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If h is a nondecreasing real valued function and 0 ≤ q ≤ 2, we analyse the boundary behaviour of the gradient of any solution u of -∆u + h(u) + |∇u| q = f in a smooth N-dimensional domain Ω with the condition that u tends to infinity when x tends to ∂Ω. We give precise expressions of the blow-up which, in particular, point out the fact that the phenomenon occurs essentially in the normal direction to ∂Ω. Motivated by the blow-up argument in our proof, we also give in Appendix a symmetry result for some related problems in the half space.

Introduction

Let Ω be a C 2 domain in R N (N ≥ 2), h a continuous nondecreasing function and q a nonnegative real number. The aim of this work is to study the behaviour of solutions of nonlinear equations of the following type

-∆u + h(u) + |∇u| q = f in Ω ⊆ R N , (1.1 ) 
satisfying a boundary blow-up condition lim

d Ω (x)→0 u(x) = +∞ (1.2 )
where d Ω (x) = dist (x, ∂Ω). The interest for solutions of (1.1 ) satisfying such singular boundary conditions arises from stochastic control problems with state constraints, as explained in [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF], where h(u) = λ u. In that situation, u represents the value function of the optimal control problem and -q∇u |∇u| q-2 acts as the optimal (feedback) control which forces the process to stay in Ω.

From a purely PDE's point of view, the existence of such solutions depends on the possibility of finding universal interior estimates for (1.1 ), independently on the behaviour of u at the boundary. In the case q = 0 these estimates hold provided the well-known Keller-Osserman condition ( [START_REF] Keller | On solutions of ∆u = f (u)[END_REF], [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF]) is satisfied, i.e.

+∞ ds s 0 h(t)dt < ∞ . (1.3 ) 
A large number of papers has investigated properties of such singular solutions (also called large, or explosive solutions) when the lower order terms only depend on u (see [START_REF] Bandle | Large solutions of semilinear elliptic equations: existence, uniqueness and asymptotic behaviour[END_REF], [START_REF] Bandle | Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary[END_REF], [START_REF] Diaz | Local estimates: uniqueness of solutions to some nonlinear elliptic equations[END_REF], [START_REF] Lowner | Partial differential equations invariant under conformal or projective transformations[END_REF], [START_REF] Marcus | Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations[END_REF], [START_REF] Marcus | Existence and uniqueness results for large solutions of general nonlinear elliptic equations[END_REF], [START_REF] Veron | Semilinear elliptic equations with uniform blow-up on the boundary[END_REF]). In presence of gradient dependent terms as in (1.1 ), large solutions in smooth domains have been studied in [START_REF] Bandle | Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms[END_REF], [START_REF] Giarrusso | Asymptotic behaviour of large solutions of an elliptic quasilinear equation in a borderline case[END_REF], [START_REF] Ghergu | Explosive solutions of elliptic equations with absorption and non-linear gradient term[END_REF], [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF], [START_REF] Porretta | Local estimates and large solutions for some elliptic equations with absorption[END_REF]; roughly speaking, such solutions exist if h satisfies (1.3 ) or if 1 < q ≤ 2 and h is unbounded at infinity. Indeed, in equation (1.1 ) both lower order terms may lead to the construction of large solutions, so that existence of solutions to problem (1.1 )-(1.2 ) can be proved even if h is sublinear, provided q > 1.

In this paper we consider problem (1.1 )-(1.2 ), mainly referring to the model examples h(s) = e as , a > 0, and h(s) = s β , β > 0, and we study the asymptotic behaviour of ∇u at the boundary. It turns out, as a quite general rule, that ∇u blows up, in its first approximation, in the normal direction: in the model examples, our results read as follows. We denote by d Ω (x) the distance of a point x to ∂Ω, and by ν the outward unit normal vector at ∂Ω. Theorem 1.1 Let Ω be a C 2 domain in R N , ν be the normal outward unit vector to ∂Ω, and assume f ∈ L ∞ (Ω).

A-Let a > 0, and u be a solution of -∆u + e au + |∇u| q = f in Ω, lim

d Ω (x)→0 u(x) = +∞ .
Then there holds:

(1) If q = 2 and a ≤ 2, then lim

d Ω (x)→0
d Ω (x)∇u(x) = ν.

(2) if 0 ≤ q < 2, or if q = 2 and a > 2, then lim d Ω (x)→0

d Ω (x)∇u(x) = 2 a ν.

B-Let β > 0 and u be a solution of

-∆u + |u| β-1 u + |∇u| q = f in Ω, lim d Ω (x)→0 u(x) = +∞ .
Then there holds:

(3) If q ≥ 2β 1+β , then lim

d Ω (x)→0
d Ω (x)

1 q-1 ∇u(x) = b ν,
in which formula b = (q -1) -1 q-1 if q > 2β 1+β , and b = 1 a 2-q 2(q-1)

2-q q-1 1 q-1 if q = 2β
1+β , where a is the solution of aa q 2 = 2q.

(4) If q < 2β 1+β , then

lim d Ω (x)→0
d Ω (x)

1+β β-1 ∇u(x) = b ν, where b = 2 β-1 2(β+1)) (β-1) 2 ) 1/(β-1)
.

The previous result generalizes those obtained in [START_REF] Bandle | On the solutions of quasilinear elliptic problems with boundary blow-up[END_REF] and [START_REF] Bandle | Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary[END_REF] for large solutions of semilinear problems, in case the lower order terms do not depend on ∇u; indeed, our proof follows a similar approach based on a blow-up argument near the boundary and requires some symmetry results on the blown-up functions, which are solutions of a similar problem in the half space. Even in the case q = 0, our result extends those previous ones by considering a slightly larger class of nonlinearities h(s). The conclusions of Theorem 1.1 will follow as a particular case of the results which we prove in Section 2. Moreover, in a third section we will also provide a simple uniqueness result for solutions of (1.1 )-(1.2 ) which is meant to be applied in case h is concave, or the sum of a concave and a convex function. In fact, previous uniqueness results seem to have been proved only if h has a convex type behaviour.

Finally, motivated by our blow-up argument in case h(s) has a power growth at infinity, we prove in Appendix some symmetry and uniqueness results for nonnegative solutions of the problem in the half space

-∆u + α u p + |∇u| q = 0 in R N + : = {ξ = (ξ 1 , ξ ′ ) ∈ R N : ξ 1 > 0}, u(0, ξ ′ ) = M
where α ≥ 0, p > 0 and M is a nonnegative constant or possibly M = +∞. We give a simple proof, based mainly on comparison with radial or one-dimensional solutions, that any nonnegative solution u is one-dimensional, and uniqueness follows if α > 0.

Asymptotic behaviour of derivatives

In this section we let Ω ⊂ R N be a bounded C 2 domain. We denote by d Ω (x) = dist (x, ∂Ω), and by ν(x) the outward unit normal vector at any point x ∈ ∂Ω, or simply ν when meant as a vector field defined on ∂Ω. In the sequel, τ is any unitary tangent vector field defined on ∂Ω as well, i.e. τ • ν = 0.

We start by considering the equation

-∆u + h(u) + |∇u| 2 = f in Ω, lim d Ω (x)→0 u(x) = +∞ , (2.1 ) 
where h is an increasing function such that lim s→+∞ h(s) = +∞, and f ∈ L ∞ (Ω).

It is proved in [START_REF] Porretta | Local estimates and large solutions for some elliptic equations with absorption[END_REF] that problem (2.1 ) admits a solution, and moreover any solution satisfies the estimate

u(x) -F (d Ω (x)) is bounded near ∂Ω, where F -1 (s) = +∞ s e -t [ t 0 h(ξ)e -2ξ dξ] 1 2 dt. (2.2 )
Note that the function F has at most a logarithmic blow-up rate. Moreover, if the following limit exists

lim ξ→+∞ 1 + 1 2 h(ξ)e -2ξ ξ 0 h(t)e -2t dt -1
one has, using twice L'Hopital's rule and since both F -1 (ξ) and (F -1 ) ′ (ξ) tend to zero as ξ goes to infinity,

lim s→0 F (s) | log s| = -lim s→0 s F ′ (s) = = -lim ξ→+∞ F -1 (ξ) (F -1 ) ′ (ξ) = -lim ξ→+∞ (F -1 ) ′ (ξ) (F -1 ) ′′ (ξ) = lim ξ→+∞ 1 + 1 2 h(ξ)e -2ξ ξ 0 h(t)e -2t dt -1
.

