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Semiclassical quantization of electrons in magnetic fields: the generalized Peierls

substitution
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A generalized Peierls substitution which takes into account a Berry phase term must be considered
for the semiclassical treatment of electrons in a magnetic field. This substitution turns out to be an
essential element for the correct determination of the semiclassical equations of motion as well as for
the semiclassical Bohr-Sommerfeld quantization condition for energy levels. A general expression
for the cross-sectional area is derived and used as an illustration for the calculation of the energy
levels of Bloch and Dirac electrons.

PACS numbers:

Semiclassical approaches are very important in many
area of physics for the study of the short wave length be-
havior of quantum systems, including Bloch electrons in
crystals or Dirac particles in external fields. An essential
ingredient of these approaches is the Bohr-Sommerfeld
quantization condition, whose generalization from scalar
to vector wave fields has revealed new gauge structures
related to Berry’s phases [1]. This paper presents a de-
tailed study of the semiclassical quantization for a sin-
gle quantum particle in a magnetic field, exemplified by
electrons in a crystal and by Dirac electrons. This uni-
fied description of a particle in a magnetic field is based
on a method of semiclassical diagonalization for an arbi-
trary matrix valued Hamiltonian developed previously [2]
(for a generalization to higher order in ~ see [3]). This
method results in an effective diagonal Hamiltonian in
terms of gauge-covariant but noncanonical, actually non-
commutative, coordinates. It will be shown that a gen-
eralized Berry’s phase dependent Peierls substitution is
necessary for the establishment of the full equations of
motion including Berry’s phase terms. This substitution
turns out to be also an essential ingredient for the Bohr-
Sommerfeld quantization condition of an electron in a
magnetic field. Indeed, when reformulated in terms of
the generalized Peierls substitution, this condition leads
to a modification of the semiclassical quantization rules
as well as to a generalization of the cross-sectional area
derived by Roth [4] in the context of Bloch electrons.

Semiclassical diagonalization. Let us consider a sys-
tem of a quantum particle in a uniform external magnetic
field B = ∇×Ã described by an arbitrary matrix valued
Hamiltonian H (Π,R), where Π = p + eÃ(R) is the co-
variant momentum and e > 0 is the electric charge. We
assume that the system can be separated into two con-
tributions such that H (Π,R) = Hm (Π) + ϕ(R) where
Hm (Π) is the pure magnetic part and ϕ(R) is the ex-
ternal electric potential. In this paper we will be mainly
interested by the magnetic contribution. The exact di-

agonalization of this matrix valued operator through an
unitary matrix U (Π) is in general not known, and in this
paper we apply a recursive diagonalization procedure de-
veloped previously by two of the authors. This procedure
is based on a series expansion in the Planck constant
of the required diagonal Hamiltonian [2][3]. By diago-
nal Hamiltonian it is meant a matrix representation with
block-diagonal matrix elements associated with energy
band subspaces. The method is based on the knowledge
of the zero-order diagonal representation ε = U0H0U

+
0

where U0 is the zero-order transformation matrix, H0

the Hamiltonian Hm, in which both Π and R are con-
sidered formally as classical, and therefore commuting
variables. Quantum corrections are then re-introduced
to yield the expression for the diagonal Hamiltonian
Hd = U (Π)HU+ (Π) which, if we limit ourselves to
the semiclassical order (the semiclassical condition being
that the radius of curvature of the orbit is large in com-
parison with wavelength), has diagonal operator elements
labelled by the energy index n which reads :

(Hd)nn = εn (πn) + V (rn) − e~M.B (1)

where εn (π) is the zero-order matrix element of ε (it can
itself be a matrix as for a Dirac Hamiltonian, in which
case a block-diagonalization is considered) in which clas-
sical variables are now replaced by the quantum opera-
tors πn = Π + ~Aπ and rn = R + ~Ar, where we have
defined the Berry connection as being the projection on
the nth energy band Ar/π = Pn

[
Ar/π

]
of the matrix

Ar/π = ±i
[
U∇π/rU

+
]
. It turns out that in the mag-

netic case the Berry connection in momentum has the
following expression Aπ = −eAr×B. Looking at Eq. (1)
we have proven that instead of the Peierls substitution
[5], which amounts to replace the canonical momentum p

by the covariant one Π in the energy band εn, on has to
consider a generalization of the Peierls substitution via
the noncanonical covariant momentum

πn = Π− e~A × B (2)
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(where we now use the notation A ≡ Ar). The last
term in Eq. (1) is the coupling between the uniform
magnetic field and the magnetic moment defined as

M (π) = i
2Pn ([ε,A] ×A) = ~

2Pn

(
·

A×A
)

. Note that

it is common (especially in solid state physics [6]) to
write the matrix elements of the components of M as

M i = i~2εijk

2

∑
m 6=n

(
·

Aj)nm(
·

Ak)mn

εn−εm
(where we used

·

Anm =

i
~

(εn − εm)Anm), which thus depend on the band-to-
band matrix element of A.

