resp. ≥ 0) in Ω in the distribution sense.
We note that if u is a supersolution of equation (1.3), there exists a positive Radon measure µ in Ω such that

-∆u + g(u) -f = µ, in Ω.
Therefore (1.5) holds with f replaced by f + µ:

Ω ′ (-u∆φ + (g(u) -f )φ) dx = Ω ′ φ dµ - ∂Ω ′ u∂φ/∂n ′ dS.
The following result concerns the existence of large solutions.

Theorem 1.4. Let Ω be a domain in R N with non-empty, compact boundary. Assume that g satisfies (1.4) and the Keller-Osserman condition and that (1.1) possesses a subsolution V in Ω. Put

U V (Ω) := {h ∈ L 1 loc (Ω) : h ≥ V a.e.}.
Under these assumptions:

(i) For every f ∈ (L 1 loc ) + (Ω), (1.3) possesses a minimal solution V f in U V (Ω). V f increases as f increases. (ii) Assume, in addition, that Ω satisfies the (classical) Wiener criterion. Then, for every f ∈ (L 1 loc ) + (Ω), (1.
3) possesses a large solution. Moreover there exists a minimal large solution of (1.3) in U V (Ω). (iii) If Ω is bounded and satisfies the (classical) Wiener criterion then (1.3) possesses a minimal large solution.

Remark. (a) Part (i) implies that if (1.1) possesses a large solution then (1.3) possesses a large solution for every f ∈ (L 1 loc ) + (Ω). In [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF] it was shown that, if g satisfies (1.4) and the so called weak singularity condition then (1.1) possesses a large solution in any domain Ω such that ∂Ω = ∂ Ωc . The weak singularity condition is satisfied, for example, in the following cases: Labutin [6] studied power nonlinearities, g(u) = |u| q-1 u, q > 1, and showed that a necessary and sufficient condition for the existence of large solutions of (1.1) is that Ω satisfy a Wiener type condition in which the classical capacity C 1,2 is replaced by the capacity C 2,q ′ . Labutin's condition is less restrictive than the classical Wiener condition; however the latter applies to every nonlinearity satisfying the conditions of Theorem 1.4. It is interesting to know if the classical Wiener condition is necessary for the existence of large solutions under these general conditions. More precisely we ask: Open problem 1. Let Ω be a bounded domain which does not satisfy the (classical) Wiener criterion at some point P ∈ ∂Ω. Does there exist a function g satisfying (1.4) and the Keller-Osserman condition such that the maximal solution of (1.1) is not a large solution?

(1) If g(u) = |u| q-1 u and 1 < q < N/(N -2) for N ≥ 3. (2) If 0 < g(u) < ce au , a > 0, for N = 2. (b)
In continuation we consider the question of uniqueness of large solutions, for nonlinearities g as in Theorem 1.4. In order to deal with this question in possibly unbounded domains we have to restrict ourselves to solutions which are essentially bounded below by a subsolution of (1.1).

Theorem 1.5. Let Ω be a domain in R N with non-empty, compact boundary. Assume that g is convex and satisfies (1.4) and the Keller-Osserman condition.

(i) Let V be a subsolution of (1.1). If (1.1) possesses a unique large solution in U V (Ω) then, for every f ∈ (L 1 loc ) + (Ω), (1.3) possesses a unique large solution in U V (Ω). (ii) Let Ω be a bounded domain. If (1.1) possesses a unique large solution then, for every f ∈ (L 1 loc ) + (Ω), (1.3) possesses a unique large solution. Remark. Assertion (ii) implies that if (1.1) possesses a unique large solution W , then (1.3) possesses a unique large solution bounded below by W . However, if Ω is unbounded, (1.3) may possess additional large solutions which are not bounded below by W . Combining the above result with [10, Theorem 0.3] we obtain the following.