(2.3 )

Similarly one has lim s→0 (F (s) + log s) = lim ξ→+∞ log(e ξ F -1 (ξ)) = = log -lim ξ→+∞ (F -1 ) ′ (ξ) e -ξ = - 1 2 log lim ξ→+∞ ξ 0 h(t)e -2t dt .
(2.4 )

In particular we deduce that

u(x) + log(d Ω (x)) is bounded near ∂Ω if and only if +∞ 0 h(t)e -2t dt < ∞, (2.5 ) 
and that if lim

s→+∞ h(s)e -2s s 0 h(t)e -2t dt = λ ≥ 0, then u(x) | log(d Ω (x))| → 2 λ + 2 as d Ω (x) → 0. (2.6 )
In view of these remarks, we will consider three types of situations in our analysis, which are mutually excluding: Theorem 2.1 Let u be a solution of (2.1 ). Then we have:

(h1) +∞ h(t)e -2t
(1) If (h1) or (h2) hold true,

lim δ→0 δ ∂u ∂ν(x) (x -δν(x)) = 1 , lim δ→0 δ ∂u ∂τ (x) (x -δν(x)) = 0 (2.8 )
holds uniformly for x ∈ ∂Ω, and then

lim d Ω (x)→0
d Ω (x)∇u(x) = ν.

(2.9 )

(2) If (h3) holds true,

lim δ→0 δ ∂u ∂ν(x) (x -δν(x)) = 2 λ + 2 , lim δ→0 δ ∂u ∂τ (x) (x -δν(x)) = 0 (2.10 )
holds uniformly for x ∈ ∂Ω, and then

lim d Ω (x)→0 d Ω (x)∇u(x) = 2 λ + 2 ν. (2.11 ) 
Proof. Thanks to (2.2 ), we can fix d 0 and C 0 such that

|u(x) -F (d Ω (x))| ≤ C 0 for any x ∈ Ω: d Ω (x) ≤ d 0 , with F -1 (s) = +∞ s e -t [ t 0 h(ξ)e -2ξ dξ] 1 2
dt.

(2.12 )

We use a similar blow-up framework as in [START_REF] Bandle | On the solutions of quasilinear elliptic problems with boundary blow-up[END_REF], [START_REF] Bandle | Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary[END_REF]. Let x ∈ ∂Ω and consider a new system of coordinates (η 1 , . . . , η N ) centered at x and such that the positive η 1 -axis is the direction -ν(x), where ν(x) is the outward normal vector at x; thus x = O is the origin and η 1 is the direction of the inner normal vector at x. In the η-space, let us set P 0 = (d 0 , 0, . . . , 0) and define D δ = B(O, δ 1-σ ) ∩ B(P 0 , d 0 ) , with 0 < σ < 1 2 . Note that we can assume that Ω satisfies the interior sphere condition with radius d 0 so that D δ ⊂ Ω, and since the operator is invariant under translations and rotations we obtain the same equation for u in the new variable η. Define ξ = η δ and the function

v δ (ξ) = u(η) -F (δ) = u(δξ) -F (δ) ,
where F is defined in (2.12 ). Then v δ (ξ) satisfies the equation

-∆v δ + h(u(δξ))δ 2 + |∇v δ | 2 = δ 2 f (δξ) ξ ∈ 1 δ D δ .
It is readily seen that since 0 < σ < 1 2 , if η ∈ ∂B(P 0 , d 0 ) ∩ ∂D δ , then η 1 δ → 0 and |η ′ | δ → +∞ as δ → 0; moreover since |η| < δ 1-σ , we conclude that the domain 1 δ D δ converges to the half space R N + : = {ξ ∈ R N : ξ 1 > 0}. Let us study now the limit of v δ . First of all, observe that since F -1 is a decreasing and convex function (as easily checked), then its inverse function F is also convex. We have then, for any λ < 1,

0 ≤ F (λs) -F (s) ≤ -F ′ (λs) λs 1 -λ λ ,
and since (see also (2.3 )) 0 < -F ′ (ξ)ξ < C for any ξ ∈ R + , we deduce that F enjoys the property

∃C > 0 : F (λs) -F (s) ≤ C 1 -λ λ ∀λ < 1 , ∀s > 0 . (2.13 ) Since ∂Ω is C 2 , we have that for η ∈ D δ d Ω (η) = η 1 + O(|η| 2 ) = η 1 + O(δ 2-2σ ) . (2.14 )
Hence from (2.12 )-(2.13 ) we deduce that

|u(δξ) -F (δ ξ 1 + δ 2-2σ )| ≤ C 1 for any ξ ∈ 1 δ D δ , (2.15 ) so that |v δ (ξ)| ≤ C 1 + |F (δ (ξ 1 + δ 1-2σ )) -F (δ)| for any ξ ∈ 1 δ D δ . (2.16 ) 
In particular, due to (2.13 ), (2.16 ) implies that

|v δ (ξ)| ≤ C 1 + C 2 max{ξ 1 , 1 ξ 1 } ,
hence v δ is locally uniformly bounded. Assume that (h1) holds true: then (see (2.4 )) F (δ) + log(δ) is bounded for small δ, so that (2.16 ) implies that

v δ (ξ) ≥ F (δ(ξ 1 + δ 1-2σ )) -F (δ) -C 1 ≥ -log(ξ 1 + δ 1-2σ ) -C 2 ,
for ξ ∈ 1 δ D δ ; in particular in the limit (as δ → 0) we deduce (recall that σ < 1 2 )

v(ξ) ≥ -log ξ 1 -C 2 (2.17 )
so that lim

ξ 1 →0 + v(ξ) = +∞. Noticing that δ 2 h(u(δξ)) = h(v δ + F (δ))e -2(v δ +F (δ)) e 2(v δ +F (δ)+log δ) ≤ Ch(v δ + F (δ))e -2(v δ +F (δ)) e 2v δ ,
and using that v δ is locally bounded and h(s)e -2s → 0 as s → +∞, we deduce

δ 2 h(u(δξ)) → 0 in L ∞ loc (R N + ) . (2.18 )
Furthermore, standard elliptic estimates for second derivatives imply that |∇v δ | is also locally uniformly bounded, and, in the end, that v δ is locally relatively compact in the C 1 loc -topology. Let v be the limit of some subsequence v δ k , as δ k → 0. Therefore v is a solution of

-∆v + |∇v| 2 = 0 in R N + , lim ξ 1 →0 + v(ξ) = +∞ .
(2.19 )

The function w = e -v is positive and harmonic in R N + ; it satisfies w ≤ Cξ 1 , from (2.17 ), hence w = 0 on {ξ 1 = 0}. We deduce (for instance using Kelvin transform, or symmetry results) that there exists λ ∈ R + such that w = λ ξ 1 , hence v = -log ξ 1 -log λ. In particular, we obtain, locally uniformly in R N + :

∂v δ k ∂ξ 1 → - 1 ξ 1 , ∂v δ k ∂ξ j → 0 ∀j = 2, . . . , N,
for any convergent subsequence v δ k . Note that while the limit function v is determined up to the constant -log λ, its gradient is uniquely determined. This implies that the whole sequence of derivatives ∂v δ ∂ξ i will be converging to this limit. We have proved then that it holds:

δ ∂u(δξ) ∂ξ 1 → - 1 ξ 1 , δ ∂u(δξ) ∂ξ j → 0 ∀j = 2, . . . , N.
Recalling that ξ 1 is the direction of the inner normal vector and that the point η = (δ, 0, . . . , 0) coincides with xδν(x), we fix ξ 1 = 1 and obtain (2.8 ).

