Mohammed Sbihi
email: msbihi@ens2m.fr

Christophe Varnier
email: cvarnier@ens2m.fr

Single-machine scheduling with periodic and exible periodic maintenance to minimize maximum tardiness

Keywords: Scheduling, Periodic maintenance, Maximum tardiness, Non resumable job

Single-machine scheduling with periodic and flexible periodic maintenance to minimize maximum tardiness.

Introduction

The majority of the studies in machine scheduling literature assumes that machines are available all times. However, this availability may not be true in real industry settings. Unavailability periods often appear in industry due to a machine breakdown (stochastic) or preventive maintenance (deterministic) during the scheduling period. Therefore, a more realistic scheduling model should take into account associated machine maintenance activities. For a survey of scheduling problems with limited machine availability we refer the reader to the survey paper [START_REF] Schmidt | Scheduling with limited machine availability[END_REF]. Recent papers take into account these unavailability periods (see for instance [START_REF] Adiri | Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs[END_REF], [START_REF] Allaoui | Integrating simulation and optimization to schedule a hybrid ow shop with maintenance constraints[END_REF], [START_REF] Allaoui | Two stage hybrid ow shop scheduling with availability constraints[END_REF], [START_REF] Espinouse | Minimizing the makespan in the two-machine no-wait ow-shop with limited machine availability[END_REF], [START_REF] Lee | Capacitated two-parallel machine scheduling to minimize sum of job completion time[END_REF], [START_REF] Lee | Parallel machines scheduling with non-simultaneous machine available time[END_REF], [START_REF] Mosheiov | Minimizing the sum of job completion times on capacitated parallel machines[END_REF], [START_REF] Sad | An improved approximation algorithm for the single machine total completion time scheduling problem with availability constraints[END_REF] etc...). Most of these papers consider that characteristics of the unavailability periods are known in advance, i.e. that the maintenance of a machine is a xed time interval known beforehand and study how to schedule jobs under the constraint of machine unavailability. However, in some cases (e.g. preventive maintenance), the maintenance of a machine is also controllable. In other words, we can decide when to maintain the machine. The jobs and the maintenances are scheduled simultaneously. In this paper, we study the problem of minimizing maximum tardiness of jobs.

In most of papers, there is only one unavailability or availability period for each machine [START_REF] Schmidt | Scheduling with limited machine availability[END_REF]. As stated earlier, however, maintenance is scheduled regularly, or periodically, in many manufacturing systems. Therefore, there is a need to develop scheduling methods to deal with periodic maintenance, which usually has more than one maintenance period. In our problem, there are several maintenance periods where each maintenance is required after a time interval.

More precisely, in this paper we consider the single machine maximum tardiness problem subject to periodic maintenance and no preemption (i.e. once a job is started it must be completed without interruption). We consider two situations. In the rst case (periodic maintenance) the maintenance periods are xed periodically. This problem was considered in [START_REF] Chen | Scheduling of jobs and maintenance in a textile company[END_REF] and [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF]; and is NP-hard since the problem that minimizes the maximum lateness subject to one unavailability period and non resumable jobs is NP-hard [START_REF] Lee | Machine scheduling with an availability constraint[END_REF]. Chen and Liao [START_REF] Chen | Scheduling of jobs and maintenance in a textile company[END_REF] and [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] proposed a heuristic and branch-and-bound algorithm to solve this problem. Other works can be found in the literature regarding xed maintenance period. We can quote Allaoui and Artiba [START_REF] Allaoui | Integrating simulation and optimization to schedule a hybrid ow shop with maintenance constraints[END_REF]. They consider the problem of more complex environment such as hybrid owshop. They proposed an hybrid approach, combining simulation and heuristics to solve the problem of minimizing makespan, mean owtime and total tardiness. They showed that classical heuristics became ineective if unavailability constraints, such as maintenance, are taking into account. In [START_REF] Allaoui | Two stage hybrid ow shop scheduling with availability constraints[END_REF] same authors proposed also a branch and bound procedure for minimizing the makespan in a two stage hybrid owshop, where the rst stage has only one machine and all machines are subject to unavailability constraints. In the second case (exible periodic maintenance) that we consider, the maintenance is not xed but the maximum continuous working time allowed of the machine is xed. This problem is strongly NP-hard because it becomes a bin packing problem when all due dates are 0. It is known that bin packing is a strongly NP-hard problem [START_REF] Coman | Approximation algorithms for bin-packing: a survey[END_REF]. Note that the same problem was studied in [START_REF] Qi | Scheduling the maintenance on a single machine[END_REF] in order to minimize the total completion time of jobs, where several heuristics and a branch-and-bound algorithm are proposed. Graves and Lee [START_REF] Graves | Scheduling maintenance and semi-resumable jobs on a single machine[END_REF] study several variants of the same problem.