The appearance of the Berry connection allows us
to define naturally non-Abelian (in general) Berry cur-
vatures Θij (π) = ∂riAj − ∂rjAi +

[
A

i
,A

j

]
where for

simplicity we omit now band indices. Position oper-
ators then satisfy an unusual non-commutative alge-
bra

[
ri, rj

]
= i~2Θij . The generalized covariant mo-

mentum satisfy an algebra
[
πi, πj

]
= −ie~εijkBk +

ie2
~

2εipkεjqlΘpqBkBl slightly corrected with respect to
the usual one

[
Πi, Πj

]
= −ie~εijkBk by a term of order

~
2B2 which can in general be neglected. The Heisenberg

relations between the coordinate and the momentum[
ri, πj

]
= i~δij + ie~

2εjlkΘilBk is also slightly changed
but by a term of order ~

2B. This contribution which is a
direct consequence of introducing the generalized covari-
ant momentum was overlooked in previous works, with
the exception of Bliokh’s work on the specific case of the
Dirac equation [7]. It turns out that this term is essential
for the determination of the genuine semiclassical equa-
tions of motion which are

·
r = ∂E/∂π − ~π̇ × Θ(π)

π̇ = −eE− eṙ× B (3)

where we defined E ≡ ε − e~M.B. As consequence of
the non-commutative algebra, the velocity equation is
corrected by an anomalous velocity term π̇ × Θ, where
the vector Θ defined as Θi = εijkΘjk/2 is the Berry
curvature of an electronic state in the given nth band,
associated to the electron motion in the nth energy band.
These equations of motion, where first derived in solid
state physics context in [8] (see also [9]) by considering
the evolution of the wave packet of a Bloch electron in
an electromagnetic field. In this picture, it is the mean
over wave packets of the operator r corresponding thus
to the wave-packet center rc and the mean of π giving
the mean wave vector πc that are the variables in Eq 3.
The operatorial approach reveals first that the operator
π is in fact a generalized covariant momentum operator
which replaces the Peierls substitution, and second, that
the operatorial equations of motion are not restricted to
Bloch electrons in a magnetic field but are valid for any
physical system described by an arbitrary matrix valued
Hamiltonian of the kind H (Π,R) = Hm (Π) + ϕ(R). In
particular they are also valid for Dirac particles moving
in an electromagnetic field.

Note that in solids, for crystals with simultaneous
time-reversal and spatial inversion symmetry, the Berry
curvature and the magnetic moment vanish identically
throughout the Brillouin zone [8]. This is the case for
most applications in solid state physics, but there are sit-
uations where these symmetries are not simultaneously
present as in GaAs, where inversion symmetry is broken,
or in ferromagnets, which break time reversal symme-
tries. In the same way, the presence of a strong mag-
netic field, the magnetic Bloch bands corresponding to
the unperturbated system breaks the time inversion sym-
metries. In all these cases the dynamical and transport
properties must be described by the full equations of mo-
tion given by Eq. 3. In the case of Dirac particles, both
the Berry curvature and the magnetic moment are non
zero and the full equations of motion have to be consid-
ered.

Bohr-Sommerfeld quantization. Having shown the ne-
cessity of the generalized Peierls substitution for the de-
termination of the semiclassical equations of motion, we
now investigate the relevance of this new concept at the
level of the semiclassical quantization of the energy levels
for an electron motion in an external uniform magnetic
field only (ϕ = 0), so that Eq. (3) becomes ṙ = D

(
∂E
∂π

)

and
·
π = −eD

(
∂E
∂π×B

)
with D−1 = 1 − e~BΘ. For

convenience, B is chosen to point in the z-direction
B =Bk. Consequently the orbits satisfies the conditions
E =const and πz =const. The semiclassical quantiza-
tion of the energy levels can be done according to the
Bohr-Sommerfeld quantization rule

∮
P⊥dR⊥ = 2π~ (n + 1/2) (4)

where P⊥ is the canonical momentum in the plane per-
pendicular to the axis πz = cte. The integration is taken
over a period of the motion and n is a large integer.
Now, it turns out to be convenient to choose the gauge
Ãy = BX, Ãx = Ãz = 0. In this gauge, one has
πz = Pz = cte, and the usual covariant momentum
Πy = Py + eBX. As BX = B(x − ~Ax) the general-
ized covariant momentum defined as πy = Πy + e~BAx

becomes

πy = Py + eBx (5)

which is formally the same relation as the one between
the canonical variables, but now relating the new co-
variant generalized dynamical operators. This relation

with the help of the equation of motions gives
·

P y =
·
πy − eB

·
x = 0 thus Py is a constant of motion so that∮

PY dY = PY

∮
dY = 0 and Eq.(4) becomes simply∮

PxdX = 2π~ (n + 1/2) . Now using the definition of
the generalized momentum Px = πx + e~AyB and the
differential of the canonical position dX = dx − ~dAx =
dπy

eB − ~dAx, the Bohr-Sommerfeld condition Eq. (4) be-
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comes
∮