Let us now assume (h2). In this case F (δ) + log(δ) is unbounded, but we still have (see

(2.3 )) F ′ (δ)δ → -1 as δ → 0.
In particular, for any γ < 1 there exists an interval (0, s γ ) such that the function F (s)+γ log s is decreasing in (0, s γ ); therefore, for ξ 1 < 1 and δ small enough, we have

F (δ(ξ 1 + δ 1-2σ )) -F (δ) ≥ -γ log(ξ 1 + δ 1-2σ ) .
Together with (2.16 ) we deduce that

v δ (ξ) ≥ F (δ(ξ 1 + δ 1-2σ )) -F (δ) -C 1 ≥ -γ log(ξ 1 + δ 1-2σ ) -C 1
hence, for any possible limit function v, we deduce that v ≥ -γ log ξ 1 -C 1 for ξ 1 near zero. This implies in particular that v blows-up uniformly on {ξ 1 = 0}. Writing again

δ 2 h(u(δξ)) = h(v δ + F (δ)) h(F (δ)) h(F (δ))e -2F (δ)) F (δ) 0 h(s)e -2s ds e 2 log(δe F (δ) [ F (δ) 0 h(s)e -2s ds] 1 2 ) , (2.20 ) 
and using (h2) and (see

(2.3 )) lim t→+∞ F -1 (t)e t [ t 0 h(s)e -2s ds] 1 2 = lim t→+∞ - F -1 (t) (F -1 ) ′ (t) = 1,
we conclude that (2.18 ) still holds true. Then, passing to the limit in δ, any limit function v will satisfy (2.19 ). Again, we have that w = e -v is harmonic in R N + and w ≤ Cξ γ 1 in a neighborhood of {ξ 1 = 0}, so that w = 0 on ∂R N + . We conclude as above that w = λξ 1 for some λ ∈ R + , and then v = -log ξ 1 -log λ. As before, the convergence of ∇v δ to ∇v then implies (2.8 ) and (2.9 ).

Finally, let us assume (h3), and let again v be such that (a subsequence of) v δ converges to v locally uniformly. Due to the monotonicity of h, we have (see Remark 2.1):

lim s→+∞ h(s + t) h(s) = e (λ+2)t locally uniformly in t so that lim δ→0 h(v δ + F (δ)) h(F (δ)) = e (λ+2)v in L ∞ loc (R N + ).
Since under (h3) we also have (see

(2.3 )) lim t→+∞ F -1 (t)e t [ t 0 h(s)e -2s ds] 1 2 = lim t→+∞ - F -1 (t) (F -1 ) ′ (t) = lim s→0 -F ′ (s)s = 2 λ + 2 , (2.21 ) then (2.20 ) now implies lim δ→0 δ 2 h(u(δξ)) = e (λ+2)v λ e 2 log( 2 λ+2 ) = c λ e (λ+2)v (2.22 )
where c λ = 4λ (λ+2) 2 . Moreover we also deduce from (2.21 ) that there exist an interval (0, σ 0 ) and constants γ 0 < 2 λ+2 and γ 1 > 2 λ+2 such that F (t)+γ 0 log t is decreasing and F (t)+γ 1 log t is increasing in (0, σ 0 ). In particular we have

F (δ(ξ 1 + δ 1-2σ )) -F (δ) ≥ -γ 0 log(ξ 1 + δ 1-2σ ) if ξ 1 ≤ 1 -δ 1-2σ ,
and

F (δ(ξ 1 + δ 1-2σ )) -F (δ) ≥ -γ 1 log(ξ 1 + δ 1-2σ ) if 1 < ξ 1 < σ 0 δ -δ 1-2σ , which together with (2.16 ) imply v δ (ξ) ≥ -γ 0 log(ξ 1 + δ 1-2σ ) -c 0 if ξ 1 ≤ 1 -δ 1-2σ , (2.23 ) and v δ (ξ) ≥ -γ 1 log(ξ 1 + δ 1-2σ ) -c 1 if 1 < ξ 1 < σ 0 δ -δ 1-2σ . (2.24 )
From (2.22 ) and (2.23 )-( 2.24 ) we deduce, passing to the limit in δ, that v satisfies

-∆v + c λ e (λ+2)v + |∇v| 2 = 0 in R N + , lim ξ 1 →0 + v(ξ) = +∞ , (2.25 ) 
and the further estimate

v(ξ) ≥ -γ 1 log ξ 1 -c 1 if 1 < ξ 1 . (2.26 )
We proved in [START_REF] Porretta | Symmetry properties of solutions of semilinear elliptic equations in the plane[END_REF] (Corollary 2.6) that any solution of (2.25 ) only depends on the ξ 1 variable, moreover condition (2.26 ) implies that we have exactly

v = 2 λ + 2 log( 1 ξ 1 ) + 1 λ + 2 log( 2λ c λ (λ + 2) 2 ) = 2 λ + 2 log( 1 ξ 1 ) - log 2 λ + 2 .
We obtain that

∂v δ ∂ξ 1 → - 2 (λ + 2)ξ 1 , ∂v δ ∂ξ j → 0 ∀j = 2, . . . , N,
which, as before, gives (2.10 ) and (2.11 ).

Remark 2.2

The same proof applies if one only requires on the right hand side that lim

d Ω (x)→0 d 2 Ω (x)f (x) = 0, which implies that lim δ→0 δ 2 f (δξ) = 0 locally uniformly for ξ ∈ R N + .
Remark 2.3 Under assumption (h3), the previous proof gives that the rescaled sequence

v δ converges towards v = 2 λ+2 log( 1 ξ 1 ) -log 2 λ+2 . Setting ξ 1 = 1 we deduce that u(x) -F (d Ω (x)) → - log 2 λ + 2
which improves estimate (2.2 ). As a consequence, this also implies that u 1 (x)u 2 (x) → 0 for any two large solutions u 1 , u 2 , hence in this case uniqueness of solutions of (2.1 ) follows immediately by the maximum principle.

We consider now the problem

-∆u + h(u) + |∇u| q = f in Ω, lim d Ω (x)→0 u(x) = +∞ , (2.27 ) 
with 0 ≤ q < 2. In this case if h has an exponential growth at infinity, the gradient term does not affect the behaviour of solutions near the boundary, so that the asymptotic behaviour of this problem turns out to be the same as for the semilinear equation with q = 0. In order to adapt the above proof we will need the following uniqueness result for solutions in the half space.

Lemma 2.1 Let a > 0 and v be a solution of

-∆v + e av = 0 in R N + , lim ξ 1 →0 + v(ξ) = +∞ locally uniformly with respect to ξ ′ ∈ R N -1 .
Assume that v satisfies the following assumption:

∃γ , m , S 0 > 0 : v(ξ) ≥ -γ log S -m ∀ξ ∈ R N : ξ 1 ≤ S , ∀S > S 0 .
(2.28 )

Then v = -2 a log ξ 1 + 1 a log 2 a .
Proof. We can assume a = 1, up to replacing v with 1 a v -1 a log a. We follow the approach used in [START_REF] Porretta | Symmetry properties of solutions of semilinear elliptic equations in the plane[END_REF] (see Proposition 4.1); for any R > 0, S > S 0 , define ω R as the solution of the problem

-∆ω R + e ω R = 0 in B R (0), lim ρ↑R ω R (ρ) = +∞ ,
and define ω R,S as the solution of the problem

-∆ω R,S + e ω R,S = 0 in B R+S (0) \ B R (0), lim ρ↓R ω R,S (ρ) = +∞ , ω R,S (R + S) = -γ log S -m. Now fix ξ ′ ∈ R N -1 , and consider the points ξ R = (R, ξ ′ ), η R = (-R, ξ ′ ) and the functions ω R (• -ξ R ) and ω R,S (• -η R )
. By comparison, and using (2.28 ), we have

v ≤ ω R (• -ξ R ) in B R (ξ R ), v ≥ ω R,S (• -η R ) in B R+S (η R ) ∩ R N + . (2.29 )
It is readily seen that the sequence {ω R (•ξ R )} is decreasing and converges, as R → +∞, to a function ω ∞ which only depends on the ξ 1 -variable and is the maximal solution of

-z ′′ + e z = 0 , lim t→0 + z(t) = +∞ . (2.30 ) 
In particular, from a straightforward computation of solutions of (2.30 ), we obtain ω ∞ (ξ 1 ) = -2 log ξ 1 + log 2.