The rest of this paper is organized as follows. Section 2 denes the problems and introduces some notation. Sections 3 and 4 are devoted respectively to periodic maintenance and exible periodic maintenance. Various dominance rules (dierent form that of [START_REF] Chen | Scheduling of jobs and maintenance in a textile company[END_REF] and [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF]) are derived and used in the heuristic and branch and bound algorithm proposed. Section 5 reports on computational experience with the algorithms. Finally, Section 6 provides a summary of the main results of this paper, and outlines some useful directions for future research. We consider the scheduling problem with n jobs J 1 , J 2 , ..., J n to be processed on a single machine. Each job J i has a processing time p i and a due date d i . All jobs are available at time zero and no preemption is allowed. The machine must be maintained periodically. In the periodic version the distance between two consecutive maintenance periods is ∆ (see Figure 1) whereas in the exible periodic version the distance is less than ∆ (see Figure 2). The maintenance time is t. We assume that p i ≤ ∆ for all i ∈ {1, ..., n} otherwise there is no feasible schedule. A sequence giving the processing order of the jobs denes a schedule since there is no advantage in keeping the machine idle when there are jobs to be processed. A schedule π = (J

[1] , J [2] , ...J [n 1] , M, J [n 1 +1] , ..., J [n 2]
, M, ...) contains a sequence of jobs and the maintenance inserted in job sequence. In a schedule, jobs processed continuously form a batch, denoted as B. Thus a schedule π can be denoted as π = (B 1 , t, B 2 , t, ..., t, B L) where t is the maintenance and L is the number of batches.

Note that L is a decision variable in our problem. Let J [i] be the ith job in a schedule, C i (π) be the completion time of job J i , and T i (π) = max{C i (π)d i ; 0} be the tardiness of job J i . The objective is to nd a schedule which minimizes the maximum tardiness of jobs T max (π) = max i T i (π). It is worth mentioning that when preemption is allowed the rst problem can be solved by the preemptive EDD (PEDD) rule and any optimal solution of the rst problem is also optimal for the second one.

C i (σ): completion time of job J i ∈ J(σ) in σ. C(σ): completion time of σ.
T max (σ): maximum tardiness of σ. B m (σ): mth batch in σ. q m (σ): total processing time of jobs in batch B m (σ). m(i, σ): the index of the batch where job J i ∈ J(σ) is scheduled i.e. J i ∈ B m(i,σ) (σ). For J i / ∈ J(σ), σ • i: schedule obtained by adding job i after σ. Note that if job i requires a processing time greater than the slack time in the current (last) batch in σ, it is scheduled in the next time interval ∆.

When there is no ambiguity, C i (σ), T max (σ), B m (σ), q m (σ) and m(i, σ) are simplied into C i , T max , B m , q m and m(i), respectively.

Periodic maintenance

We propose here a rst approach considering the periodic maintenance case.

Dominance properties and lower bounds

In this section, we introduce some dominance properties and give lower bounds that will be used in our algorithms. The following property is similar to the EDD schedule in the ordinary T max problem. Property 3.1. There exists an optimal schedule in which in each batch jobs are sequenced in EDD (earliest due date) order. Property 3.1 can be proved by the pairwise interchange procedure within the same batch.

The next property states that the length of a job scheduled after batch i is longer than the gap ∆q i between scheduled jobs in batch i and the next scheduled maintenance (we remaind that q i represents the total completion time of batch B i). Property 3.2. There exists an optimal schedule in which for each batch B i , we have ∆q i < p j , for all J j ∈ B k , k = i + 1, ..., L.

Proof. Suppose π is an optimal schedule where batch B i does not satisfy Property 3.2.

Let job J j be the rst job satisfying ∆q i ≥ p j , J j ∈ B k , k > i. Consider the sequence π obtained from π by removing J j from its original position and inserting it at the end of batch B i . Then it is clear that π is also an optimal sequence. Repeating this procedure a nite number of times, we obtain an optimal sequence verifying Property 3.2.

In order to give others dominance properties we need to introduce some notation.

From now on we restrict ourselves to schedules satisfying Property 3.1. Giving a partial schedule σ we denote by O(σ) the schedule obtained by appending to σ the optimal partial schedule of the remaining jobs while keeping Property 3.1 satised.

To compute lower bounds for T max (O(σ)), we start with the following which give a lower bound for the starting date in O(σ) for jobs not scheduled in σ. Let J i denote the last job in σ.

Lemma 3.1. Let J j / ∈ J(σ) such that p j > ∆ -q m(i) (σ) or d j < d i , then C j (O(σ)) -p j ≥ m(i)(∆ + t).
Proof. If p j > ∆ -q m(i) (σ), i.e. J j not t into batch B m(i) then it will not starts before

m(i)(∆ + t).
If d j < d i , because EDD rule within the batch, J j cannot be scheduled in B m(i) , so it will start after m(i)(∆ + t).

Lower bound 1. To each job J j not scheduled in σ we associate a ready time as follows:

r j =      m(i)(∆ + t) if p j > ∆ -q m(i) (σ) or d j < d i ; C(σ)
otherwise.

We consider then the problem P 1 (σ): Pursue the scheduling of jobs not scheduled in σ subject to preceding ready times in order to minimize the maximum tardiness while allowing preemption.

We denote by LB 1 (σ) the maximum tardiness in optimal solution of P 1 (σ). It is obtained by a dynamic version of Preemptive Earliest Due Date (D-PEDD) rule. Namely, sequencing decisions must be considered both at job completion times and at job ready times as follows:

1. At each job completion the job with minimum d j among available jobs is selected to begin processing.

2. At each ready time, r j , the due-date of the newly-available job j is compared to the due-date of the jobs being processed. If d j is lower, job j immediately preempts the job being processed, otherwise job j is simply added to the list of available jobs.