πxdπy = 2π~eB

(
n +

1

2
− 1

2π

∮
A⊥dπ⊥

)
(6)

where the integral is now taken along a closed trajec-
tory Γ in the π space and 1

2π

∮
A⊥dπ⊥ = φB is the

Berry phase for the orbit Γ. It is interesting to note
that in terms of the usual covariant momentum (Peierls
substitution) we have instead of Eq. (6) the condition∮

ΠxdΠy = 2π~eB (n + 1/2) . The integration in Eq.
(6) defines the cross-sectional area S0(ε, πz) of the or-
bit Γ which is the intersection of the constant energy
surface ε (π) =const and the plane πz =const. There-
fore the condition Eq. (6) implicitly determines the en-
ergy levels εn (πz) . Computing now the cross-sectional
area S0(E , πz) = S0(ε − e~MzB, πz) ≈ S0(ε, πz) + dS,
with dS =

∮
dκdπ⊥ the area of the annulus between

the energy surface ε =const and the surface ε + dε with

dε = −e~MzB, and where dκ =
√

dπ2
x + dπ2

y is an ele-

mentary length of the π orbit. Then, as dS can be written
dS =

∮
dεdκ

|∂ε/∂π⊥| = −e~B
∮

Mzdκ
|∂ε/∂π⊥| where the integral is

taken over the orbit Γ, one has finally

S0(E , πz) = 2π~eB

(
n +

1

2
− φB − 1

2π

∮
Mz (π) dκ

|∂ε/∂π⊥|

)

(7)
It is common to write S0(E , πz) = 2π~eB (n + γ) defining
thus the coefficient γ − 1

2 = −φB − 1
2π

∮
Mzdκ

|∂ε/∂π⊥| . This

coefficient can also be written in a different form

γ − 1

2
= − 1

2π

∮
[ṽ × A + M]z dκ

|∂ε/∂π⊥|
(8)

with ṽ≡∂ε/∂π. Eq. (8) is a generalization of a previ-
ous result found by Roth [4], in the specific context of
Bloch electrons in a magnetic field. The connection with
Berry’s phase was seen later by Mikitik and Sharlai [10].
In both [4] and [10], the term [ṽ × A + M] was written

as 1
2Pn

[(
Π

m + v
)
×A

]
where v =Π

m + ~
·

A is the velocity

operator before projection on a band, and Π = m
·

R, a re-
lation valid only for an Hamiltonian whose kinetic energy
is Π2/2m. Therefore Eq. (7) is more general and has a
broader field of application, as it is a general result which
applies for any kind of single quantum particle system in
a magnetic field, including Bloch and Dirac electrons.
Importantly the derivation provided here is new, and it
turns out to be the result of the generalized Peierls sub-
stitution in the Bohr-Sommerfeld condition.

Bloch electron. In a crystal, the Berry gauge
A (k) is Abelian (a scalar operator), written in terms
of the periodic part of the Bloch wave |un(k)〉 as
A (k)=i 〈un(k)| ∂k |un(k)〉, where k is the generalized co-
variant pseudo momentum (k = π/~). Application of Eq.
(7) for electron trajectories in a crystal with time reversal
and spatial inversion symmetry, where it is expected that,

both Θ and M vanish in the Brillouin zone, has been
studied by Mikitik and Sharlai [10]. But these authors
also pointed out the fact that the Berry’s phase is non
zero when the electron orbit surrounds the band-contact
line of a metal, actually φB = ±1/2. Consequently, γ = 0
in this case, instead of the previously supposed constant
value γ = 1/2 which is commonly used in describing os-
cillation effect in metals. As these authors mentioned,
measurements of γ can allows the detection of band con-
tact lines.

As a simple application of Eq. (7) consider a crys-
tal with time reversal and spatial inversion symmetry,
and where the Fermi surface is an ellipsoid of revolution
characterized by two effective masses, a transverse m⊥

and a longitudinal ml one. The energy levels can eas-

ily be deduced. Indeed E = ~
2
(

k
2

⊥

2m⊥

+
K2

z

2ml

)
and the

cross-sectional area S0(E , Kz) is a disc of radius square

k2
⊥ = 2m⊥

(
E/~

2 − K2

z

2ml

)
so that the energy levels are

En = eB~

m⊥

(
n + 1

2

)
+

~
2K2

z

2ml
which actually coincide with

the exact ones because the energy levels of an harmonic
oscillator keep their form at large n.