Let S > S 0 ; without loss of generality we can replace the constants γ and m in (2.28 ) with possibly larger values. In particular, we can assume that γ > 2 and e -m < 2S γ-2 0 : let then w(ρ) = -2 log(ρ -R) -(γ -2) log Sm, computing we have, for ρ ∈ (R, R + S):

-∆w + e w = 2(N -1)(ρ -R)S γ-2 -(2S γ-2 -e -m )ρ (ρ -R) 2 S γ-2 ρ ≤ 2(N -1)S γ-1 -(2S γ-2 -e -m )R (ρ -R) 2 S γ-2 ρ ,
so that there exists a value R 0 (S) such that

-∆w + e w ≤ 0 in B R+S (0) \ B R (0) for any R ≥ R 0 (S). Since w(R + S) = -γ log S -m we deduce that ω R,S ≥ w ≥ -γ log S -m for any R ≥ R 0 (S).
In particular, for any

R > R ′ > R 0 (S), comparing ω R,S (• -η R ) and ω R ′ ,S (• -η R ′ ) (on their common domain B R ′ +S (η R ′ ) \ B R (η R )) we deduce that ω R,S (• -η R ) ≥ ω R ′ ,S (• -η R ′ )
hence for any fixed S the sequence {ω R,S (•η R )} R is definitively increasing and converges to a function ω S which only depends on the ξ 1 -variable and solves

-ω ′′ S + e ω S = 0 , lim t→0 + ω S (t) = +∞ , ω S (S) = -γ log S -m . (2.31 )
Thus from (2.29 ), passing to the limit in R, we derive

ω S (ξ 1 ) ≤ v(ξ) ≤ -2 log ξ 1 + log 2 ∀ξ ∈ R N + : ξ 1 ≤ S , ∀S > S 0 . (2.32 )
Next, letting e -m ≤ 2, we observe that the function z defined by

z(t) = -2 log t -(γ - 2) log(t + 1) -m satisfies -z ′′ + e z = - 2 t 2 - γ -2 (t + 1) 2 + e -m t 2 (t + 1) γ-2 ≤ -2(t + 1) γ-2 + e -m t 2 (t + 1) γ-2 ≤ 0 ,
and since z(S) < -γ log Sm we have that it is a subsolution for the problem (2.31 ), hence

-2 log t -(γ -2) log(t + 1) -m ≤ ω S (t) ≤ -2 log t + log 2 .
(2.33 )

The sequence {ω S (t)} S≥S 0 is then locally bounded and, up to subsequences, converges (locally in the C 2 -topology) to a solution ω ∞ of (2.30 ); but estimate (2.33 ) implies (due to the classification of all solutions of (2.30 ), see e.g. [START_REF] Porretta | Symmetry properties of solutions of semilinear elliptic equations in the plane[END_REF]) that the only possible limit is ω ∞ = -2 log t + log 2. Letting S go to infinity, we conclude from (2.32 ) that v = -2 log ξ 1 + log 2.

We are ready now to deal with the case that q < 2 and h has an exponential scaling at infinity. Our next result extends the one in [START_REF] Bandle | On the solutions of quasilinear elliptic problems with boundary blow-up[END_REF], where q = 0 and h(t) ≡ e λt . Theorem 2.2 Let f ∈ L ∞ (Ω), and let u be a solution of (2.27 ), with 0 ≤ q < 2. Assume that

lim s→+∞ h(s) s 0 h(t)dt = λ > 0 , for every t ∈ R, ∃ lim s→+∞ h(s+t) h(s) : = e λt . ( 2 

.34 )

Then we have:

lim δ→0 δ ∂u ∂ν(x) (x -δν(x)) = 2 λ , lim δ→0 δ ∂u ∂τ (x) (x -δν(x)) = 0 (2.35 )
and therefore

lim d Ω (x)→0 d Ω (x)∇u(x) = 2 λ ν.
(2.36 )

Proof. We use the same framework of the proof of Theorem 2.1, setting

v δ = u(δξ) -F (δ),
where the function F is defined by

F -1 (s) = +∞ s 1 [2 t 0 h(ξ)dξ] 1 2
dt.

(2.37 ) Indeed, as a consequence of Keller-Osserman estimate and due to (2.34 ), there holds

|u(x) -F (d Ω (x))| ≤ C 0 for any x ∈ Ω: d Ω (x) ≤ d 0 , . (2.38 ) 
Observe that, since lim s→+∞ h(s)

s 0 h(t)dt = λ > 0, one can prove (as in (2.3 )) that F ′ (t)t is bounded on R + and F ′ (δ)δ → - 2 λ as δ → 0. (2.39 )
Moreover the function F is convex, so that we still have (2.13 ), and then again

|u(δξ) -F (δ (ξ 1 + δ 1-2σ ))| ≤ C 1 for any ξ ∈ 1 δ D δ . (2.40 )
Reasoning as in the proof of Theorem 2.1 we deduce that there exist positive constants γ 0 , γ 1 , σ 0 such that

F (δ(ξ 1 + δ 1-2σ )) -F (δ) ≥ -γ 0 log(ξ 1 + δ 1-2σ ) if ξ 1 ≤ 1 -δ 1-2σ , and F (δ(ξ 1 + δ 1-2σ )) -F (δ) ≥ -γ 1 log(ξ 1 + δ 1-2σ ) if 1 < ξ 1 < σ 0 δ -δ 1-2σ , which together with (2.40 ) imply v δ (ξ) ≥ -γ 0 log(ξ 1 + δ 1-2σ ) -c 0 if ξ 1 ≤ 1 -δ 1-2σ , (2.41 ) and v δ (ξ) ≥ -γ 1 log(ξ 1 + δ 1-2σ ) -c 1 if 1 < ξ 1 < σ 0 δ -δ 1-2σ . (2.42 )
Now the function v δ satisfies the equation

-∆v δ + h(u(δξ))δ 2 + |∇v δ | q δ 2-q = δ 2 f (δξ) ξ ∈ 1 δ D δ
and v δ is locally uniformly bounded. Since

δ 2 h(u(δξ)) = h(v δ + F (δ)) h( F (δ)) h( F (δ)) F (δ) 0 h(s)ds e 2 log(δ[ F (δ) 0 h(s)ds] 1 2 ) ,
as in the proof of Theorem 2.1 we obtain, using (2.34 ) and (2.39 ), that δ 2 h(u(δξ)) is locally uniformly bounded and moreover lim δ→0 δ 2 h(u(δξ)) = e λv 2 λ locally uniformly, where v is the limit of a subsequence (not relabeled) of v δ . When q > 1, local estimates of Bernstein's type (see e.g. [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF], [START_REF] Lions | Quelques remarques sur les problemes elliptiques quasilineaires du second ordre[END_REF] and the remark therein of the regularity of f ), imply that any solution of (2.27 ) satisfies, for a constant C > 0,

|∇u(x)| ≤ Cd Ω (x) -1 q-1 .
In particular v δ verifies an equation of type

-∆v δ + F δ • ∇v δ = g δ , (2.43 ) 
where g δ , F δ are a function, and a field respectively, which are locally uniformly bounded. By elliptic estimates we deduce that ∇v δ is also locally uniformly bounded, and v δ is relatively compact in the C 1 loc -topology. We have therefore lim

δ→0 |∇v δ | q δ 2-q = 0 . When 0 ≤ q ≤ 1, u ∈ L ∞ loc (Ω) ∩ H 1 loc (Ω) implies |∇u| q ∈ L 2/q
loc (Ω). Thus, by elliptic equations regularity theory and a standard bootstraping argument, it follows that ∇u remains locally bounded and the above limit holds true directly. Thus, by replacing g δ by its expression and using also (2.41 )-(2.42 ), it turns out that v is a solution of

-∆v + 2 λ e λv = 0 in R N + , lim ξ 1 →0 + v(ξ) = +∞ , (2.44 ) 
satisfying in addition that there exists γ, C > 0 such that for any S > 1 we have v(ξ) ≥ -γ log S -C for any ξ: ξ 1 ≤ S.

(2.45 )

When By Lemma 2.1 we conclude that v = -2 λ log ξ 1 , and this uniqueness result implies also that the whole sequence v δ is converging in C 1 loc (R N + ). The convergence of ∇v δ to ∇v then yields (2.35 ) and (2.36 ).

Remark 2.4

As a byproduct of the scaling argument, from the convergence of v δ = u(δξ) -F (δ) to -2 λ log ξ 1 , we obtained, setting ξ = 1, that

u(x) -F (d Ω (x)) → 0 as d Ω (x) → 0,
where F is defined in (2.37 ). In case q = 0 we recover a result of [START_REF] Lazer | Asymptotic behaviour of solutions of boundary blow up problems[END_REF].