Lower bound 2. To calculate the second lower bound LB 2 (σ) we consider P 2 (σ) analogous to P 1 (σ) except in the denition of ready times:

r j =      m(i)(∆ + t) if d j < d i ; C(σ) otherwise.
It is clear that LB 2 ≤ LB 1 . In fact, the interest of the second lower bound lies in Lemma 3.2 used in the branch and bound algorithm.

Let LB(σ) denote any lower bound for T max (O(σ)) (for e.g. LB 1 or LB 2), then we have:

Property 3.3. For any partial schedule σ and any job j not scheduled in σ, schedule

O(σ • j) is dominated if there is a job i scheduled in σ such that m(i) < m(j), p i ≤ p j ≤ p i + (∆ -q m(i) (σ)) and C(σ • j) -(p j -p i) -d i ≤ LB(σ),
where

m(i) = m(i, σ) and m(j) = m(j, σ • j).
Proof. Consider the sequence π obtained from O(σ • j) by putting job i at the place of job j and by putting the latter at the end of batch B m(i) which is possible thanks to the

condition p i ≤ p j ≤ p i + (∆ -q m(i) (σ)). Conditions m(i) < m(j) and p i ≤ p j ensure that only job i is completed later in π. But since C i (π) -d i = C(σ • j) -(p j -p i) -d i , we deduce that T i (π) ≤ LB(σ) ≤ T max (O(σ))
. By re-seqencing batches B m(i) and B m(j) in the EDD order we obtain a better schedule π satisfying Property 3.1, and T max (π) ≤ T max (O(σ)).

Property 3.4. Let σ be a partial schedule, and i the last job scheduled in σ. We suppose that there are no unscheduled jobs which t into last batch of σ. Then schedule O(σ) is dominated if there is an unscheduled job j such that

p i ≤ p j ≤ p i + (∆ -q m(i) (σ)) and d i ≥ d j -(p j -p i).
Proof. Consider the sequence π obtained from O(σ) by putting job i at the place of job j and by putting the latter at the end of batch B m(i) which is possible thanks to the condition

p i ≤ p j ≤ p i + (∆ -q m(i) (σ)). Conditions m(i) < m(j) and p i ≤ p j ensure that only job i is completed later in π. Since T i (π) = max{C i (π)-d i ; 0} = max{C j (O(σ))-(p j -p i)-d i ; 0} ≤ max{C j (O(σ)) -d j ; 0} = T j (O(σ)), we conclude that T max (π) ≤ T max (O(σ)).
Finally, by re-sequencing each B m(i) and B m(j) in EDD order we obtain a new schedule π such that

T max (π) ≤ T max (π) ≤ T max (O(σ)).

Heuristic algorithm

Based on the preceding dominance properties, we propose, in this section, a heuristic to provide a near-optimal schedule for the stated problem. The heuristic is denoted H1, its steps are outlined as follows:

Heuristic H1

Step 1. Sort jobs in EDD order with ties broken by nonincreasing order of p i : J 1 , J 2 ,...,J n .

Step 2. Calculate a lower bound T max for the problem by P-EDD.

Step 3. Let i = 1, j = 1, B i = ∅, q i = 0, (J, p, d) = (J j , p j , d j) and T max = 0.

Step 4. Is there at least one batch B m such that ∆q m ≥ p j . If so, among them choose the batch with the smallest index, say k, put job J j at the end of batch B k , q k = q k + p j ,

T max = max{T max ; (k -1)(∆ + t) + q k -d j }, and moreover (J, p, d) = (J j , p j , d j) if k = i, goto Step 8.
Step 5. If q i -p + p j > ∆ or p j < p, goto Step 6. Otherwise, goto Step 7.

Step 6. Let i = i + 1, insert a maintenance and let job J j be the rst job in the new batch

B i , q i = p j , T max = max{T max ; (i -1)(∆ + t) + q j -d j }, (J, p, d) = (J j , p j , d j), goto Step 8.
Step 7

. If i(∆ + t) + p -d ≤ max{i(∆ + t) + p j -d j ; T max ; T max }, B i = (B i \{J}) ∪ {J j }, q i = q i -p + p j , i = i + 1
, insert a maintenance and let job J be the rst job the new batch

B i , q i = p, T max = max{T max ; (i -1)(∆ + t) + p -d; (i -2)(∆ + t) + q i-1 -d j }. Otherwise, goto Step 6.
Step 8. If j = n, stop. Otherwise, j = j + 1, return to Step 4. As an illustration of the heuristic, consider the following two examples from [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] and [START_REF] Chen | Scheduling of jobs and maintenance in a textile company[END_REF] respectively.

Table 1 The data for example 1 (in hours); ∆ = 8 and t = 2 Table 2 The schedule obtained by the heuristic in [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] J i J 1 J 5 J 2 t J 3 J 8 t J 6 J 9 t J 7 J 4

J i J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8 J 9 p i 1
T i 0 0 0 11 5 9 12
13 8

Table 3 The schedule obtained by our heuristic 10

J i J 1 J 3 J 8 t J 5 J 2 t J 6 J 9 t J 7 J 4 T i 0 2 0 2 4 9 12
13 8

Table 4 The data for example 2 (in hours); ∆ = 12 and t = 3

J i J 1 J 2 J 3 J 4 J 5 J 6 J 7 J 8 J 9 J
J i J 1 J 2 J 6 J 10 t J 4 J 5 t J 7 J 9 t J 3 J 8 J 11 T i 0 0 0 0 7 0 16 19 17 18 17
Table 6 The schedule obtained by the our heuristic

J i J 1 J 2 J 4 t J 6 J 7 J 9 t J 10 J 5 t J 3 J 8 J 11 T i 0 0 0 1 3 6 13 8
17 18 17

The algorithm will be studied by computational experiments later. It will also be compared to the heuristic proposed by Liao and Chen [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF].