Dirac electron. Let us consider the Dirac Hamiltonian
H = α.Π + βm in the presence of an uniform magnetic
field, with α and β the usual (4 × 4) Dirac matrices. The
semiclassical block-diagonalization followed by a projec-
tion on, say, the positive energy subspace, leads to the
(2 × 2) matrix valued energy operator E =ε − e~M.B
where ε =

√
π2 + m2 (c = 1) and the magnetic moment

is given by M = σ
2ε − L

ε , with L = π×A representing the
intrinsic orbital angular momentum [2]. It turns out that
for Dirac, the magnetic moment can also be expressed as
M =εΘ, with the curvature vector given by the matrix
[2]

Θ (π) = − 1

2ε3

[
mσ +

(σ.π)π

ε + m

]

with σ the Pauli matrices. Berry’s connection is defined
as A=i 〈+, π| ∂π |+, π〉 where |+, π〉 is two components
spinor of the positive energy subspace. Consider B point-
ing in the z-direction so that πz = Pz =const, with the
goal to compute the Landau energy levels (LEL) as an ap-
plication of Eq. (7) . As the cross-sectional area S0(ε, Pz)
is a disc of radius square π2

⊥ = ε2−m2−P 2
z , the applica-

tion of Eq. (7) consists in replacing ε by E in π2
⊥ so that

we have S0(E , Pz) = π
(
E2

n − m2 − P 2
z

)
, which yields the

semiclassical quantized LEL through the relation

E2
n − m2 − P 2

z = 2~eB

(
n +

1

2
− φB − 1

2π

∮
Mzdκ

|∂ε/∂π⊥|

)

Now from the Berry connection A = π×σ
2ε(ε+m) we de-

duce the Berry’s phase φB = − τ
2 + τ

(
m
2ε +

P 2

z

2ε(ε+m)

)

where τ = ±1 are the eigenvalues of the Pauli matrix
σz. Berry’s phase is the sum of a topological part − τ

2
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and a non-topological τ
(

m
2ε +

P 2

z

2ε(ε+m)

)
one. The contri-

bution from the magnetic moment yields 1
2π

∮
Mzdκ

|∂ε/∂π⊥| =

−τ
(

m
2ε +

P 2

z

2ε(ε+m)

)
a term which exactly cancels the non-

topological contribution of φB, so that finally

En =

√

m2 + 2~Be

(
n +

1

2
+

τ

2

)
+ P 2

z

It turns out in this example that the semiclassical energy
quantization coincides also with the exact result. It is
usually expected that for a massless Dirac particle the
Berry’s phase takes the topological value φB = ±1/2, as
a consequence of the band degeneracy at zero momentum
[12]. This is not the case here because the magnetic field
lifts this degeneracy as Pz is not zero in, general. But it
turns out that the magnetic moment contribution exactly
compensates for the non-topological Berry’s phase contri-
bution. This cancellation can be easily understood from
the expression Eq. 8 for the coefficient γ. Indeed from
the equality [ṽ × A + M]z =

[
π×A

ε

]
z

+ τ
2ε − Lz

ε = τ
2ε we

deduce the expected result γ = 1
2 + τ

2 = 0 or 1.
For a two-dimensional Dirac system it is therefore ex-

pected that the magnetic moment for massless parti-
cles exactly vanishes, and that the Berry’s phase takes
the topological value φB = ±1/2. The electron motion
in graphene is an interesting physical situation which
illustrates this assertion. Indeed, graphene is a two-
dimensional carbon crystalline honeycomb structure with
inversion symmetry so that M =0. The hexagonal Bril-
louin zone has two distinct and degenerate Dirac points
or valleys (labelled by τ ± 1) where the conduction and
valence bands meet and the electronic excitations behave
like massless relativistic fermions, so that φB = ±1/2 and

consequently En = ±
√

2~eB
(
n + 1

2 + τ
2

)
[13]. Therefore

the ground state is not degenerate as there is only one
possibility to realize it n = 0. This result explains the
peculiar quantum Hall effect of graphene [14].

Summary. We have shown that a generalized Peierls
substitution including a Berry phase term must be con-
sidered for a correct semiclassical treatment of electrons
in a magnetic field. This substitution is essential for the
determination of the full semiclassical equations of mo-

tion, as well as for the semiclassical Bohr-Sommerfeld
quantization condition for energy levels. Indeed, the
substitution in the Bohr-Sommerfeld condition leads to
an expression for the cross-sectional area which in some
sort generalizes the formula found by Roth in the con-
text of Bloch electrons in a crystal. Application of this
formula to Dirac electrons shows the subtle cancellation
mechanism between the magnetic moment and the non-
topological part of the Berry’s phase, which yields the
Landau energy levels.
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