Finally, we consider the case that h has a power-type asymptotic rescaling at infinity: we extend then some results proved in [START_REF] Bandle | Asymptotic behaviour of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary[END_REF] for the case q = 0. Theorem 2.3 Let f ∈ L ∞ (Ω) and u be a solution of (2.27 ), with 0 ≤ q < 2. (2.47 )

Then we have:

lim δ→0 1 F ′ (δ) ∂u ∂ν(x) (x -δν(x)) = 1 , lim δ→0 1 F ′ (δ) ∂u ∂τ (x) (x -δν(x)) = 0 (2.48 )
where F -1 (s) is defined in (2.37 ), and in particular

lim d Ω (x)→0 ∇u(x) F ′ (d Ω (x)) = ν.
(2.49 )

(ii) Assume that q > 1 and

lim s→+∞ h(s) 2 q s 0 h(t)dt = l , (2.50 ) 
for some l ≥ 0, and let a > 0 be such that a 2-qa q 2 = ( 2-q 2 l) q 2-q . Then

lim δ→0 δ 1 q-1 ∂u ∂ν(x) (x -δν(x)) = b q , lim δ→0 δ 1 q-1 ∂u ∂τ (x) (x -δν(x)) = 0 (2.51 )
where b q = 1 a 2-q 2(q-1) 2-q q-1 1 q-1 , and then

lim d Ω (x)→0 d Ω (x) 1 q-1 ∇u(x) = b q ν.
(2.52 ) Remark 2.5 As pointed out in Remark 2.1, the existence of the limit in (2.47 ) automatically implies that this limit is a power function.

Proof. (i) Under assumption (2.46 ), we can apply the results in [START_REF] Bandle | Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms[END_REF] and use that lim

d Ω (x)→0 u(x) F (d Ω (x)) = 1, (2.53 ) 
In other words, the behaviour of u is determined by the Keller-Osserman estimate in this case. Let us now use the framework of Theorem 2.1, introducing the system of coordinates (η 1 , . . . , η N ) whose η 1 -axis is the inner normal direction. Define O δ = (δ, . . . , 0) and the domain Dδ

= B(O δ , δ 1-σ ) ∩ B(P 0 , d 0 -δ) , σ ∈ (0, 1 2 
).

Again we have that Dδ converges to the half space {ξ : ξ 1 > 0}. Now we set ξ = η-O δ δ and we introduce the blown-up function

v δ = u(δξ + O δ ) F (δ) .
This time let us choose

d 0 such that d Ω (x) < d 0 implies | u(x) F (d Ω (x)) -1| ≤ ε 0 ; thanks to (2.14 ) it follows (1 -ε 0 ) F (δ(ξ 1 + 1) + O(δ 2-2σ )) ≤ u(δξ + O δ ) ≤ (1 + ε 0 ) F (δ(ξ 1 + 1) + O(δ 2-2σ )) .
In particular we deduce that 0 ≤ v δ ≤ (1 + ε 0 ), i.e. v δ is uniformly bounded and satisfies

-∆v δ + h(u(δξ + O δ ))δ 2 F (δ) + F (δ) q-1 |∇v δ | q δ 2-q = f (δξ + O δ ) δ 2 F (δ) .
Note that (2.47 ) implies

lim t→+∞ F -1 (t) h(t) t = lim t→+∞ +∞ 1 1 2 s 0 h(tξ) h(t) dξ ds = 2(α + 1) α -1 (2.54 ) so that lim δ→0 h( F (δ))δ 2 F (δ) = 2(α + 1) (α -1) 2 .
Set c α = 2(α+1) (α-1) 2 ; then we have, using that v δ (up to subsequences) converges, locally uniformly, to a function v, and h(st) h(s) converges to t α locally uniformly in R,

h(u(δξ + O δ ))δ 2 F (δ) = h(v δ F (δ)) h( F (δ)) h( F (δ))δ 2 F (δ) → c α v α .
As in the previous theorem, we can use the local estimates on ∇u for solutions of (2.27 ), in order to get |∇u(x)| ≤ Cd Ω (x)

-1 q-1
when q > 1 for some constant C > 0. This implies that F (δ) q-1 |∇v δ | q-1 δ 2-q is locally uniformly bounded. Hence v δ satisfies an equation like (2.43 ) with g δ and F δ locally bounded. We deduce with a simple bootstrap argument and elliptic regularity that v δ is relatively compact in the C 1 loc -topology. Moreover assumption (2.46 ) implies that lim

t→+∞ 1 t 2 2-q t 0 h(s)ds = +∞ ,
which in turn gives that lim δ→0 F (δ) q-1 δ 2-q = 0 .

Therefore we conclude that F (δ) q-1 |∇v δ | q δ 2-q δ→0 → 0 .

When 0 ≤ q ≤ 1, ∇u remains locally bounded and the same conclusion holds. In both case we conclude that the function v satisfies, in the limit, the equation 

-∆v + c α v α = 0 in R N + , ( 2 
lim t→0 t F ′ (t) F (t) = lim ξ→+∞ - F -1 (ξ) 2 ξ 0 h(s)ds ξ = = lim ξ→+∞ -F -1 (ξ) h(ξ) ξ 2 ξ 0 h(s)ds ξ h(ξ) = - 2(α + 1) α -1 2 α + 1 = - 2 α -1 .
(2.57 )

Moreover, the function

F ′ (ξ)
F (ξ) is increasing, so that for any λ > 1,

1 ≥ F (λδ) F (δ) = exp log( F (λδ)) -log( F (δ)) ≥ exp F ′ (δ)δ F (δ) (λ -1) ≥ ε 0 > 0 .
Thus, for any λ > 1 the sequence F (λ δ) F (δ) is bounded, strictly positive, and satisfies, in view of (2.57 ) and (2.56 ),

F (λ δ) F (δ) = F ′ (λ δ) F ′ (δ) λ(1+o(1)) = F (λδ) 0 h(s)ds F (δ) 0 h(s)ds λ(1+o(1)) = F (λδ) F (δ) h( F (λ δ)) h( F (δ)) λ(1+o(1)) .
Using (2.47 ) we deduce

∃ lim δ→0 F (λ δ) F (δ) = λ -2 α-1 .
(2.58 )

Then we have

F (δ(ξ 1 + 1 + O(δ 1-2σ )) F (δ) ≥ (1 + ξ 1 ) -2 α-1 + o(1) as δ → 0. ( 2 

.59 )

Since we have

u(δξ + O δ ) F (δ(ξ 1 + 1) + O(δ 2-2σ )) F (δ(ξ 1 + 1) + O(δ 2-2σ )) F (δ) ≤ v δ ≤ u(δξ + O δ ) F (δ(ξ 1 + 1) + O(δ 2-2σ ))
from (2.53 ) (recall that η = δξ + O δ and dist (η, ∂Ω) is estimated in (2.14 )) and (2.59 ) we obtain:

(

1 + ξ 1 ) -2 α-1 + o(1) ≤ v δ (ξ) ≤ 1 + o(1) as δ → 0,
and we conclude that lim

ξ 1 →0 + v(ξ 1 ) = 1.
Together with (2.55 ) 

this implies that v = (1 + ξ 1 ) -2 α-1 . The C 1 loc convergence of v δ gives then ∇v δ (ξ) → - 2 α -1 (1 + ξ 1 ) -α+1 α-1 (1, 0, . . . , 0) . Now recall that ∇ ξ u(δξ + 0 δ ) = F (δ)
δ ∇v δ (ξ), hence using (2.57 )-( 2.58 ) we get

∇ ξ u(δξ + 0 δ ) F ′ (δ(1 + ξ 1 )) → (1, 0, . . . , 0) ,
which gives (2.48 ) and (2.49 ).

(ii) Using (2.50 ), we have from [START_REF] Bandle | Boundary blow-up for semilinear elliptic equations with nonlinear gradient terms[END_REF] and [START_REF] Giarrusso | Asymptotic behaviour of large solutions of an elliptic quasilinear equation in a borderline case[END_REF]:

lim d Ω (x)→0 u(x) c q d Ω (x) -2-q q-1 = 1 , (2.60 ) 
where c q = 2-q (q-1) √ a

2-q

q-1 . With the same notations as above we set

v δ (ξ) = u(δξ + O δ ) c q δ -2-q q-1
.