Branch and Bound algorithm

The proposed branch and bound algorithm uses a usual schema. During the computation, we keep a list of unexplored nodes arranged in increasing order according to the lower bounds of nodes, with ties broken by nonincreasing number of scheduled jobs. Each node represents a partial schedule. The algorithm always try to develop the head of the list. The branching from a node consists of creating child nodes by adding an unscheduled job to the end of the partial schedule. We will calculate a lower bound for each node that cannot be eliminated by the dominance proprieties. In particular we use the following comparison lemma.

Lemma 3.2. Let σ be a partial schedule, and i 1 and i 2 two jobs not scheduled in σ. If

d i 1 ≤ d i 2
then at least one of the following holds:

1. O(σ • i 1) is dominated. 2. O(σ • i 2) is dominated. 3. LB 2 (σ • i 1) ≤ LB 2 (σ • i 2).
Proof. Let J i be the last job in σ.

• If min{p i 1 ; p i 2 } ≤ ∆ -q m(i) (σ) < max{p i 1 ; p i 2 } = p j for j ∈ {i 1 , i 2 }, then by Property 3.3 O(σ • j) is dominated. • If max{p i 1 ; p i 2 } ≤ ∆ -q m(i) (σ). Let r 1 j (respectively r 2 j) the ready time of job J j in P 2 (σ • i 1) (respectively in P 2 (σ • i 2)). Since d i 1 ≤ d i 2 then r 1 j ≤ r 2 j for J j / ∈ J(σ) ∪{J i 1 ; J i 2 }; r 1 i 2 = C(σ • i 1) and r 2 i 1 ≥ C(σ • i 2).
Let π 2 the optimal schedule for the problem P 2 (σ • i 2) obtained, as said above, by D-PEDD rule. Let A be the set of jobs scheduled in π 2 in the interval [C(σ); C(σ) + p i 1]. Consider the schedule π 1 obtained by interchanging A with J i 1 . This interchange will not delay jobs except possibly jobs in A. But because

d i 1 ≤ d i 2 ≤ d j for J j ∈ A we have C j (π 1) -d j ≤ max{C i 1 (π 2) -d i 1 ; C j (π 2) -d j }
for J j ∈ A, and consequently T j (π 1) ≤ max{T j (π 2); T i 1 (π 2)}. This shows that π 1 is better than π 2 . On the other hand, π 1 is feasible for

P 2 (σ • i 1) since r 1 j ≤ r 2 j . Finally, LB 2 (σ • i 1) ≤ T max (π 1) ≤ T max (π 2) = LB 2 (σ • i 2).
• We use the same arguments to tackle the case

∆ -q m(i) (σ) < min{p i 1 ; p i 2 }.
In fact if σ • i is eliminated, then we never consider σ • j for all J j such that d j ≥ d i .

The computation time of the B&B algorithm is reported in Section 5.

Flexible periodic maintenance

In this section we deal with the exible periodic version. Recall that in this case maintenance periods are not xed but the maximum continuous working time allowed of the machine is ∆.

Dominance properties and lower bounds

It is clear that Property 3.1 remains true in this case. However we have to make some modications on the others properties. Property 4.1. There exists an optimal schedule in which for each batch B i , we have ∆q i < p j for the rst job J j in the next batch B i+1 .

Proof. Suppose π is an optimal schedule which does not satisfy Property 4.1. Consider the sequence π obtained from π by removing J j from its original position and inserting it at the end of batch B i . Then it is clear that π is also an optimal sequence. Repeating this procedure a nite number of times, we obtain an optimal sequence verifying Property 4.1.

There exists an optimal schedule satisfying at the same time Properties 3.1 and 4.1.

More precisely, we can prove that every schedule not satisfying simultaneously 3.1 and 4.1 is dominated. Thus from now on we consider only partial schedules satisfying Properties 3.1 and 4.1. Given a partial schedule σ, O(σ) will denote the schedule obtained by appending to σ the optimal partial schedule of the remaining jobs while keeping Properties 3.1 and 4.1 satised.

Before stating other dominance properties let us give, as in the periodic version, a lower bound for T max (O(σ)). For that purpose we establish rst a minoration for C j (O(σ)) (J j / ∈ J(σ)). Let σ be a partial schedule, J i the last job in σ and s := m(i)-1 m=1 q m (σ)+(m(i) -1)t be the starting date of batch B m(i) . To simplify, we set q = q m(i) (σ).

Lemma 4.1. Let J j / ∈ J(σ). If p j > ∆q or d j < d i , then

C j (O(σ)) ≥ max{s + ∆ + t -p j + 1; s + q + t} + p j .
(

Proof. We are going to prove that J j starts in O(σ) after max{s +∆+t -p j +1; s + q + t}.

Keep in mind that the processing times and due dates are integers. Two cases must be examined.