Corollary 1.6. Let Ω be a bounded domain in R N such that ∂Ω is a locally continuous graph. Suppose that g is convex and satisfies (1.4), the Keller-Osserman condition and the superaddivity condition:

(1.9) g(a + b) ≥ g(a) + g(b) -L , ∀a, b ≥ 0,
for some L > 0.

Under these conditions, (1.3) possesses at most one large solution, for every f ∈ (L 1 loc ) + (Ω). If, in addition, ∂Ω is bounded then (1.3) possesses exactly one large solution, for every f as above.

Finally we present two results involving solutions in the whole space R N . Theorem 1.7. Let Ω = R N . Assume that g satisfies (1.4) and the Keller-Osserman condition and that (1.1) possesses a subsolution V . Then:

(i) For every f ∈ (L 1 loc ) + (R N ), (1.3) possesses a solution u in U V (R N ). (ii) Assume, in addition, that g is convex. If (1.1) possesses a unique so- lution in U V (R N ) then, for every f ∈ (L 1 loc ) + (Ω), (1.3) possesses a unique solution in U V (R N ).
For the statement of the next theorem we need the following notation. If g is a function defined on R such that g(0) = 0, we denote by g the function given by g(t) = -g(-t) for every real t.

Theorem 1.8. Assume Ω = R N . Suppose that g and g satisfy (1.4) and the Keller-Osserman condition. Then:

(i) For every f ∈ L 1 loc (R N ), (1.
3) possesses a solution. (ii) Assume, in addition, that g is convex in (0, ∞) and g(0) = 0. Then, for every f ∈ (L 1 loc ) + (R N ), (1.3) possesses a unique positive solution. Remark. It can be shown that if, in addition to the assumptions of part (ii), g satisfies the condition

(1.10) 1 c g(a + b) ≤ g(a) + g(b) ≤ cg(a + b) ∀a, b ∈ (0, ∞)
for some constant c > 0, then (1.3) possesses a unique solution in R N , for every f ∈ L 1 loc (Ω). This condition means that g behaves essentially like a power. In the case of powers this result is due to Brezis [START_REF] Brezis | Semilinear equations in R N without condition at infinity[END_REF]. Open problem 2. For α > 0, let g α be given by g α (t) = (e (t α ) -1)sign t ∀t ∈ R. Does there exist α > 0 such that (1.3), with g = g α , possesses a unique solution in R N , for every f ∈ L 1 loc (R N ) ?

Existence of a maximal solution

Proof of Theorem 1.1. Let {Ω n } be a sequence of bounded subsets of Ω with smooth boundary such that

(2.1) Ω n ↑ Ω, Ωn ⊂ Ω n+1 .
For every n ∈ N and m, k > 0 denote by u n,m,k the classical solution of (2.2)

-∆u + g(u) = f k := min(f, k) in Ω n , u = m on ∂Ω n .
Further denote by v n,m and w n,k the solutions of

(2.3) -∆v + g(v) = 0 in Ω n , v = m on ∂Ω n ,

and

(2.4)

-∆w = f k in Ω n , w = 0 on ∂Ω n , respectively. Then u n,m,k -v n,m ≥ 0 and hence -∆(u n,m,k -v n,m ) = f k -g(u n,m,k ) + g(v n,m ) ≤ f k .
Since u n,m,kv n,m vanishes on ∂Ω n , it follows that

(2.5) u n,m,k -v n,m ≤ w n,k ∀m ∈ N.
Both m → v n,m and m → u n,m,k are increasing and v n,m ≤ u n,m,k . If g satisfies the Keller-Osserman condition then lim m→∞ v n,m = v n is the minimal large solution of (1.1) in Ω n Therefore, by (2.5),

(2.6)

v n ≤ u n,k = lim m→∞ u n,m,k ≤ v n + w n,k .
Since w n,k is bounded and v n is locally bounded it follows that u n,k is locally bounded in Ω n . Thus u n,k is a large solution of (2.2), for every k > 0. Both k → u n,k and k → w n,k are increasing. Hence, letting k → ∞ we obtain,