As before, we deduce that v δ is uniformly bounded, and satisfies

-∆v δ + h(u(δξ + O δ ))δ q q-1 c q + c q-1 q |∇v δ | q = f (δξ + O δ ) δ q q-1 c q .
Now assumption (2.50 ) implies lim

t→+∞ 1 t 2 2-q t 0 h(s)ds = 2 -q 2 l q 2 2 2-q .
(2.61 )

Noticing that

h(u(δξ + O δ ))δ q q-1 = h(u(δξ + O δ )) u(δξ+O δ ) 0 h(s)ds q 2 u(δξ+O δ ) 0 h(s)ds q 2 u(δξ + O δ ) q 2-q (c q v δ ) q 2-q ,
and using (2.61 ) and assumption (2.50 ), we get

h(u(δξ + O δ ))δ q q-1 δ→0 → ( 2 -q 2 l) q 2-q (c q v) q 2-q .
Therefore passing to the limit as δ → 0, we conclude that v solves

-∆v + ( 2 -q 2 l) q 2-q c q 2-q -1 q v q 2-q + c q-1 q |∇v| q = 0. (2.62 )
Similarly as for (i), thanks to (2.60 ) we also obtain that lim

ξ 1 →0 + v(ξ) = 1 , lim ξ 1 →+∞ v(ξ) = 0 . (2.63 )
Recalling the value of c q and the definition of a in (2.50 ), one can check that the function

(ξ 1 + 1) -2-q
q-1 is a solution of (2.62 )-(2.63 ). On the other hand, for any α ≥ 0, β > 0, the problem

-∆z + αz q 2-q + β |∇z| q = 0 in R N + , z | ξ 1 =0 = 1 , lim ξ 1 →+∞ z(ξ) = 0 (2.64 )
admits one and only one positive solution: see Theorem 4.1 below for a more general result of this type.

Having an explicit solution of (2.62 )-(2.63 ), we conclude that v = (ξ 1 + 1)

-2-q
q-1 . The uniqueness of this limit yields the convergence of the whole sequence v δ , in particular we get that ∇v δ (ξ) converges to ∇v(ξ) locally uniformly. Setting ξ = (1, 0, . . . , 0), we obtain relations (2.51 )-(2.52 ).

Remark 2.6

The result of Theorem 2.2 still holds if one relax the assumptions on the right hand side: for the case (i), it is enough to require that lim

d Ω (x)→0 f (x) h( F (d Ω (x))) = 0, where F is defined through (2.37 ). Note that if h(s) = |s| β-1 s (β > 1), this means lim d Ω (x)→0 d Ω (x) 2β β-1 f (x) = 0.
In case (ii), it would be enough to have lim

d Ω (x)→0 d Ω (x) q q-1 f (x) = 0; in fact, this corresponds to the case h(s) = s β , with β ≤ q 2-q .
Remark 2.7 In case h(u) = λ u, the (unique) solution of (1.1 ) is the value function of an associated suitable stochastic control problem with state constraint, which is described in [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF]. In that context, the field -q|∇u| q-2 ∇u is exactly the optimal feedback control, whose role is to keep the process to stay inside Ω (minimizing a certain cost functional). Our results (Theorem 2.1 and Theorem 2.3) prove the precise asymptotics for the control, i.e.

-q|∇u(x

)| q-2 ∇u(x) ∼ -q ′ d Ω (x) ν(x) as d Ω (x) → 0. 1) Assumption (3.2 ) is satisfied if h(s) = h 1 (s)+h 2 (s)
, where h 1 is a nondecreasing convex function and h 2 is an increasing concave function. Indeed, one has, taking into account the sublinear behaviour of the concave part,

h((1 + ε)a + εb) -(1 + ε)h(a) ≥ -εh 1 (0) + h 2 ((1 + ε)a + εb) -h 2 ((1 + ε)a) + h 2 ((1 + ε)a) -h 2 (a) -εh 2 (a) ≥ ε b m(a) -c 0 ε(1 + a) , with, for instance, m(a) = h ′ 2 (2a+ 1) if h is differentiable, or m(a) = h 2 (2a+ 1)-h 2 (2a) otherwise.
2) As remarked above, the previous result is meant to apply to the case that h is the sum of a convex function and an increasing concave function. On the other hand, we recall that in case h is purely convex the uniqueness of solutions has been proved in previous papers (see e.g. [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF]), essentially using the following standard argument: if

u 1 u 2 → 1 as d Ω (x) → 0, then it is enough to take T > -h -1 (m) where m = inf Ω f , in order to have A((1 + ε)u 2 + εT ) ≥ h((1 + ε)u 2 + εT ) -(1 + ε)h(u 2 ) + (1 + ε)((1 + ε) q-1 -1)|∇u 2 | q + (1 + ε)f ≥ f + ε[f -h(-T )] ≥ f = A(u 1 ), which yields u 1 ≤ u 2 for any u 1 , u 2 large solutions such that u 1 u 2 → 1 as d Ω (x) → 0.
Note that in this case one does not need to have any information with respect to the gradients.

3) Assumption (3.3 ) is not really restrictive, and is certainly satisfied in smooth domains Ω and in almost all significant situations. Indeed, this is a consequence of the results on the asymptotic behaviour of u and ∇u which are given in Section 2, so that in particular (3.3 ) is verified for all the situations considered in Theorem 2.1, Theorem 2.2 and Theorem 2.3, which deal with possibly power or exponential growths of h at infinity.

In particular, this applies to the case that h is concave (which implies assumption (h1) in Theorem 2.1 and assumption (2.50 ) in Theorem 2.3), hence condition (3.3 ) follows from Section 2 and (3.2 ) also holds true. We get then the following corollary.

Corollary 3.1 Let Ω be a smooth domain and f ∈ L ∞ (Ω). If h is increasing and concave, for any q > 1 problem (3.1 ) has a unique solution.

On the other hand, note that for possibly larger growths of h than considered in Section 2, more precisely when either q = 2 and lim s→+∞ h(s)e -2s s 0 h(t)e -2t dt = +∞, or q < 2 and lim s→+∞ h(s) s 0 h(t)dt = +∞, uniqueness of large solutions follows easily since one can prove directly that u 1 (x)u 2 (x) → 0 as d Ω (x) → 0 for any two solutions u 1 , u 2 . Therefore the problem of uniqueness is really significant when h satisfies growth conditions of the same kind as in Section 2.

4 Appendix: On some symmetry results in the half space

In the proof of Theorem 2.3 we have used a uniqueness result for solutions of (2.64 ). Here we give a self-contained proof of a even more general result on the uniqueness, or symmetry, of nonnegative solutions of such type of problems in the half space, without conditions at infinity. More precisely, consider the problem

         -∆z + αz p + β |∇z| q = 0 in R N + : = {ξ = (ξ 1 , ξ ′ ) ∈ R N : ξ 1 > 0}, z ≥ 0 in R N + , lim ξ 1 →0 + z(ξ 1 , ξ ′ ) = M
locally uniformly with respect to ξ ′ , (

where 0 ≤ M ≤ ∞, β, p > 0, and α ≥ 0.

Next we prove that the solutions of (4.1 ) are one-dimensional, and in particular unique if α > 0. (ii) if α = 0 any solution of (4.1 ) is a function of the only variable ξ 1 . In particular, (a) if q = 2 then (necessarily) M < ∞ and z ≡ M . (b) if q < 2 and M < ∞ then either z ≡ M or there exists l ∈ [0, M ) such that

z(ξ) = l + +∞ ξ 1 [(q -1)s + c M,l ] -1 q-1 ds ,
where c M,l is uniquely determined by the implicit relation +∞ 0

[(q -1)s + c M,l ] -1 q-1 ds = M -l ,
while if M = +∞ then there exists l ∈ [0, +∞) such that

z(ξ) = l + +∞ ξ 1 [(q -1)s] - 1 
q-1 ds.

Proof. (i) Let α > 0. First of all, as in Lemma 2.1, consider the radial solutions ω R of

-∆ω R + αω p R + β |∇ω R | q = 0 in B R (0), lim ρ↑R ω R (ρ) = +∞ ,
and the sequence {ω R (ξξ R )} R>0 , where ξ R = (R, 0). Note that this sequence exists since α > 0 and q > 1. By local estimates we have that ω R (•ξ R ) is locally bounded and moreover it is a decreasing sequence converging towards a function ω ∞ (ξ 1 ) which is the unique solution

of -ω ′′ ∞ + αω p ∞ + β |ω ′ ∞ | q = 0 in (0, +∞) ω ∞ (0) = +∞ . (4.2 )
Indeed, ω ∞ is a positive, decreasing convex function and converges to zero as ξ 1 tends to infinity. Since any solution z of (4.1 ) is below ω R (ξξ R ) on B R (R, 0), we deduce in the limit that z ≤ ω ∞ (ξ 1 ) .