Case 1: If ∆q < p j , i.e. max{s + ∆ + tp j + 1; s + q + t} = s + q + t. It is not possible to place job J j in the batch B m(i) and it is necessary to insert at least one maintenance period before processing J j . So J j starts after s + q + t.

Case 2: If ∆q ≥ p j and d j < d i , in which case max{s + ∆ + tp j + 1; s + q + t} = s + ∆ + tp j + 1. Assume for the sake of contradiction that J j starts before the latter date. Then Property 3.1 implies that m(j) > m(i), i.e. between jobs J i and J j there is at least one maintenance period. Let A be the set of jobs which are sequenced after J i and before J j . We have

s + q + J k ∈A p k + t + p j ≤ (s + ∆ + t -p j + 1) -1 + p j = s + ∆ + t.
Consequently q + J k ∈A p k + p j ≤ ∆; which contradicts the validity of Property 4.1.

Now we propose two lower bounds for T max (O(σ)).

The rst one is based on the relaxation of the "ready time" (1) and the second is based on the relaxation of the constraint on the maintenance.

Lower Bound 1: We consider the problem P 1 (σ): we x maintenance as late as possible i.e. at dates s + ∆, s + 2∆ + t, s + 3∆ + 2t,... and for each J j not scheduled in σ we associate a ready time:

r j =      s + ∆ -p j + 1 if d j < d i , C(σ) otherwise.
(

) 2
Moreover, we allow the preemption. This problem is solved optimally by D-PEDD, we denote by LB 1 (σ) the resulting optimal value. We have LB 1 (σ) ≤ T max (O(σ)). Indeed, let us construct from O(σ) a feasible schedule for P 1 (σ).

- -We advance jobs while respecting the ready time.

Clearly the obtained schedule π is better than O(σ) and is feasible for P 1 (σ). Thus,

LB 1 (σ) ≤ T max (π) ≤ T max (O(σ)).
Lower Bound 2: We consider the problem P 2 (σ), where we x maintenance at dates s + 2∆ + t, s + 3∆ + 2t,... (note that unlike the preceding case, the machine is not maintained between s and s + 2∆ + t) and we associate to every J j a ready time r j

r j =      max{s + ∆ + t -p j + 1; s + q + t} if p j > ∆ -q or d j < d i , C(σ) otherwise.
Again, we solve the resulting problem by allowing the preemption of jobs and by using the D-PEDD rule. We let LB 2 (σ) the optimal value corresponding to P 2 (σ).

Let us prove LB 2 (σ) ≤ T max (O(σ)). As above, we are going to construct from O(σ) another better schedule π as follows:

-We delete maintenance periods situated in the interval -We advance jobs while respecting the ready time.

Clearly π is better than O(σ) and is feasible for

P 2 (σ). So, LB(σ) ≤ T max (π) ≤ T max (O(σ)).
We put LB(σ) = max{LB 1 (σ); LB 2 (σ)}.

Property 4.2. For any partial schedule σ and any j not scheduled in σ, schedule O(σ

• j)
is dominated in both following cases:

1. There is a batch

B k where k < m(j, σ • j), ∆ -q k (σ) ≥ p j and C i (σ) + p j -d i ≤ LB(σ)
for all jobs J i in σ scheduled after B k .

2. There is a batch

B k where k < m(j, σ•j), ∆-q k (σ) ≥ p s and C i (σ•j)+p s -d i ≤ LB(σ•j)
for all jobs J i in σ • j scheduled after B k , where J s is the job with the smallest due date among jobs not in

J(σ • j) i.e. d s = min{d i ; J i / ∈ J(σ • j)}.
Proof. 1. Let A be the set of jobs which is sequenced after batch B k and before job J j in O(σ • j). A new feasible schedule π can be obtained from O(σ • j) by placing job J j at the end of batch B k and not increasing the completion times of jobs except jobs in A. The completion time of each job in A will increase by p j , so

C i (π) -d i = C i (O(σ)) + p j -d i for i ∈ A. Therefore, T i (π) ≤ LB(σ) ≤ T max (O(σ • j)), and T max (π) ≤ T max (O(σ • j)).
2. Let A be the set of jobs which is sequenced after batch B k and before job J s in O(σ • j).

A new feasible schedule π can be obtained by placing job J s at the end of batch B k and not increasing the completion times of jobs except jobs in A.

If J i is in A and is scheduled in σ • j, then T i (π) = max{C i (π) -d i ; 0} ≤ max{C i (O(σ)) + p s -d i ; 0} ≤ LB(σ • j) ≤ T max (O(σ • j))
.

If J i is in A but not scheduled in σ • j, then T i (π) = max{C i (π) -d i ; 0} = max{C i (O(σ • j)) + p s -d i ; 0} ≤ max{C s (O(σ • j)) -d s ; 0} ≤ T s (O(σ • j)).
Finally, we get T max (π) ≤ T max (O(σ • j)).

Property 4.3. For any partial schedule σ and any job j not scheduled in σ, schedule

O(σ • j) is dominated if there is a job i scheduled in σ such that m(i, σ) < m(j, σ • j), p i ≤ p j ≤ p i + (∆ -q m(i) (σ)), C(σ • j) -d i ≤ LB(σ) and C v (σ) + (p j -p i) -d v ≤ LB(σ) for all jobs J v in σ scheduled after B m(i) .
Proof.