(2.7) v n ≤ u n = lim k→∞ u n,k ≤ v n + w n ,
where w n is the solution of (2.8)

-∆w = f in Ω n , w = 0 on ∂Ω n . For every ζ ∈ C 2 c (Ω n ), Ωn (-u n,k ∆ζ + g(u n,k )ζ) dx = Ωn f k ζ dx. Since g(u n,k ) ↑ g(u n ), f ∈ L 1 (Ω n ) and, by (2.7) and (2.8), u n ∈ L 1 loc (Ω n ), it follows that, Ωn (-u n ∆ζ + g(u n )ζ) dx = Ωn f ζ dx, for every ζ ∈ C 2 c (Ω n ), ζ ≥ 0.
In addition, u n ≥ v n and consequently the negative part of u n is bounded. Therefore, if Ω + n = Ω n ∩{u n ≥ 0}, we obtain

0 ≤ Ω + n g(u n )ζ dx < ∞,
for every ζ as above. This implies that g(u n ) ∈ L 1 loc (Ω n ) and u n is a large solution of (1.3) in Ω n . Clearly {u n } is monotone decreasing and u n ≥ v 0 in Ω n for any subsolution v 0 of (1.1); by assumption such a subsolution exists. Therefore u := lim u n is well defined and it is a solution of (1.3) in Ω. In fact u is the maximal solution of (1.3) in Ω. Indeed, if U is a solution of (1.3) then, in view of (1.5), U ≤ u n in Ω n , so that U ≤ u.

Minimal supersolutions of boundary value problems

We start with the definition of a supersolution of (1.8) when f is only locally integrable. Definition 3.1. Under the conditions of part (i) (resp. (ii)) of Theorem 1.2, a function u ∈ L 1 loc (Ω) is a supersolution of the boundary value problem (1.8) if it is a supersolution of (1.3) and, for every 

f 0 ∈ L 1 + (Ω) (resp. f 0 ∈ L ∞ + (Ω)) such that f 0 ≤ f , u
-∆u + g(u) = f k = min(f, k) in Ω, u = h on ∂Ω,
for every k > 0, then u is a supersolution of (1.8).

Under the assumptions of part (ii) the assertion is true by definition. Therefore we assume the conditions of part (i). Let f ∈ L 1 + (Ω) be a function dominated by f and put fk := min( f , k). If ũk is the solution of (3.1) with f k replaced by fk then ũk ↑ ũ where ũ is the solution of

-∆u + g(u) = f in Ω, u = h on ∂Ω.
By assumption, ũk ≤ u, for every k > 0. Hence ũ ≤ u and the assertion is proved.

Denote by u k the unique solution of (3.1). Since Ω is bounded there exists a solution of (1.1). Therefore, by Theorem 1.1, there exists a maximal solution ūf of (1.3). Then u k ≤ ūf and {u k } is increasing. Consequently u = lim u k is a solution of (1.3) and by the first part of the proof it is a supersolution of (1.8). Obviously it is the minimal supersolution of (1.8).

Existence of a large solution

We recall that an open subset Ω of R N satisfies the Wiener criterion if, for every σ ∈ ∂Ω, (4.1)

1 0 C 1,2 (B s (σ) ∩ Ω c ) ds s N -1 = ∞,
where C 1,2 stands for the classical (electrostatic) capacity. If Ω is a domain with compact, non-empty boundary and the Wiener criterion is fulfilled, then for any φ ∈ C(∂Ω) and ψ ∈ L ∞ loc (Ω), a weak solution of (4.2)

-∆w = ψ in Ω w = φ on ∂Ω, is continuous up to ∂Ω.
Suppose that V is a subsolution of (1.1), i.e., V and g(V ) are in L 1 loc (Ω) and -∆V + g(V ) is a negative distribution. It follows that there exists a positive Radon measure µ such that

-∆V + g(V ) = -µ in Ω. Consequently V ∈ W 1,p
loc (Ω) for some p > 1 and, if Ω ′ is a smooth bounded domain such that Ω′ ⊂ Ω, then V possesses an L 1 trace on ∂Ω ′ and (4.3)

Ω ′ (-V ∆φ + g(V )φ) dx = - Ω ′ φ dµ - ∂Ω ′ V ∂φ/∂n ′ dS,
for every φ ∈ C 2 0 ( Ω′ ), where n ′ denotes the external unit normal on ∂Ω ′ . Proof of Theorem 1.4(i). Let V be a subsolution of (1.1) and let {Ω n } be as in the proof of Theorem 1.1. Let V f,n be the (unique) solution of the problem (4.4)

-∆u + g(u) = f in Ω n , u = V on ∂Ω n .
Since V is a subsolution

(4.5) V f,n+1 ≥ V f,n in Ω n .
By Theorem 1.1, there exists a maximal solution ūf,n (resp. ūf ) of (1.3) in Ω n (resp. Ω). Clearly (4.6) ūf Ωn ≤ ūf,n+1 Ωn ≤ ūf,n .

Therefore {ū f,n } converges and the limit U is a solution in Ω such that U ≥ ūf . As ūf is the maximal solution it follows that U = ūf ; thus (4.7) ūf = lim n→∞ ūf,n . Since V f,n ≤ ūf,n , (4.5) and (4.7) imply that the sequence {V f,n } converges to a solution V f of (1.3). Clearly V f is the minimal solution in U V . By the maximum principle, V f,n increases with f . Therefore V f increases with f . Proof of Theorem 1.4(ii). Let {Ω n } be a sequence of domains contained in Ω satisfying (2.1), such that, for each n ∈ N, Γ n = ∂Ω n is a smooth compact surface. Note that if Ω is unbounded then Ω n is also unbounded. In this case, let {D n,j : n, j ∈ N} be a family of smooth bounded domains such that Dn,j ⊂ D n+1,j+1 , ∂D n,j = Γ n ∪ Γ ′ j , Γ n ∩ Γ ′ j = ∅, where Γ n and Γ ′ j are smooth, compact surfaces and

∪ j≥1 D n,j = Ω n . Denote Ω ′ j := ∪ n≥1 D n,j .
If Ω is bounded we put D n,j = Ω n , Γ ′ j = ∅ for every j ∈ N so that, in this case, Ω ′ j = Ω. Let V 0 be the minimal solution of (1.1) bounded below by V . Let u 0 m,n,j be the solution of the problem (4.8)

     -∆u + g(u) = 0 in D n,j u = max(m, V 0 ) on Γ n u = V 0 on Γ ′ j .
By the maximum principle, u 0 m,n,j increases with m and j and u 0 m,n,j ≥ V 0 . In addition, by the Keller-Osserman estimate, the set {u 0 m,n,j : m ≥ 1, n > n 0 , j > j 0 } is bounded in D n 0 ,j 0 . Therefore there exists a subsequence {n ′ } such that the limit (4.9) z 0 m,j = lim

n ′ →∞ u 0 m,n ′ ,j
exists in Ω ′ j , z 0 m,j is a solution of (1.1) in this domain and (4.10) z 0 m,j ≥ m on ∂Ω, z 0 m,j = V 0 on Γ ′ j , z 0 m,j ≥ V 0 in Ω ′ j . In fact, if w 0 m,j is the solution of the problem (4.11)

     -∆w + g(w) = 0 in Ω ′ j w = m on ∂Ω, w = V 0 on Γ ′ j , then w 0 m,j ∈ C( Ω′ j ) (
Here we use the fact that Ω satisfies the Wiener criterion.) In addition, for any δ > 0, if n is sufficiently large then Γ n is contained in a δ-neighborhood of ∂Ω. Therefore sup w 0 m,j Γn → m as n → ∞ and u 0 m,n,j ≥ w 0 m,j for all sufficiently large n. Consequently z 0 m,j ≥ w 0 m,j . Further, if U is a large solution of (1.1) and U ≥ V 0 then U dominates u 0 m,n,j for all sufficiently large n. Hence U ≥ z 0 m,j . Therefore

u 0 V := lim j→∞ lim m→∞ z 0 m,j
is the minimal large solution of (1.1) which dominates V 0 (and hence V ). Consequently, if u f V denotes the minimal solution of (1.3) which dominates u 0 V then u f V is a large solution of (1.3) which dominates V . Further, if U f ∈ U V is a large solution of (1.3) then, for fixed m, j ∈ N, U f ≥ u 0 m,n,j for all sufficiently large n. Hence U f ≥ z 0 m,j , which in turn implies U f ≥ u 0 V and U f ≥ u f V . Thus u f V is the minimal large solution of (1.3) in U V . For later reference we observe that, for an appropriate choice of {D n,j }, (4.12)

u f V = lim j→∞ lim m→∞ lim n→∞ u f m,n,j .
Of course the family of domains {D n,j } can be chosen so that (4.12) holds for a given finite set of functions f . Proof of Theorem 1.4(iii). Put f k := min(f, k), k ∈ N. Let u k,m be the (unique) solution of the problem, (4.13)

-∆w + g(w) = f k in Ω w = m on ∂Ω.
Obviously, u k,m ≤ ūf (=the maximal solution of (1.3)). Since m → u k,m is increasing it follows that u k := lim m→∞ u k,m ≤ ūf is a large solution of -∆w + g(w) = f k in Ω. Further, k → u k is also increasing. Thus u f := lim u k is a large solution of (1.3). Every large solution U of (1.3) dominates u k,m . Therefore u f is the minimal large solution.

Uniqueness

Proof of Theorem 1.5(i). Let {D n,j } be as in the proof of Theorem 1.4, chosen so that (4.12) holds for both f and the zero function. In fact we shall use all the notation introduced in this proof. Let U f m,n,j be the solution of the problem (5.1)

-∆u + g(u) = f in D n,j w = max(m, V 0 ) on ∂D n,j .
Then U f n,j = lim m→∞ U f m,n,j is a large solution of (1.3) in D n,j and

(5. Put

Z f = Z f m,n,j := U f m,n,j -u f m,n,j ≤ 0. Then ∆(Z f -Z 0 ) = g(U f m,n,j ) -g(U 0 m,n,j ) -g(u f m,n,j ) + g(u 0 m,n,j ), in D n,j . We rewrite the right hand side in the form df (U f m,n,j -U 0 m,n,j ) -d f (u f m,n,j -u 0 m,n,j ), where df = g(U f m,n,j ) -g(U 0 m,n,j ) U f m,n,j -U 0 m,n,j , d f g(u f m,n,j ) -g(u 0 m,n,j ) u f m,n,j -u 0 m,n,j . Since g is convex and nondecreasing, df ≥ d f ≥ 0, ∆(Z f -Z 0 ) ≥ d f (Z f -Z 0 ) in D n,j . As Z f -Z 0 =0 on ∂D n,j , it follows that Z f -Z 0 ≤ 0 in D n,j . Thus U f m,n,j -U 0 m,n,j ≤ u f m,n,j -u 0 m,n,j
and consequently, lim

j→∞ lim n→∞ lim m→∞ (U f m,n,j -U 0 m,n,j ) ≤ lim j→∞ lim m→∞ lim n→∞ (u f m,n,j -u 0 m,n,j ).
Hence, by (5.2) and (4.12):

ūf -ū0 ≤ u f V -u 0 V . Thus (5.3) 0 ≤ ūf -u f V ≤ ū0 -u 0 V .
Assuming that (1.1) possesses a unique large solution dominating V , we find that ū0u 0

V and hence ūf = u f V . Therefore (1.3) possesses a unique large solution in the class of functions dominating V .

Proof of Theorem 1.5(ii). If (1.1) possesses a large solution U 0 then (1.3) possesses a large solution U ≥ U 0 . Since Ω is bounded, (1.3) possesses a minimal large solution u f (by Theorem 1.4(iii)) and a maximal solution ūf (by Theorem 1.1). If U 0 is the unique large solution of (1.1) then, by the same argument as in part (i), u f = ūf .

Solutions in the whole space

Proof of Theorem 1.7. (i) Let u f R be the maximal solution of (1.3) in B R = B R (0); its existence is guaranteed by Theorem

1.1. If V is a subsolution of (1.1), u f R ≥ V and u R decreases with R. Hence u f = lim R→∞ u f R is a solution of (1.3) in R N and u f ≥ V . (ii) Obviously, u f is the maximal solution of (1.3) in R N . Next we construct the minimal solution bounded below by V . For R > 0, let v f R be the solution of the problem (6.1) -∆v + g(v) = f in B R v = V on ∂B R . Then (6.2) V ≤ v f R ≤ u f R . Since V is a subsolution, v f R increases with R. Therefore (6.3) V ≤ v f := lim R→∞ v f R ≤ u f .
Clearly v f is the minimal solution of (1.3) bounded below by V . As in the proof of Theorem 1.5 we obtain,

u f -v f ≤ u 0 -v 0 .
If (1.1) possesses a unique solution in R N then u 0 = v 0 and consequently u f = v f . Thus (1.3) possesses a unique solution bounded below by V .

Proof of Theorem 1.8. A-priori Estimates. If u is a solution of (1.3) in R N then ũ(•) = -u(-•) satisfies (6.4) -∆ũ + g(ũ) = f in R N , where f (x) = -f (-x).

For every R > 0, let U R be the maximal solution of (6.5)

-∆v + g(v) = |f | in B R .
By Theorem 1.4, U R is a large solution. Clearly R → U R decreases as R increases. Therefore U = lim R→∞ U R is the maximal solution of

-∆v + g(v) = |f | in R N .
Similarly, let W R be the maximal solution of (6.6) -∆w + g(w) = | f | in B R , so that W = lim R→∞ W R is the maximal solution of

-∆v + g(v) = | f | in R N .
If u is any solution of (1.3) in B R then u ≤ U R and ũ ≤ W R so that (6.7) WR ≤ u ≤ U R .

Existence. Let k > 0, put f k = min(|f |, k)sign f and denote by W k,R and U k,R the maximal solutions defined above, with f replaced by f k . Then W k,R and U k,R are locally bounded and increase with k. Consequently, if {u k R : R > 0} is a family of functions such that u k R is a solution of (1.3) in B R , with f replaced by f k , this family is locally uniformly bounded. This means that, for every compact set K, there exits R k (K) > 0 such that {u k R : R > R k (K)} is uniformly bounded in K. Therefore there exists a sequence R j → ∞ such that {u k R j } converges locally uniformly to a solution u k of (1.3) in R N , with f replaced by f k . By (6.7), the family of solutions {u k : k > 0} is dominated (in absolute value) by a function in L 1 loc (R N ) and it is non-decreasing. Consequently u = lim u k is a solution of (1.3) in R N .

Uniqueness. Under the assumptions of (ii) u ≡ 0 is a solution of (1.1) in R N and it is easy to see that this is the only solution. Therefore the uniqueness statement for (1.3) follows by the same argument as in the proof of Theorem 1.7.

(1. 1 )

 1 -∆u + g(u) = 0 in Ω, subject to the boundary blow-up condition (1.2) lim ρ ∂Ω (x)→0 x∈K u(x) = ∞ ∀K ⊂ Ω, K bounded.

  dominates the solution of the boundary value problem-∆u + g(u) = f 0 in Ω, u = h on ∂Ω.Proof of Theorem 1.2. First we verify the following assertion: If u ∈ L 1 loc (Ω) is a supersolution (in the sense of Definition 3.1) of the boundary value problems(3.1) 

  solution of(1.3) in Ω. If (1.1) possesses a large solution then, of course, ūf (resp. ū0 ) is the maximal large solution of (1.3) (resp. (1.1)).
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