In particular, z tends to zero as ξ 1 tends to infinity. Now, for R, S > 0, consider the radial solutions ω R,S (ρ) of

-∆ω R,S + αω p R,S + β |∇ω R,S | q = 0 in B R+S (0) \ B R (0), lim ρ↓R ω R,S = M , ω R,S (R + S) = 0
and the sequence {ω R,S (ξη R )} R,S , where η R = (-R, 0). It can be easily checked that, since ω R,S is positive and decreasing with respect to ρ, the sequence {ω R,S (•η R )} R,S is increasing respect to R and S. Letting successively R → ∞ and S → ∞, its limit ω M is a one-dimensional solution of (4.1 ). By comparison we have that {ω R,S (ξη R )} R ≤ z(x), for any solution z of (4.1 ), hence we get in the limit

ω M (ξ 1 ) ≤ z(x) ∀ξ 1 > 0. (4.4 )
Now, since α > 0 the one dimensional solution of (4.1 ) is unique; thus if M = +∞, we have obtained that z ≡ ω ∞ (ξ 1 ). If M < ∞, we need a sharper upper bound for z(x). To this purpose, let t ∈ (0, 1); we write ξ = (ξ 1 , ξ ′ ) and denote

B N -1 R = {|ξ ′ | < R} ⊂ R N-1 . We are going to construct a supersolution in the cylinder (0, L) × B N -1 R . Let ϕ t,L (ξ 1 ) be the solution of the one-dimensional problem -ϕ ′′ t,L + t p-1 αϕ p t,L + tβ|ϕ ′ t,L | q = 0 in (0, L), ϕ t,L (0) = M t ϕ t,L (L) = 1 t ω ∞ (L)
, where ω ∞ is the solution defined in (4.2 ). We also set

f t (s) =    (1 -t 2 ) p-1 2 s p if p ≥ 1, (ω∞(L)+ √ 1-t 2 s) p -ω p ∞ (L) √ 1-t 2 if 0 < p < 1. Now consider the function ψ t,R (ξ ′ ) solution of -∆ψ t,R + αf t (ψ t,R ) + β √ 1 -t 2 |∇ψ t,R | q = 0 in B N -1 R ⊂ R N-1 , lim |ξ ′ |↑R ψ t,R = +∞ .
Note that such a function exists since q > 1 and f t (s) is an increasing unbounded function (in fact, f t (s) behaves like (1t 2 ) p-1 2 s p for s large). Define now z(ξ 1 , ξ ′ ) = tϕ t,L (ξ 1 ) + √ 1t 2 ψ t,R (ξ ′ ), we claim that z is a supersolution. Indeed, using that tϕ t,L ≥ ω ∞ (L) (L is meant to be large enough so that ω ∞ (L) < M ), we have zp ≥ t p ϕ p t,L + 1t 2 f t (ψ t,R ).

Moreover

|∇z| q = t 2 |ϕ ′ t,L | 2 + (1 -t 2 )|∇ψ t,R | 2 q 2 ≥ t 2 |ϕ ′ t,L | q + (1 -t 2 )|∇ψ t,R | q
by concavity since q ≤ 2, so that

-∆z + αz p + β |∇z| q ≥ t[-ϕ ′′ t,R + t p-1 αϕ p t,L + tβ|ϕ ′ t,L | q ] + 1 -t 2 [-∆ψ t,R + αf t (ψ t,R ) + β 1 -t 2 |∇ψ t,R | q ] = 0.
Thus z is a supersolution of the equation in the cylinder (0, L) × B N -1 R . Moreover, since ψ t,R blows up at the boundary and is positive, and using (4.3 ), we have that z(x) ≤ z(x) on the boundary of the cylinder. By the comparison principle we deduce that

z(ξ) ≤ tϕ t,L (ξ 1 ) + 1 -t 2 ψ t,R (ξ ′ ) in (0, L) × B N -1 R .
Now let R go to infinity, and use that ψ t,R converges to zero (as a consequence of the local estimates which depend on the distance to the boundary); we obtain that z(ξ) ≤ tϕ t,L (ξ 1 ) , and then, letting L go to infinity, z(ξ) ≤ tϕ t (ξ 1 )

where ϕ t solves the problem

-ϕ ′′ t + t p-1 αϕ p t + tβ|ϕ ′ t | q = 0 in (0, +∞), ϕ t (0) = M t .
As t tends to 1, clearly ϕ t converges to the unique one-dimensional solution of (4.1 ), which we called ω M (ξ 1 ). Therefore z ≤ ω M (ξ 1 ), which together with (4.4 ) gives the claimed result.

(ii) Let now α = 0. Up to multiplying z by a constant, we can assume that β = 1. We consider first the case q < 2.

First observe that, since z is a solution in B ξ 1 (ξ 1 , ξ ′ ), by the local estimates on ∇z (see e.g. [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF], [START_REF] Lions | Quelques remarques sur les problemes elliptiques quasilineaires du second ordre[END_REF]) we have

|∇z(ξ 1 , ξ ′ )| ≤ Cξ -1 q-1 1 ∀(ξ 1 , ξ ′ ) ∈ R N + . (4.5 ) 
In particular, we have

|z(η 1 , ξ ′ ) -z(ξ 1 , ξ ′ )| ≤ C η 1 ξ 1 t -1 q-1 dt (4.6 )
and since 1 q-1 > 1 we deduce that z(ξ 1 , ξ ′ ) has a finite limit as ξ 1 goes to infinity, and due to (4.5 ) this limit does not depend on ξ ′ . Thus we set

l : = lim ξ 1 →+∞ u(ξ 1 , ξ ′ ) .
Using again (4.6 ) we also deduce the estimate:

l -C ξ -2-q q-1 1 ≤ z(ξ 1 , ξ ′ ) ≤ l + C ξ -2-q q-1 1 ∀(ξ 1 , ξ ′ ) ∈ R N + . (4.7 )
Our goal is now to prove that z(ξ) = ω l (ξ 1 ), which is the unique solution of

ω ′′ l = |ω ′ l | q in (0, +∞), ω l (0) = M , lim ξ 1 →+∞ ω l (ξ 1 ) = l.
In order to prove that z ≤ ω l , let t ∈ (0, 1), C ∈ R, and consider the problem on R N-1 :

   -∆ψ t,R + √ 1 -t 2 |∇ψ t,R | q + C = 0 in B N -1 R ⊂ R N-1 , ψ t,R (0) = 0 , lim |ξ ′ |↑R ψ t,R (ξ ′ ) = +∞ . (4.8 ) 
It can be proved (see e.g. [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints. I. The model problem[END_REF] for a more general result in the context of ergodic problems) that there exists a unique constant C = C R such that problem (4.8 ) admits a solution ψ t,R , which is also unique. Note that C R > 0; moreover, by a simple scaling argument, we have

C R = R -q q-1 C 1 , ψ t,R = R -2-q q-1 ψ t,1 |ξ ′ | R , (4.9 ) 
where C 1 , ψ t,1 are the solutions of the same problem in the unit ball B N -1

1

. Clearly, we also have that ψ t,R achieves its minimum in zero, hence ψ t,R ≥ 0. Consider also ϕ t,L,R solution of

-ϕ ′′ + t|ϕ ′ | q = √ 1-t 2 t
C R in (0, L), ϕ(0) = M t ϕ(L) = 1 t (l + CL -2-q q-1 ) .

As in the above case (i), using the concavity of the function s q 2 , one can check that the function z = tϕ t,L,R (ξ 1 ) + √ 1t 2 ψ t,R (ξ ′ ) is a supersolution of (4.1 ) in the cylinder (0, L) × B N -1 R . Moreover, due to (4.7 ) and to the properties of ψ t,R , we have z ≥ z on the boundary, so that we deduce z(ξ) ≤ tϕ t,L,R (ξ 1 ) + 1t 2 ψ t,R (ξ ′ ) ∀(ξ 1 , ξ ′ ) ∈ (0, L) × B N -1 R .

In particular for ξ ′ = 0 we have z(ξ 1 , 0) ≤ tϕ t,L,R (ξ 1 ). Of course we can translate the origin in the ξ ′ -axis, so that we have in fact z(ξ) ≤ tϕ t,L,R (ξ 1 ) ∀ξ ∈ R N + .