Let A be the set of jobs which is sequenced after batch B m (i) in σ. A new feasible schedule π can be obtained by replacing job J i by J j and inserting J j at the end of batch B m(i) . Only job J i and jobs in A are completed later in π. We have

C v (π) -d v = C v (O(σ • j)) + (p j -p i) -d v for J v ∈ A. So, T v (π) ≤ LB(σ) ≤ T max (O(σ • j)). Moreover, T i (π) = {C(σ • j) -d i ; 0} ≤ LB(σ). Therefore, T max (π) ≤ T max (O(σ • j)).
Property 4.4. Let σ be a partial schedule. Let j be a job not scheduled in σ which does not t into the last batch of σ. We denote by i the last job in σ.

Then O(σ • j) is dominated if p i ≤ p s ≤ p i + (∆ -q m(i) (σ)), d i ≥ d s and C(σ • j) + (p s -p i) -d j ≤ LB(σ • j),
where J s is the job having the smallest due date among jobs not scheduled in σ • j, i.e.

d s = min{d v ; J v / ∈ J(σ • j)}.
Proof. Let A be the set of jobs which is sequenced after job J j and before job J s in

O(σ • j).
A new feasible schedule π can be obtained by interchanging J i and J s . This will not increase the completion times of jobs except jobs J j and J i , and jobs in A. We

have C j (π) -d j = C j (σ • j) + (p s -p i) -d j , so T j (π) ≤ LB(σ • j) ≤ T max (O(σ • j)).
On the other hand, for

J v ∈ A, we have C v (π) -d v = C v (O(σ • j)) + (p s -p i) -d v ≤ C s (O(σ • j)) -d v ≤ C s (O(σ • j)) -d s , so T v (π) ≤ T s (O(σ • j)). Moreover, T i (π) = max{C i (π) -d i ; 0} ≤ max{C s (O(σ • j)) -d s ; 0} = T s (O(σ • j)).
Thus we have the required result that T max (π) ≤ T max (O(σ)).

Heuristic algorithm

To approximate the solution of the problem we propose the following heuristic which is an adaptation of Heuristic H1 in light of the new properties.

Heuristic H2

Step 1. Sort jobs in EDD order with ties broken by non-increasing order of p i : J 1 , J 2 ,...,J n .

Step 2. Calculate a lower bound T max for the problem by putting maintenance as late as possible i.e. at the dates ∆, 2∆ + t, 3∆ + 2t..., and scheduling jobs according PEDD rule.

Step 3. Let i = 1, j = 1, B i = ∅, q i = 0, (J, p, d) = (J j , p j , d j), C = 0 and T max = 0.

Step 4. Is there at least one batch B m such that ∆ -q m ≥ p j and T l ≤ max{T max -

p j ; T max -p j ; 0}, ∀T l ∈ B k , k > m.
If so, among them choose the Batch with the smallest index, say k, put job J j at the end of batch B k , q k = q k + p j , C = C + p j , up date T max , and moreover (J, p, d) = (J j , p j , d j) if k = i, goto Step 8.

Step 5. If q i -p + p j > ∆ or p j < p, goto Step 6. Otherwise, go to Step 7.

Step 6. Let i = i + 1, insert a maintenance task and let job J j be the rst job in the new batch B i ,

q i = p j , C = C + p j + t, T max = max{T max ; C -d j }, (J, p, d) = (J j , p j , d j), go to
Step 8.

Step 7. If C + t + p j -d ≤ max{C + t + p j -d j ; T max ; T max }, B i = (B i \{J}) ∪ {J j }, q i = q ip + p j , i = i + 1, insert a maintenance task and let job J be the rst job the new batch B i ,

q i = p, C = C + t + p j , T max = max{T max ; C -d; C -p -t -d j }. Otherwise, goto Step 6.
Step 8. If j = n, stop. Otherwise, j = j + 1, return to Step 4.

Branch and Bound algorithm

The algorithm is similar to that developed in Section 3.3. Note however, for this case we do not have a Lemma analogous to that of Lemma 3.2.

Computational results

In this section, we report computational results to evaluate the eectiveness of the heuristics algorithms and the computation time of the B&B. The computational experiments, are done using Visual C++ compiler and on a duo T5600 processor with 1Go of memory. We generate the parameter values as in [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] : processing times were selected from a discrete uniform distribution (DU) over [START_REF] Adiri | Scheduling on a single machine with a single breakdown to minimize stochastically the number of tardy jobs[END_REF][START_REF] Lee | Machine scheduling with an availability constraint[END_REF]. The due dates were selected from another DU over

[(1 -C -Q/2) n i=1 p i , (1 -C + Q/2) n i=1 p i],
where Q ∈ {0.2, 0.6} and C ∈ {0.2; 0.6} denote the due date range and tardiness factor, respectively.

Experiment 1. Comparison between H1 and Heuristic in [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] for the periodic version. For each combination of n, C, Q, ∆ and t, 50 problems are randomly generated. Each problem is solved by H1 and the heuristic proposed in [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] which we denote here by HCL. Table 7, corresponding to ∆ = 18 and t = 4, shows in column 'better' the number of problems (#HCL) for which Heuristic H1 is better than HCL, and the number of problems (#H1) for which Heuristic HCL is better than H1. In column DH1 Max (respectively Mean) denotes the maximum (respectively the average) deviation of the heuristic HCL solution from the solution obtained by H1 for problems where H1 is better than HCL. Accordingly, in column DHCL Max (respectively Mean) denotes the maximum (respectively the average) deviation of the heuristic H1 solution from the solution obtained by HCL for problems where HCL is better than H1. Table 8 is similar to Table 7 with ∆ = 10 and t = 2. We can see that for all combinations of C, Q, ∆ and t our heuristic outperforms HCL especially for large n. In fact there cases where our heuristic is 100% better. Moreover, the deviation is more important for the case where H1 is better. This is because HCL is very dependent in the manner that jobs are initially ordered (no initial order of jobs is assumed in Heuristic HCL).

From the computational point of view, H1 is better than HCL: H1 spends much less computation time than HCL.

Experiment 2. The relative error of the heuristic algorithms and the average computation time of B&B (in milliseconds).

For dierent combinations of C, Q, ∆ and t 25 problems are randomly generated and solved by heuristic and branch and bound algorithms subject to both periodic and exible periodic constraint. Table 9 gives the relative error of our heuristic algorithms i.e.

T max (Hi) -T max (B&B) T max (B&B)

(i = 1 or 2) (3)
and the computation time (in milliseconds) of the branch and bound algorithms. For our choice of C and Q, namely (C, Q) = (0.2, 0.2) and (C, Q) = (0.6, 0.6), we are sure that the maximum tardiness is superior to 0.1 n j=1 p j and 0.3 n j=1 p j , respectively. To see this, consider the last job, say J i , in an optimal schedule whose completion time is

clearly C i ≥ n j=1 p j . If (C, Q) = (0.2, 0 .
2) then d i ≤ 0.9 n j=1 p j , and consequently

T max ≥ C i -d i ≥ (n j=1 p j) -(0.9 n j=1 p j) = 0.1 n j=1 p j . If (C, Q) = (0.6, 0.6)
the same argument gives T max ≥ 0.3 n j=1 p j . So the error relative (3) is well dened. We can see that the B&B is not an ecient algorithm with large problems especially for the exible periodic version. Of course, we have not reported a computation time of B &B in the last case for n = 20 because we have xed the maximum computational time to be ten minutes and many problems exceed 10 minutes. As we can see in Table 9, the main interesting results is the eectiveness of both heuristics H1 and H2. The error for all treated problem does not exceed the average value of 17% for H1 and 3% for H2. Moreover, the heuristics always nd at least once the best solution for all problem sizes (this represents at least 1 problem over 20). This is true for both xed and exible maintenance cases.

Conclusion

The importance of maintenance has been gradually accepted by the decision maker.

Therefore, it has become a common practice to schedule maintenance periodically in many manufacturing systems. Unfortunately, most papers discussing maintenance assume there is only one maintenance period. In this paper, we have addressed the single machine maximum tardiness problem subject to periodic maintenance and nonresumable jobs. We have considered two versions which are both NP-hard. The rst one corresponds to a periodic maintenance. It consists of several maintenance periods where each maintenance is required after a periodic time interval. In the second situation, the maintenance is not xed but the maximum allowed continuously working time of machine is xed. We have proposed for each of them a heuristic and a branch and bound algorithm. Computational experiments have been done to evaluate the eectiveness of the algorithms. Moreover, for the rst version an extensive empirical comparison of the proposed heuristic with Liao and Chen [START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] heuristic shows the superiority of the former. One future research direction is to extend these scheduling problems from the single machine case to the parallel machine case and ow-shop problem.

Figure 1 :

 1 Figure 1: A schedule with periodic maintenance : J [i] is the number of job in i th position and M i is the i th operation of maintenance

Figure 2 :

 2 Figure 2: A schedule with exible periodic maintenance : J [i] is the number of job in i th position and M i is the i th operation of maintenance

Remark 1 .

 1 Steps 1, 4 and 7 are motivated respectively by Properties 3.1, 3.2 and 3.3. The computational time complexity of Heuristic H1 is O(n 2).

5 3 5 2 2 3 4 4 d

 4 i 1 13 2 30 10 13 2012 14

Table 5

 5 The schedule obtained by the heuristic in[START_REF] Chen | Scheduling of jobs and maintenance in a textile company[END_REF]

 ≥ 1) we keep only one (in fact there is at least one) maintenance period and we insert it at the date s + m(∆ + t) + ∆ (possibly by interchanging it with jobs situated between it and s + m(∆ + t) + ∆ + t, which is possible thanks to the inequality r j ≤ s + ∆ + t.

[s; s + ∆ + t] -In each interval [s + m(∆ + t); s + (m + 1)(∆ + t)] (m

Table 7

 7 Comparison between H1 and Heuristic in[START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] for the periodic version (∆ = 18 and t = 4)

	Better n #H1 #HCL Max Mean Max Mean H1 DH1 DHCL Comp. time (ms) HCL 0.2 0.2 10 C Q 15 15 15 5.80 13 4.53 0.32 0.60 20 22 11 25 7.55 22 5.00 0.00 1.86 30 28 10 19 7.61 5 2.30 1.26 2.18 40 28 8 22 8.04 15 5.25 1.26 3.76 50 34 12 24 9.32 19 7.67 1.26 5.30 80 34 8 44 13.82 24 8.25 1.56 11.26 110 42 4 42 14.17 17 8.25 3.14 18.42 150 47 3 67 19.60 13 6.00 5.98 32.12 170 44 3 76 21.82 20 13.67 7.74 37.56 200 40 7 54 21.23 17 8.14 9.36 46.90 0.2 0.6 10 15 6 17 7.47 7 3.50 0.00 0.94 20 33 6 35 8.33 16 7.17 0.32 2.50 30 35 8 36 12.43 17 6.13 0.32 4.38 40 41 4 45 15.15 8 4.50 1.24 6.90 50 42 2 41 16.64 7 4.00 1.24 10.00 80 47 3 55 26.34 12 6.67 2.54 27.14 110 49 1 70 40.08 15 15.00 3.12 49.06 150 50 0 103 54.74 0 0.00 3.12 99.06 170 50 0 104 59.06 0 0.00 5.36 139.32 200 50 0 129 79.44 0 0.00 8.40 190.34 0.6 0.2 10 19 12 10 3.79 14 4.33 0.00 0.64 20 28 10 22 7.18 18 5.30 0.00 2.18 30 24 12 18 7.04 22 6.58 0.32 3.14 40 38 7 31 10.05 16 7.71 1.56 3.12 50 25 12 36 8.84 17 5.50 0.94 5.96 80 36 10 37 12.31 8 3.90 1.24 12.52 110 40 6 46 12.55 22 12.17 4.40 17.78 150 41 8 40 17.15 12 5.88 6.54 33.16 170 40 9 61 22.60 22 6.78 5.34 39.02 200 45 3 54 22.24 18 11. 00 8.80 51.82 0.6 0.6 10 19 5 13 4.68 8 4.60 0.00 0.94 20 35 2 23 9.46 16 8.50 0.00 2.18 30 37 4 35 11.38 22 10.50 0.62 3.74 40 41 3 61 18.15 7 3.33 1.26 6.26 50 41 6 44 16.27 11 4.83 0.62 10.94 80 47 1 51 24.85 3 3.00 3.12 23.10 110 50 0 104 39.24 0 0.00 5.60 48.16 150 50 0 91 56.74 0 0.00 6.88 94.34 170 50 0 102 63.38 0 0.00 5.66 124.64 200 50 0 118 81.62 0 0.00 8.78 166.86

Table 8

 8 Comparison between H1 and Heuristic in[START_REF] Liao | Single-machine scheduling with periodic maintenance and nonresumable jobs[END_REF] for the periodic version (∆ = 10 and t = 2)

	Better n #H1 #HCL Max Mean Max Mean DH1 DHCL 0.2 0.2 10 C Q 14 6 11 3.00 9 5.33 0.32 Comp. time (ms) H1 HCL 0.92 20 25 6 12 6.32 12 7.50 0.00 1.86 30 23 9 16 7.43 11 6.78 0.92 2.20 40 27 9 17 8.81 12 6.11 1.56 3.76 50 36 4 24 10.50 11 7.00 1.88 4.68 80 40 6 24 11.85 12 8.67 2.18 12.20 110 41 7 37 15.56 13 9.71 6.00 17.44 150 46 2 44 20.07 6 4.50 9.38 28.44 170 48 1 49 22.10 1 1.00 11.32 36.54 200 47 2 48 25.94 10 9.00 13.86 47.08 0.2 0.6 10 18 2 12 6.78 12 12.00 0.32 0.62 20 20 5 14 6.85 12 5.60 0.00 2.18 30 33 4 32 11.12 12 5.25 0.64 2.48 40 34 8 26 13.29 12 8.75 1.24 3.44 50 30 5 42 14.97 12 9.40 0.92 6.58 80 35 0 48 17.43 0 0.00 2.50 11.26 110 39 2 49 21.23 12 10.00 3.72 19.40 150 43 3 48 21.95 12 8.00 8.52 30.54 170 42 4 45 21.76 17 11.50 11.62 33.68 200 47 3 77 27.87 12 8.00 13.80 47.80 0.6 0.2 10 21 6 12 4.81 12 5.50 0.00 0.62 20 21 5 12 5.90 8 6.60 0.60 1.58 30 25 6 18 8.56 12 9.00 0.32 3.74 40 28 4 19 8.50 12 8.75 0.96 3.44 50 28 6 24 9.96 23 10.33 1.54 5.00 80 36 7 27 13.44 20 11.57 2.20 11.56 110 38 4 36 18.11 24 10.75 4.08 18.70 150 42 3 41 20.21 24 13.67 8.94 30.10 170 43 2 48 23.47 12 8.50 11.30 37.14 200 45 3 54 26.24 12 10.00 13.66 51.34 0.6 0.6 10 15 4 18 7.07 12 8.25 0.32 0.94 20 23 3 22 10.00 6 5.33 0.96 1.54 30 29 1 22 9.69 12 12.00 0.62 2.52 40 30 2 24 11.27 6 3.50 1.28 4.04 50 37 4 35 11.30 12 6.00 2.20 5.30 80 34 5 42 18.03 12 4.80 4.68 10.62 110 43 1 39 19.21 9 9.00 5.02 18.72 150 44 1 54 22.20 12 12.00 9.72 28.10 170 48 1 50 21.67 12 12.00 8.96 38.22 200 47 1 63 30.83 2 2.00 14.12 49.32