Now let R go to infinity; using (4.9 ) we have that C R tends to zero, hence we get z(ξ) ≤ tϕ t,L (ξ 1 ) (4.10 ) where ϕ t,L solves -ϕ ′′ t,L + t|ϕ ′ t,L | q = 0 in (0, L), ϕ t,L (0) = M t ϕ t,L (L) = 1 t (l + CL -2-q q-1 ) .

As L goes to infinity, ϕ t,L converges to the solution of -ϕ ′′ t + t|ϕ ′ t | q = 0 in (0, ∞), ϕ t (0) = M t lim

ξ 1 →+∞ ϕ t (ξ 1 ) = 1 t min{l, M } .
Then, inequality (4.10 ) implies, after taking the limit in L, that z(ξ) ≤ tϕ t (ξ 1 ) for any t ∈ (0, 1). Note that, in particular, this gives z ≤ M on the whole half space R N + ; by definition of l, this implies that l ≤ M . Now, as t tends to 1, clearly ϕ t converges to the function ω l (ξ 1 ) defined above. We conclude that z(ξ) ≤ ω l (ξ 1 ). (4.11 ) In order to establish the reverse inequality, let a ≥ 0, and consider the radial solutions ω = ω a,R,S of the problems -∆ω + |∇ω| q = 0 in B R+S (0) \ B R (0), lim ρ↓R ω = M , ω( R+S)=a . (4.12 )

Let as before η R = (-R, ξ ′ ). We have that the sequence {ω a,R,S (ξη R )} R is increasing and converges to a one-dimensional function ω a,S (ξ 1 ) which is the unique solution of ω ′′ a,S = |ω ′ a,S | q satisfying ω a,S (0) = M and ω a,S (S) = a. As S goes to infinity, we have that ω a,S converges to ω a (ξ 1 ), which is the unique solution of ω ′′ a = |ω ′ a | q in (0, +∞), ω a (0) = M , lim

ξ 1 →+∞ ω a (ξ 1 ) = a.
In particular, if we know that z(ξ) ≥ a for every ξ ∈ R N + , by comparison we deduce that z(ξ) ≥ ω a,R (ξη R ), and then, after letting R and S go to infinity, that z(ξ) ≥ ω a (ξ 1 ). Thus we have the implication z(ξ) ≥ a for every ξ ∈ R N + implies z(ξ) ≥ ω a (ξ 1 ). (4.13 )

As a first step, since z ≥ 0, this implies that z ≥ ω 0 (ξ 1 ), which together with (4.7 ) implies z(ξ) ≥ a 1 : = min max{ω 0 (ξ 1 ) , l -Cξ -2-q q-1 1 } Note that 0 < a 1 < l; applying (4.13 ) we deduce that z(ξ) ≥ ω a 1 (ξ 1 ) and in particular z(ξ) ≥ a 2 : = min max{ω a 1 (ξ 1 ) , l -Cξ -2-q q-1 1

}

Iterating this process we define a sequence of positive real numbers {a n } and a sequence of functions {ω an (ξ 1 )} such that z ≥ ω an (ξ 1 ) , a n = min max{ω a n-1 (ξ 1 ) , l -Cξ -2-q q-1 1 } .

As n goes to infinity, clearly we have that a n ↑ l and ω an (ξ 1 ) converges to ω l (ξ 1 ), which allows to conclude that z ≥ ω l (ξ 1 ) .

Together with (4.11 ) this concludes the proof. The case q = 2 is much simpler. Indeed, if M < ∞ it should be noted that the only nonnegative solution of ω ′′ = |ω ′ | 2 is the constant ω ≡ M . In particular, one can define ϕ t,L,R as above except for requiring ϕ t,L,R (L) = +∞; in the limit (in R, L, t subsequently) one finds that z ≤ M , while from below one has that ω 0,S (defined in (4.12 ) for a = 0) also converges to the constant M , so that one gets z ≥ M , and then z ≡ M . If M = +∞, the function v = e -z turns out to be harmonic in R N + with v = 0 on {ξ 1 = 0}; but v is also asked to satisfy 0 < v ≤ 1, and such a function cannot exist.

  ) : = t α , with α > 1.
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 41 Let 1 < q ≤ 2, α ≥ 0, p > 0 and β > 0. Let also M ∈ [0, +∞]. Then (i) if α > 0 problem (4.1 ) admits a unique solution z, and z = z(ξ 1 )

  dt < ∞ and lim Assumption (h1) corresponds to a subcritical case, where the blow-up rate of u only depends on the first order term, whereas (h2) represents the critical case (e.g. h(s) = e 2s ) in which both terms give a contribution and a superposition effect may be observed; in fact,

							s→+∞	h(s)e -2s = 0.
	(h2)	+∞ and any c ∈ R. h(t)e -2t dt = ∞, lim s→+∞	h(s)e -2s s 0 h(t)e -2t dt	= 0, and	h(s + c) h(s)	is bounded for large s,
	(h3) lim s→+∞	h(s)e -2s s 0 h(t)e -2t dt	= λ > 0, and, for any t ∈ R, ∃ lim s→+∞	h(s + t) h(s)	= e (λ+2)t .
	Remark 2.1 and
	then (using also ω(0) = 1) ω(t) = e a t for some a ∈ R. Moreover, since ω is continuous the above convergence is locally uniform for t in R. Eventually, if
							λ = lim s→+∞	h(s)e -2s s 0 h(t)e -2t dt	,	(2.7 )
	we have											
		s+t 0 e -2s h(s) h(ξ)e -2ξ dξ	=	s 0 h(ξ)e -2ξ dξ e -2s h(s)	+	0	t	h(s + ξ) h(s)	e -2ξ dξ →	1 λ	+	0	t	e (a-2)ξ dξ
	as s → ∞. But L'Hopital's rule also implies			
							lim s→+∞	s+t 0 s 0 h(ξ)e -2ξ dξ h(ξ)e -2ξ dξ	= e (a-2)t ,
	so that we deduce, using also (2.7 ),						
			1 λ	+	0	t	e (a-2)ξ dξ = lim s→+∞		s+t 0 e -2s h(s) h(ξ)e -2ξ dξ	=	e (a-2)t λ	,
	hence a = 2, and a = λ + 2.						

due to (2.5 )-(2.6 ), in both cases we have u(x) | log(d Ω (x))| → 1, but while under (h1) we have that u(x) + log(d Ω (x)) is bounded near ∂Ω, (h2) implies that u(x) + log(d Ω (x)) → -∞ at the boundary. As far as (h3) is concerned, it covers exponential-type growths, including the model h(s) = e (2+λ)s s β for any β ≥ 0. Let us remark that assuming the existence, for any t ∈ R, of lim s→+∞ h(s + t) h(s) automatically implies that the function ω(t) : = lim s→+∞ h(s + t) h(s) is an exponential. Indeed, since h is increasing, the same is true for ω. Since ω(t + t ′ ) = ω(t)ω(t ′ ) for every t, t ′ ∈ R, the continuity of ω at a point t 0 implies that ω is continuous on R,
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On the uniqueness of explosive solutions in case of concavity

In this section we give a uniqueness result for solutions of -∆u + h(u) + |∇u| q = f in Ω, lim

which applies to the case that h(s) is concave. We restrict ourselves to q > 1, which is the significant case. Our basic criterion for uniqueness is the following.

Theorem 3.1 Let Ω be a bounded domain and f ∈ L ∞ (Ω). Assume 1 < q ≤ 2, and that h is a continuous increasing function satisfying the following assumption:

∃ a positive, continuous function m(s), and constants c 0 , ε 0 > 0 such that

If u 1 , u 2 are two solutions of (3.1 ) such that

)

Proof. We set

εT , where T is a positive constant to be chosen later. Then

By assumption (3.3 ), there exists a positive, bounded, compactly supported function ψ(x) such that (q -1)

If K ⊂ Ω is a compact set containing the support of ψ, we have that u 2 is bounded on K and since m(s) is positive we have inf

Inside Ω, we use that h is increasing to deduce that u 1u ε 2 ≤ 0 on any maximum point, so that we can conclude that

Letting ε → 0 we get u 1 ≤ u 2 . Interchanging the roles of u 1 , u 2 , we conclude that u 1 = u 2

Let us make some comments and remarks about the previous result: