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We consider a porous media type equation over all of R d with d = 1, with monotone discontinuous coefficient with linear growth and prove a probabilistic representation of its solution in terms of an associated microscopic diffusion. The interest in such a singular porous media equations is due to the fact that they can model systems exhibiting the phenomenon of self-organized criticality. One of the main analytic ingredients of the proof is a new result on uniqueness of distributional solutions of a linear PDE on R 1 with non-continuous coefficients.

Introduction

We are interested in the probabilistic representation of the solution to a porous media type equation given by

∂ t u = 1 2 ∂ 2 xx (β(u)), t ∈ [0, ∞[ u(0, x) = u 0 (x), x ∈ R, (1.1) 
in the sense of distributions, where u 0 is an initial probability density. We look for a solution of (1.1) with time evolution in L 1 (R).

We always make the general following assumption on β.

Assumption 1.1

• β : R → R is monotone increasing.

• |β(u)| ≤ const|u|, u ∈ R.

• There is λ > 0 such that (β ∓ λid)(x) → ∓∞ when x → ∓∞ where id(x) ≡ x.

• u 0 ∈ (L 1 L ∞ )(R).
Remark 1.2 1. Since β is monotone, (1.1) implies that β(u) = Φ 2 (u)u, Φ being a non-negative bounded Borel function.

2. β(0) = 0 and β is continuous at zero.

We recall that when β(u) = |u|u m-1 , m > 1, (1.1) is nothing else but the classical porous media equation.

One of our final targets is to consider Φ as continuous except for a possible jump at one positive point, say e c > 0. A typical example is

Φ(u) = H(u -e c ), (1.2) 
H being the Heaviside function.

The analysis of (1.1) and its probabilistic representation can be done in the framework of monotone partial differential equations (PDE) allowing multivalued functions and will be discussed in detail in the main body of the paper. This extension is necessary, among other things, to allow the graph associated with β to be a maximal monotone graph. We refer to Assumption 3.1 below. In this introduction, for simplicity, we restrict our presentation to the single-valued case.

Definition 1. [START_REF] Bak | How Nature Works: The Science of Self-Organized Criticality[END_REF] We will say that equation (1.1) or β is non-degenerate if there is a constant c 0 > 0 such that Φ ≥ c 0 .

Of course, if Φ is as in (1.2), then β in is not non-degenerate. In order to have β to be non-degenerate, one needs to add a positive constant to it.

Several contributions were made in this framework starting from [START_REF] Ph | A semilinear equation in L 1 (R N )[END_REF] for existence, [START_REF] Brezis | Uniqueness of solutions of the initial-value problem for u t -∆ϕ(u) = 0[END_REF] for uniqueness in the case of bounded solutions and [START_REF] Ph | The continuous dependence on ϕ of solutions of u t -∆ϕ(u) = 0[END_REF] for continuous dependence on the coefficients. The authors consider the case where β is continuous, even if their arguments allow some extensions for the discontinuous case.

As mentioned in the abstract, the first motivation of this paper was to discuss a continuous time model of self-organized criticality (SOC), which are described by equations of type (1.2).

SOC is a property of dynamical systems which have a critical point as an attractor, see [START_REF] Bak | How Nature Works: The Science of Self-Organized Criticality[END_REF] for a significant monograph on the subject. SOC is typically observed in slowly-driven out-of-equilibrium systems with threshold dynamics relaxing through a hierarchy of avalanches of all sizes. We, in particular, refer to the interesting physical paper [START_REF] Bantay | Avalanche dynamics from anomalous diffusion[END_REF]. The latter makes reference to a system whose evolution is similar to the evolution of a "snow layer" under the influence of an "avalanche effect" which starts when the top of the layer attains a critical value e c . Adding a stochastic noise should describe other contingent effects. For instance, an additive perturbation by noise could describe the regular effect of "snow falling". In Bantay et al.

( [START_REF] Bantay | Avalanche dynamics from anomalous diffusion[END_REF]) it was proposed to describe this phenomenon by a singular diffusion involving precisely a coefficient of the type (1.2).

In the absence of noise the density u(t, x), t > 0, x ∈ R of this diffusion is formally described by (1.1) and β(u) = Φ(u) 2 u where Φ is given by (1.2).

Such a discontinuous monotone β has to be considered as a multivalued map in order to apply monotonicity methods.

The singular non-linear diffusion equation (1.1) models the macroscopic phenomenon for which we try to give a microscopic probabilistic representation, via a non-linear stochastic differential equation (NLSDE) modeling the evolution of a single point on the layer.

Even if the irregular diffusion equation (1.1) can be shown to be well-posed, up to now we can only prove existence (but not yet uniqueness) of solutions to the corresponding NLSDE. On the other hand if Φ ≥ c 0 > 0, then uniqueness can be proved. For our applications, this will solve the case Φ(u) = H(xe c ) + ε for some positive ε. The main novelty with respect to the literature is the fact that Φ can be irregular with jumps.

To the best of our knowledge the first author who considered a probabilistic representation (of the type studied in this paper) for the solutions of a nonlinear deterministic PDE was McKean [START_REF] Jr | Propagation of chaos for a class of non-linear parabolic equations[END_REF], particularly in relation with the so called propagation of chaos. In his case, however, the coefficients were smooth. From then on the literature steadily grew and nowadays there is a vast amount of contributions to the subject, especially when the non-linearity is in the first order part, as e.g. in Burgers equation. We refer the reader to the excellent survey papers [START_REF] Sznitman | Topics in propagation of chaos[END_REF] and [START_REF] Graham | Probabilistic models for nonlinear partial differential equations[END_REF].

A probabilistic interpretation of (1.1) when β(u) = |u|u m-1 , m > 1, was provided for instance in [START_REF] Benachour | Processu associés à l' équation des milieux poreux[END_REF]. For the same β, though the method could be adapted to the case where β is Lipschitz, in [START_REF] Jourdain | Probabilistic approximation for a porous medium equation[END_REF] the author has studied the evolution equation (1.1) when the initial condition and the evolution takes values in the class of probability distribution functions on R. Therefore, instead of an evolution equation in L 1 (R), he considers a state space of functions vanishing at -∞ and with value 1 at +∞. He studies both the probabilistic representation and propagation of chaos.

Let us now describe the principle of the mentioned probabilistic representation. The stochastic differential equation (in the weak sense), rendering the probabilistic representation, is given by the following (random) non-linear diffusion:

Y t = Y 0 + t 0 Φ(u(s, Y s ))dW s Law density(Y t ) = u(t, •), (1.3) 
where W is a classical Brownian motion. The solution of that equation may be visualised as a continuous process Y on some filtered probability space (Ω, F, (F t ) t≥0 , P ) equipped with a Brownian motion W . By looking at a properly chosen version, we can and shall assume that Y :

[0, T ] × Ω → R + is B([0, T ]) ⊗ F-measurable.
Of course, we can only have (weak) uniqueness for (1.3) if we fix the initial distribution, i.e. we have to fix the distribution (density) u 0 of Y 0 .

The connection with (1.1) is then given by the following result. (ii) Let u be a solution of (1.1) in the sense of distributions and let Y solve the first equation in (1.3) with law density v(t, •) and initial law density

u 0 = u(0, •). Then ∂ t v = 1 2 ∂ 2 xx (Φ 2 (u)v), (1.4) 
in the sense of distributions. In particular, if v is the unique solution of (1.4), with v(0,

•) = u 0 , then v = u. Proof. Let ϕ ∈ C ∞ 0 (R)
, Y be a solution to the first line of (1.3) such that v(t, •) is the law density Y t , for positive t. We apply Itô's formula to ϕ(Y ), to obtain

ϕ(Y t ) = ϕ(Y 0 ) + t 0 ϕ ′ (Y s )Φ(u(s, Y s )) dW s + 1 2 t 0 ϕ ′′ (Y s )Φ 2 (u(s, Y s )) ds Taking expectation we obtain R ϕ(y)v(t, y)dy = R ϕ(y)u 0 (y)dy + 1 2 t 0 ds R ϕ ′′ (y)Φ 2 (u(s, y))v(s, y) dy.
Now both assertions (i) and (ii) follow.

Remark 1.5 An immediate consequence of the probabilistic representation of a solution of (1.1) is its positivity at any time. Also the property that the initial condition is of mass 1 is in this case conserved.

The main purpose of this paper is to show existence and uniqueness in law of the probabilistic representation equation (1.3), in the case that β is nondegenerate and not necessarily continuous. In addition, we prove existence for (1.3), in some degenerate cases under certain conditions, see Subsection

4.2.

Let us now briefly explain the points that we are able to treat and the difficulties which naturally appear in regard to the probabilistic representation.

For simplicity we do this for β being single-valued (and) continuous. However, with some technical complications this generalizes to the multi-valued case, as spelled out in the subsequent sections.

1. Monotonicity methods allow us to show existence and uniqueness of solutions to (1.1) in the sense of distributions under the assumption that β is monotone, that there exists λ > 0 with (β + λid)(R) = R and that β is continuous at zero, see Proposition 3.4 below. We emphasize that for uniqueness no surjectivity of β + λid is required, see Remark 3.6 below.

2. Let a : [0, T ] × R → R be a strictly positive bounded Borel function.

Let M(R) be the set of all signed measures on R with finite total variation. We prove uniqueness of solutions of

∂ t v = ∂ 2 xx (av) v(0, x) = u 0 (x), (1.5) 
as an evolution problem in M(R), at least under an additional assumption (A), see Theorem 3.8 below. 

Y ε t = t 0 Φ ε (u ε (s, Y ε s ))dW s , (1.6) 
where u ε (t, •) is the law of Y ε t , t ≥ 0, and Y ε 0 is distributed according to u 0 (x)dx. The sequence of laws of the processes (Y ε ) are tight.

However, the limiting processes of convergent subsequences may in general not solve the SDE

Y t = t 0 Φ(u(s, Y s ))dW s .
(1.7)

However, under some additional assumptions, see Properties 4.8 and 4.10 below, it will be the case. The analysis of the degenerate case in greater generality (including case (1.2)) will be the subject of the forthcoming paper [START_REF] Barbu | Probabilistic representation for solutions of a porous media equation: the irregular degenerate case[END_REF].

In this paper, we proceed as follows. Section 2 is devoted to preliminaries about elliptic PDEs satisfying monotonicity conditions.

In Section 3, we first state a general existence and uniqueness result (Proposition 3.4) for equation (1.1) and provide its proof, see item 1. above. The rest of Section 3 is devoted to the study of the uniqueness of a deterministic, time inhomogeneous singular linear equation with evolution in the space of probabilities on R. This will be applied for studying the uniqueness of equation (1.5) Finally, we would like to mention that, in order to keep this paper selfcontained and make it accessible to a larger audience, we include the analytic background material and necessary (through standard) definitions. Likewise, we tried to explain all details on the analytic delicate and quite technical parts of the paper which form the backbone of the proofs for our main result.

Preliminaries

We start with some basic analytical framework.

If f : R → R is a bounded function we will set f ∞ := sup x∈R |f (x)|. By C b (R) we denote the space of bounded continuous real functions and by S (R) the space of rapidly decreasing infinitely differentiable functions ϕ : R → R, by S ′ (R) its dual (the space of tempered distributions).

Let K ε be the Green function of ε -∆, that is the kernel of the operator

(ε -∆) -1 : L 2 (R) → L 2 (R).
So, for all ϕ ∈ L 2 (R), we have

B ε (ϕ) := (ε -∆) -1 ϕ(x) = R K ε (x -y) ϕ(y)dy. (2.8)
The next lemma provides us with an explicit expression of the kernel function

K ε . Lemma 2.1 K ε (x) = 1 2 √ ε e - √ ε|x| , x ∈ R. (2.9) 
Proof. From Def. 6.27 in [START_REF] Stein | Singular integrals and differentiability properties of functions[END_REF], we get

K ε (x) = 1 (4π) 1/2 ∞ 0 t -1 2 e -|x| 2 4t -εt dt (2.10)
The result follows by standard calculus.

Clearly, if ϕ ∈ C 2 (R) S ′ (R), then (ε -∆)ϕ coincides with the classical associated PDE operator.

Lemma 2.2 Let ε > 0, m ∈ M(R). There is a unique solution v ε ∈ C b (R) ( p≥1 L p (R)) of εv ε -∆v ε = m (2.11)
in the sense of distributions given by

v ε (x) := R K ε (x -y)dm(y), x ∈ R.
(2.12)

Moreover it fulfills sup x √ ε|v ε (x)| ≤ m var 2 , (2.13) 
where m var denotes the total variation norm. In addition, the derivative v ′ ε has a bounded cadlag version which is locally of bounded variation.

In the sequel, in analogy with (2.8), that solution will be denoted by B ε m.

Proof. Uniqueness follows from an obvious application of Fourier transform. In fact, it holds even in S ′ (R).

v ε given by (2.12), clearly satisfies (2.11) in the sense of distributions. By Lebesgue's dominated convergence theorem and because

K ε is a bounded continuous function, it follows that v ε ∈ C b (R).
By Lemma 2.1 we have sup

x |v ε (x)| ≤ 1 2 √ ε m var , (2.14) 
By Fubini's theorem and (2.9), it follows that

v ε ∈ L 1 (R). Hence v ε ∈ L p (R), ∀p ≥ 1, because v ε is bounded.
Since v ′′ ε equals εv ε -m in the sense of distributions, after integration, we can show that

v ′ ε (x) = ε x -∞ v ε (y)dy -m(] -∞, x]),
for dx-a.e. x ∈ R. In particular, v ε has a bounded cadlag version which is locally of bounded variation and

v ′ ε ∞ ≤ ε v L 1 (R) + m var .
We now recall some basic notions from the analysis of monotone operators.

More information can also be found for instance in [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF]. See also [START_REF] Barbu | Analysis and control of nonlinear infinite dimensional systems[END_REF][START_REF] Brezis | Opérateurs maximaux monotones et semigroupes de contraction dans les espaces de Hilbert[END_REF].

Let E be a general Banach space.

One of the most basic notions of this paper is the one of a multivalued function (graph). A multivalued function (graph) β on E will be a subset of E × E. It can be seen, either as a family of couples (e, f ), e, f ∈ E and we will write f ∈ β(e) or as a function β : E → P(E).

We start with a definition in the case E = R.

Definition 2.3 A multivalued function β defined on R with values in subsets of R is said to be monotone if (x 1 -x 2 )(y 1 -y 2 ) ≥ 0 for all x 1 , x 2 ∈ R, y i ∈ β(x i ), i = 1, 2.
We say that β is maximal monotone if it is monotone and there exists

λ > 0 such that β + λid is surjective, i.e. R(β + λid) := x∈R (β(x) + λx) = R.
We recall that one motivation of this paper is the case where

β(u) = H(u - e c )u.
Let us consider a monotone function ψ. Then all the discontinuities are of jump type. At every discontinuity point x of ψ, it is possible to complete ψ, producing a multi-valued function, by setting

ψ(x) = [ψ(x-), ψ(x+)].
Since ψ is a monotone function, the corresponding multivalued function will be, of course, also monotone. Now we come back to the case of our general Banach space E with norm

• . An operator T : E → E is said to be a contraction if it is Lipschitz of norm less or equal to 1 and T (0) = 0.

Definition 2.4 A map

A : E → E, or more generally a multivalued map

A : E → P(E) is said to be accretive if for all f 1 , f 2 , g 1 , g 2 ∈ E such that g i ∈ Af i , i = 1, 2, we have f 1 -f 2 ≤ f 1 -f 2 + λ(g 1 -g 2 ) ,
for any λ > 0.

This is equivalent to saying the following: for any λ > 0, (1 + λA) -1 is a contraction for any λ > 0 on Rg(I + λA). We remark that a contraction is necessarily single-valued.

Remark 2.5 Suppose that E is a Hilbert space equipped with the scalar product ( , ) H . Then A is accretive if and only if it is monotone i.e.

(f 1 -f 2 , g 1 -g 2 ) H ≥ 0 for any f 1 , f 2 , g 1 , g 2 ∈ E such that g i ∈ Af i , i = 1, 2, see Corollary 1.3 of [29]. Definition 2.6 A monotone map A : E → E (possiblly multivalued) is said to be m-accretive if for some λ > 0, A + λI is surjective (as a graph in E × E).
Remark 2.7 So, A is m-accretive, if and only if for all λ strictly positive,

(I + λA) -1 is a contraction on E. Now, let us consider the case E = L 1 (R).
The following is taken from [START_REF] Ph | The continuous dependence on ϕ of solutions of u t -∆ϕ(u) = 0[END_REF],

Section 1.

Proposition 2.8 Let β : R → R be a monotone (possibly multi-valued) map such that the corresponding graph is m-accretive. Suppose that β(0) = 0.

Let f ∈ E = L 1 (R). 1. There is a unique u ∈ L 1 (R) for which there is w ∈ L 1 loc (R) such that u -∆w = f in D ′ (R), w(x) ∈ 1 2 β(u(x)), for a.e. x ∈ R, (2.15) 
see Proposition 2 of [START_REF] Ph | The continuous dependence on ϕ of solutions of u t -∆ϕ(u) = 0[END_REF].

It is then possible to define a (multivalued) operator

A := A β : E → E where D(A) is the set of u ∈ L 1 (R) for which there is w ∈ L 1 loc (R) such that w(x) ∈ 1 2 β(u(x)) for a.e. x ∈ R and ∆w ∈ L 1 (R). For u ∈ D(A), we set Au = {- 1 2 w|w as in the definition of D(A)}.
This is a consequence of the remarks following Theorem 1 in [START_REF] Ph | The continuous dependence on ϕ of solutions of u t -∆ϕ(u) = 0[END_REF].

In particular, if β is single-valued, Au = -1 2 ∆β(u). We will adopt this notation also if β is multi-valued. [START_REF] Ph | The continuous dependence on ϕ of solutions of u t -∆ϕ(u) = 0[END_REF]. In particular, for every positive integer n

The operator A defined in 2. above is m-accretive on

E = L 1 (R), see Proposition 2 of [11]. 4. We set J λ = (I + λA) -1 , which is a single-valued operator. If f ∈ L ∞ (R), then J λ f ∞ ≤ f ∞ , see Proposition 2 (iii) of
, J n λ f ∞ ≤ f ∞ .
Let us summarize some important results of the theory of non-linear semigroups, see for instance [START_REF] Evans | Nonlinear evolution equations in an arbitrary Banach space[END_REF][START_REF] Barbu | Nonlinear semigroups and differential equations in Banach spaces[END_REF][START_REF] Barbu | Analysis and control of nonlinear infinite dimensional systems[END_REF][START_REF] Ph | A semilinear equation in L 1 (R N )[END_REF] or the more recent monograph [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF],

which we shall use below. Let A : E → E be a (possibly multivalued) m-accretive operator. We consider the equation

0 ∈ u ′ (t) + A(u(t)), 0 ≤ t ≤ T. (2.16) 
A function u : [0, T ] → E, which is absolutely continuous such that for a.e.

t, u(t, •) ∈ D(A) and fulfills (2.16) in the following sense, is called strong solution.

There exists η : [0, T ] → E, Bochner integrable, such that η(t) ∈ A(u(t)) for a.e. t ∈ [0, T ] and

u(t) = u 0 + t 0 η(s)ds, 0 < t ≤ T.
A weaker notion for (2.16) is the so-called C 0 -solution, see Chapter IV.8

of [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF]. In order to introduce it, one first defines the notion of ε-solution for (2. [START_REF] Brezis | Uniqueness of solutions of the initial-value problem for u t -∆ϕ(u) = 0[END_REF]).

An ε-solution is a discretization

D = {0 = t 0 < t 1 < . . . < t N = T }
and an E-valued step function

u ε (t) = u 0 : t = t 0 u j ∈ D(A) : t ∈]t j-1 , t j ]
for which t j -t j-1 ≤ ε for 1 ≤ j ≤ N , and

0 ∈ u j -u j-1 t j -t j-1 + Au j , 1 ≤ j ≤ N.
We remark that, since A is m-accretive, u ε is determined by D and u 0 , see Proposition 2.8 1.

Definition 2.9 A C 0 -solution of (2.16) is a function u ∈ C([0, T ]; E)
such that for every ε > 0, there is an ε-solution u ε of (2.16) with

u(t) -u ε (t) ≤ ε, 0 ≤ t ≤ T.
Proposition 2.10 Let A be an m-accretive (multivalued) operator on a Banach space E. We set again J λ := (I + λA) -1 , λ > 0. Suppose u 0 ∈ D(A).

Then:

1. There is a unique C 0 -solution u : [0, T ] → E of (2.16) 2. u(t) = lim n→∞ J n t n u 0 uniformly in t ∈ [0, T ].
Proof.

1) is stated in Corollary IV.8.4. of [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF] and 2) is contained in Theorem IV 8.2 of [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF].

The notion of C 0 -(or mild) solution needs to be introduced since the dual

E * of E = L 1 (R) is not uniformly convex. If E * were indeed uniformly convex,
we could have stayed with strong solutions. In fact, according to Theorem IV 7.1 of [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF], for a given u 0 ∈ D(A), there would exist a (strong) solution

u : [0, T ] → E to (2.16
), which is a simpler notion to deal with. For the comfort of the reader we recall the following properties.

• A strong solution is a C 0 -solution, by Proposition 8.2 of [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF].

• Theorem 1.2 of [START_REF] Crandall | On the relation of the operator ∂ ∂s + ∂ ∂τ to evolution governed by accretive operators[END_REF] says the following. Given u 0 ∈ D(A) and given a sequence (u n 0 ) in D(A) converging to u 0 , then, the sequence of the corresponding strong solutions (u n ) converges to the unique C 0 -solution of the same equation.

A porous media equation with singular coefficients

In this section, we will provide first an existence and uniqueness result for solutions to the parabolic deterministic equation (1.1) in the sense of distributions for multi-valued m-accretive β. The proof is partly based on the theory of non-linear semigroups, see [START_REF] Ph | The continuous dependence on ϕ of solutions of u t -∆ϕ(u) = 0[END_REF] for the case when β is continuous.

However, the most important result of this section, is an existence and uniqueness result for a "non-degenerate" linear equation for measures, see (1.5). This technical result will be crucial for identifying the law of the process appearing in the probabilistic representation (1.3).

We suppose that β has the same properties as those given in the introduction. However, β is allowed to be multi-valued, hence m-accretive, as a graph, in the sense of Definition 2.3. Furthermore, generalizing Assumption 1.1 we shall assume the following. 

Remark 3.3 As mentioned before, if β : R → R is monotone (possibly discontinuous), it is possible to complete β into a monotone graph. For instance, if Φ(x) = H(x -e c ), then β(x) =        0 : x < e c [0, e c ] : x = e c x : x > e c
Since the function β is monotone, the corresponding graph is monotone.

Moreover β + id is surjective so that, by definition, β is m-accretive.

Proposition 3.4 Let u 0 ∈ L 1 (R) L ∞ (R) Then there is a unique solution in the sense of distributions u ∈ (L 1 L ∞ )([0, T ] × R) of ∂ t u ∈ 1 2 ∂ 2 xx (β(u)), u(t, x) = u 0 (x), (3.2) 
that is, there exists a unique couple (u,

η u ) ∈ ((L 1 L ∞ )([0, T ] × R)) 2 such that u(t, x)ϕ(x)dx = u 0 (x)ϕ(x)dx + 1 2 t 0 ds η u (s, x)ϕ ′′ (x)dx, ∀ϕ ∈ S(R) and (3.3) η u (t, x) ∈ β(u(t, x)) for dt ⊗ dx -a.e. (t, x) ∈ [0, T ] × R. Furthermore, u(t, •) ∞ ≤ u 0 ∞ for every t ∈ [0, T ] and there is a unique version of u such that u ∈ C([0, T ]; L 1 (R)) (⊂ L 1 ([0, T ] × R)).
Remark 3.5 1. We remark that, the uniqueness of u determines the uniqueness of η ∈ β(u) a.e. In fact, for s, t ∈ [0, T ], we have

1 2 t s η u (r, •)dr ′′ = u(t, •) -u(s, •), a.e. (3.4) Since η u ∈ L 1 ([0, T ] × R), this implies that the function η u is dt ⊗ dx-
a.e. uniquely determined. Furthermore, since β(0) = 0 and because

β is monotone, for dt ⊗ dx a.e. (t, x) ∈ [0, T ] × R we have u(t, x) = 0 ⇒ η u (t, x) = 0 and u(t, x)η u (t, x) ≥ 0.
2. If β is continuous then we can take η u (s, x) = β(u(s, x)). We first recall that by our assumptions, we have (β + λid)(R) = R for every λ > 0.

This result applies in the

1. The first step is to prove the existence of a C 0 -solution of the evolution problem (2.16) in E = L 1 (R), with A and D(A) as defined in Proposition 2.8 2. Suppose D(A) = L 1 (R). Then, the existence of a

C 0 -solution u ∈ C([0, T ]; L 1 (R)) is a consequence of Proposition 2.8 3.
and Proposition 2.10 1. In particular, u belongs to L 1 ([0, T ] × R).

We now prove that

D(A) is dense in in E = L 1 (R).
Let u ∈ E. We have to show the existence of a sequence (u n ) in

D(A) converging to u in E. We set u λ = (I + λA) -1 u, so that u ∈ u λ -λ∆ 1 2 β(u λ ).
The result follows if we are able to show that

lim λ→0 u λ = u, weakly in E, (3.5) 
because then D(A) is weakly sequentially dense in L 1 (R). In fact we can easily show that D(A) is convex and so also its closure. Hence by Satz 6.12 of [1] D(A) is also weakly sequentially closed and so the result would follow. We continue therefore proving (3.5). Since (I + λA) -1 is a contraction on E, u λ ∈ E and the sequence (u λ ) is bounded in

L 1 (R). Since u λ ∈ D(A)
, by definition, there exists w λ ∈ L 1 loc (R) such that w λ (x) ∈ 1 2 β(u λ (x)) for dx-a.e. x ∈ R, ∆w λ ∈ L 1 (R) and u = u λ -λ∆w λ . Since β has linear growth, w λ also belongs to E for every λ > 0 and the sequence w λ is bounded in E. Consequently, λw λ converges to zero in E when λ → 0 and it follows that λ∆w λ converges to zero in the sense of distributions, hence u λ → u again in the sense of distributions. Because (u λ ) is bounded in L 1 (R), it follows that

u λ → u weakly in E = L 1 (R), as λ → 0.
3. The third step consists in showing that a C 0 -solution is a solution in the sense of distributions of (3.2).

Let ε > 0 and consider a family u ε : [0, T ] → E of ε-solutions. Note that for u ε 0 := u 0 and for 1 ≤ j ≤ N , with A as in Proposition 2.8 2., we recursively have

u ε j = (I -(t ε j -t ε j-1 )A) -1 u ε j-1 , (3.6) 
hence

∆w ε j = - u ε j -u ε j-1 t ε j -t ε j-1
for some w ε j ∈ L 1 loc (R) such that w ε j ∈ 1 2 β(u ε j ), dx -a.e. Hence, for t ∈]t ε j-1 , t ε j ], we have

u ε (t, •) = u ε (t ε j-1 , •) + t ε j t ε j-1 ∆w ε (s, •)ds.
where

w ε (t) = w ε j , t ∈]t ε j-1 , t ε j ].
Consequently, summing up, then for t ∈]t ε j-1 , t ε j ],

u ε (t, •) = u 0 + t 0 ∆w ε (s, •)ds + (t ε j -t)∆w ε (t ε j , •).
We integrate against a test function α ∈ S(R) and get

R u ε (t, x)α(x)dx = R u 0 (x)α(x)dx + t 0 R w ε (s, x)α ′′ (x)dxds (3.7) + (t -t ε j ) R w ε (t ε j , x)α ′′ (x)dx.
Letting ε go to zero we use the fact that u ε → u uniformly in t in

L 1 (R). (u ε ) converges in particular to u ∈ L 1 ([0, T ] × R) when ε → 0.
The third term in the right-hand side of (3.7) converges to zero since t -t ε j is smaller than the mesh ε of the subdivision.

Consequently, (3.7) implies

R u(t, x)α(x)dx = R u 0 (x)α(x)dx + lim ε→0 t 0 R w ε (s, x)α ′′ (x)dxds. (3.8)
According to our assumption on β, there is a constant c > 0 such

that |w ε | ≤ c|u ε |. Therefore the sequence (w ε ) is equi-integrable on [0, T ] × R. So, there is a sequence (ε n ) such that w εn converges to some 1 2 η u ∈ L 1 ([0, T ] × R) in σ(L 1 , L ∞ ). Taking (3.8
) into account, it remains to see that η u (t, x) ∈ β(u(t, x)) a.e. dt ⊗ dx, in order to prove that u solves (3.3).

Let K > 0. Using Proposition 2.8 4., by (3.6) we conclude that u ε (t, •) ∞ ≤ u 0 ∞ . Consequently for any K > 0, the dominated convergence theorem, implies that the sequence u εn restricted to [0, T ] ×

[-K, K] converges to u restricted to [0, T ] × [-K, K] in L 2 ([0, T ] × [-K, K]
) and w εn restricted to [0, T ] × [-K, K], being bounded by c|u εn |, converges (up to a subsequence) weakly in L 2 , necessarily to

1 2 η u restricted to [0, T ] × [-K, K]. The map v → 1 2 β(v) on L 2 ([0, T ] × [-K, K]
) is an m-accretive multi-valued map, see [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF], p. 164, Example 2c. So it is weakly-strongly closed because of [START_REF] Barbu | Analysis and control of nonlinear infinite dimensional systems[END_REF] p. 37, Proposition 1.1 (i) and (ii). Hence the result follows.

4. The fourth step consists in showing that the obtained solution is in

L ∞ ([0, T ] × R).
Point 2. of Proposition 2.10 tells us that

u(t, •) = lim n→+∞ J n t n u 0 in L 1 (R).
Hence, for every t ∈]0, T ] and for some subsequence (n k ) depending on t,

|u(t, •)| = lim k→∞ |J n k t n k u 0 | ≤ u 0 ∞ , dx-a.e.,
where we used again Proposition 2.8 4). It follows by Fubini's theorem 1. Theorem 1 and Remark 1.20 of [START_REF] Brezis | Uniqueness of solutions of the initial-value problem for u t -∆ϕ(u) = 0[END_REF] apply if β is continuous, to give the uniqueness in point 5. above. However, Remark 1.21 of [START_REF] Brezis | Uniqueness of solutions of the initial-value problem for u t -∆ϕ(u) = 0[END_REF] says that this holds true even if β(0) = 0 and β is only continuous in zero and possibly multi-valued. This case applies for instance when Φ(x) = H(x -e c ), e c > 0.

that |u(t, x)| ≤ u 0 ∞ , for dt ⊗ dx-a.e. (t, x) ∈ [0, T ] × R.
2. We would like to mention that there are variants of the results in Proposition 3.4 known from the literature. However, some of them are just for bounded domains while we work in all of R. For instance, when the domain is bounded and β is continuous, Example 9B in Section IV.9 of [START_REF] Showalter | Monotone operators in Banach space and nonlinear partial differential equations[END_REF], remarks that a C 0 -solution is a solution in the sense of distributions.

In order to establish the well-posedness for the related probabilistic representation one needs a uniqueness result for the evolution of probability measures. This will be the subject of Theorem 3.8 below. But as will turn out, it will require some global L 2 -integrability for the solutions.

A first step in this direction was Corollary 3.2 of [START_REF] Bogachev | On regularity of transition probabilities and invariant measures of singular diffusions under minimal conditions[END_REF], that we quote here for the convenience of the reader.

Lemma 3.7 Let κ ∈]0, T [. Let µ be a finite Borel measure on [κ, T ] × R; let a, b ∈ L 1 ([κ, T ] × R; µ). We suppose that [κ,T ]×R ∂ t ϕ(t, x) + a(t, x)∂ 2 xx ϕ(t, x) + b(t, x)∂ x ϕ(t, x) µ(dtdx) = 0, for all ϕ ∈ C ∞ 0 (]0, +∞[×R). Then, there is ρ ∈ L 2 loc ([κ, T ] × R) such that a(t, x)dµ(t, x) = ρ(t, x)dtdx.
We denote the subset of positive measures in M(R) by M + (R).

Theorem 3.8 Let a be a Borel non negative bounded function on [0, T ] × R.

Let z i : [0, T ] → M + (R), i = 1, 2

, be continuous with respect to the weak topology of finite measures on M(R).

Let z 0 be an element of M + (R). Suppose that both z 1 and z 2 solve the

problem ∂ t z = ∂ 2 xx (az) in the sense of distributions with initial condition z(0) = z 0 . More precisely, R ϕ(x)z(t)(dx) = R ϕ(x)z 0 (dx) + t 0 ds R ϕ ′′ (x)a(s, x)z(s)(dx) (3.9)
for every t ∈ [0, T ] and any ϕ ∈ S(R).

Then (z 1 -z 2 )(t) is identically zero for every t, if z := z 1 -z 2 , satisfies the following:

ASSUMPTION (A): There is ρ : [0, T ]×R → R belonging to L 2 ([κ, T ]×R)
for every κ > 0 such that ρ(t, •) is the density of z(t) for almost all t ∈]0, T ]. 

Remark 3.9 If a ≥ const > 0, then ρ such that ρ(t, •) is a density of (z 1 -z 2 )(t)
z(t) var < ∞.
Indeed, if this were not true, we could find t n ∈ [0, T ], such that z(t n ) var diverges to infinity. We may assume that lim n→∞ t n = t 0 ∈ [0, T ]. Then

lim n→∞ R f (x)z(t n )(dx) = R f (x)z(t 0 )(dx)
for all f ∈ C b (R), hence by the uniform boundedness principle one gets the contradiction that

sup n z(t n ) var < ∞.

Remark 3.11 Theorem 3.8 does not hold without Assumption (A) even in the time-homogeneous case.

To explain this, let Φ : R → R + be continuous and bounded such that Φ(0) = 0 and Φ is strictly positive on R -{0}. We also suppose that 1 Φ 2 is integrable in a neighborhood of zero.

We choose z 0 := δ 0 , i.e. the Dirac measure at zero. It is then possible to exhibit two different solutions to the considered problem with initial condition z 0 . We justify this in the following lines using a probabilistic representation. Let Y 0 be identically zero.

According to the Engelbert-Schmidt criterion, see e. g. Theorem 5.4 and Remark 5.6 of Chapter 5, [START_REF] Karatzas | Brownian motion and calculus[END_REF], it is possible to construct two solutions (in law) to the SDE

Y t = t 0 Φ(Y s )dW s . (3.10)
where W is a Brownian motion on some filtered probability space.

One solution Y (1) is identically zero. The second one Y (2) is a non-constant martingale starting from zero. We recall the construction of Y (2) , since it is of independent interest.

Let B be a classical Brownian motion and we set

T t = t 0 du Φ 2 (B u ) . (3.11)
Problem 6.30 of [START_REF] Karatzas | Brownian motion and calculus[END_REF] says that the increasing process (T t ) diverges to infinity when t goes to infinity. We define pathwise (A t ) as the inverse of (T t ) and we set M t = B At . M is a martingale since it is a time change of Brownian motion. One the one hand we have [M ] t = A t . But pathwise, by (3.11) we have

A t = At 0 Φ 2 (B u )dT u = t 0 Φ 2 (B Av )dv,
through a change of variables u = A v . Consequently we get

A t = t 0 Φ 2 (M v )dv.
Theorem 4.2 of Ch. 3 of [START_REF] Karatzas | Brownian motion and calculus[END_REF] says that there is a Brownian motion W on a suitable filtered larger probability space and an adapted process (ρ t ) so that

M t = t 0 ρd W . We have [M ] t = t 0 ρ 2 s ds = t 0 Φ 2 (M s )ds, for all t ≥ 0, hence ρ 2 t = Φ 2 (M t ) and so Φ(M t )sign(ρ t ) = ρ t .
We define

W t = t 0 sign(ρ v )d Wv .
Clearly 

v i (t, •), i = 1, 2. In fact v 1 (t, •) is equal to δ 0 for all t ∈ [0, T ].
Using Itô's formula it is easy to show that the law v(t, •) of a solution Y of (3.10) solves the PDE in Theorem 3.8 with a := Φ 2 and initial condition δ 0 .

This constitutes a counterexample to Theorem 3.8 without Assumption (A).

Proof (of Theorem 3.8).

The arguments developed in this proof is inspired by a uniqueness proof of distributional solutions for the porous media equation, see Theorem 1 of [START_REF] Brezis | Uniqueness of solutions of the initial-value problem for u t -∆ϕ(u) = 0[END_REF].

Given a locally integrable function (t, x) → u(t, x), u ′ (resp. u ′′ ) stands for the first (resp. second) distributional derivative with respect to the second variable x.

In the first part of the proof we do not use Assumption (A). We will explicitly state from where it is needed.

Let z 1 , z 2 be two solutions to (3.9) and we set z = z 1 -z 2 . We will study the quantity

g ε (t) = R B ε z(t)(x)z(t)(dx), where B ε z(t) ∈ (L 1 L ∞ )(R) is the continuous function v ε defined in Lemma 2.2, taking m = z(t). g ε (t) is well-defined, since g ε (t) ≤ z(t) var sup x |B ε z(t)(x)| for all t ∈ [0, T ].
Assume we can show that lim ε→0 g ε (t) = 0 for all t ∈ [0, T ].

(3.12)

Then we are able to prove that z(t) ≡ 0 for all t ∈ [0, T ].

Indeed, Lemma 2.2 says that B ε z(t) ′ is bounded, with a version locally of bounded variation and that

B ε z(t) ∈ C b (R) L p (R) for all p ≥ 1.
Let now C, C be positive real constants. Then, since all terms in (2.11) are signed measures of finite total variation, (2.11) implies that

]-C,C] B ε z(t)(x)z(t)(dx) = ε ]-C,C] (B ε z(t)(x)) 2 dx (3.13) - ]-C,C] B ε z(t)(x)B ε z(t) ′′ (dx).
If F, G are functions of locally bounded variation, F continuous, G rightcontinuous, classical Lebesgue-Stieltjes calculus implies that

]-C,C] F dG = F G(C) -F G(-C) - ]-C,C] GdF. (3.14) Setting F = B ε z(t), G(x) = B ε z(t) ′ , we get - ]-C,C] B ε z(t)(x)B ε z(t) ′′ (dx) = -B ε z(t)(C)B ε z(t) ′ (C)+B ε z(t)(-C)B ε z(t) ′ (-C) + ]-C,C] (B ε z(t) ′ (x)) 2 dx. Since B ε z(t) ∈ L 1 (R), we can choose sequences (C n ), ( Cn ) converging to infinity such that B ε z(t)(C n ) → 0, B ε z(t)(-Cn ) → 0 as n → ∞. Then,
letting n → ∞ and using the fact that B ε z(t) and B ε z(t) ′ are bounded, by the monotone and Lebesgue dominated convergence theorems, we conclude that

-B ε z(t)(x)B ε z(t) ′′ (dx) = (B ε z(t) ′ (x)) 2 dx.
In particular, B ε z(t) ′ ∈ L 2 (R). Consequently, (3.13) implies that

g ε (t) = B ε z(t)(x)z(t)(dx) = ε (B ε z(t)(x)) 2 dx + (B ε z(t) ′ (x)) 2 dx.
In particular, the left-hand side is positive. Therefore, if for all t ∈ [0, T ],

g ε (t) → 0, as ε → 0, then √ εB ε z(t) → 0 B ε z(t) ′ → 0 in L 2 (R)
, as ε → 0, and so, for all t ∈ [0, T ],

z(t) = εB ε z(t) -B ε z(t) ′′ → 0
in the sense of distributions. Therefore, z ≡ 0.

It remains to prove (3.12).

Let δ > 0 and φ δ ∈ C ∞ • (R), φ δ ≥ 0, symmetric, with R φ δ (x)dx = 1 weakly approximating the Dirac-measure with mass in x = 0. Set

z δ (t, x) := (φ δ ⋆ z(t))(x) := R φ δ (x -y)z(t)(dy), x ∈ R, t ∈ [0, T ].
We define h : [0, T ] → M(R) by h(t)(dx) = a(t, x)z(t, dx). Note that by (3.9), since φ δ (x -•) ∈ S(R), ∀x ∈ R, we have

z δ (t, x) = t 0 R φ ′′ δ (x-y)h(s)(dy)ds = t 0 (φ ′′ δ ⋆h(s))(x)ds, ∀t ∈ [0, T ], x ∈ R, (3.15) 
where we used that z δ (0) = 0, because z(0) = 0, and that x → z δ (t, x) is continuous for all t ∈ [0, T ]. In fact, one can easily prove that z δ is continuous and bounded on [0, T ] × R.

Let us now consider w ∈ S(R). By Fubini's theorem, for all t ∈ [0, T ] it

follows that R w(x)B ε z(t)(x)dx = R w(x) R K ε (x -y)z(t)(dy)dx = R (w ⋆ K ε )(y)z(t)(dy).
Now, B ε z(0) = 0 since z(0) = 0. Therefore by (3.9), and the fact that w ⋆ K ε ∈ S(R), the previous expression is equal to

t 0 R (w ⋆ K ε ) ′′ (y)h(s)(dy)ds = t 0 R w ′′ (x)B ε h(s)(x)dxds,
which in turn by Lemma 2.2 is equal to

t 0 R w(x)(εB ε h(s)(x)dx -h(s)(dx))ds.
Consequently, by approximation,

R w(x)B ε z(t)(x)dx = t 0 R w(x)(εB ε h(s)(x)dx -h(s)(dx))ds (3.16) 
∀ w ∈ C b (R), t ∈ [0, T ].
As a consequence of (3.15) and (3.16) and again using Fubini's theorem, for all t ∈ [0, T ] we obtain

g ε,δ (t) := R z δ (t, x)B ε z(t)(x)dx = (3.16) t 0 R z δ (t, x)(εB ε h(s)(x)dx -h(s)(dx))ds = (3.15) t 0 R z δ (s, x)(εB ε h(s)(x)dx -h(s)(dx))ds + t 0 R t s (φ ′′ δ ⋆ h(r))(x)dr(εB ε h(s)(x)dx -h(s)(dx))ds = t 0 R z δ (s, x)(εB ε h(s)(x)dx -h(s)(dx))ds + t 0 r 0 R (φ ′′ δ ⋆ h(r))(x)(εB ε h(s)(x)dx -h(s)(dx))dsdr = (3.16) t 0 R z δ (s, x)(εB ε h(s)(x)dx -h(s)(dx))ds + t 0 R (φ ′′ δ ⋆ h(r))(x)B ε z(r)(x)dxdr
The application of Fubini's theorem above is justified since a is bounded,

sup t∈[0,T ] z(t) var < ∞, K ε is bounded and φ δ ∈ S(R). But the last term is equal to t 0 R R φ ′′ δ (x -y)B ε z(r)(x)dxh(r)(dy)dr = t 0 R R φ δ (x -y))(εB ε z(r)(x)dx -z(r)(dx))h(r)(dy)dr = t 0 R εB ε z(r)(x)(φ δ ⋆ h(r))(x)dxdr - t 0 R z δ (r, y)h(r)(dy)dr,
where we could use Lemma 2.2 in the first step, since φ δ (• -y) ∈ S(R), ∀y ∈ R. Hence, for all t ∈ [0, T ],

g ε,δ (t) = t 0 R z δ (s, x)εB ε h(s)(x)dxds + t 0 R εB ε z(s)(x)(φ δ ⋆ h(s))(x)dxds (3.17) 
-2 t 0 R z δ (s, x)h(s)(dx)ds.
For a signed measure ν, we denote its absolute value by |ν|. By Lemma 2.2

we have sup

s∈[0,T ] R (|z(s)| ⋆ φ δ )(x)εB ε |h(s)|(x)dx ≤ C √ ε,
where

C = 1 2 a ∞ sup s∈[0,T ] z(s) 2 var ,
and likewise the integrand of the second integral in (3.17) is bounded by the same constant independent of δ. Hence, as ε → 0, the first and second term in the right-hand side of (3.17) converges to zero uniformly in δ and uniformly

in t ∈ [0, T ]. Now, we use Assumption (A), namely that z ∈ L 2 ([κ, T ] × R) for all κ > 0. Then, since B ε z(t) ∈ L 2 (R), ∀t ∈ [κ, T ], and a ∞ < ∞, (3.17) 
implies that ∀κ > 0, t ∈ [κ, T ],

g ε (t) -g ǫ (κ) = lim δ→0 (g ε,δ (t) -g ε,δ (κ)) ≤ 2 √ εT C -2 t κ R z 2 (s, x)a(s, x)dxds (3.18) ≤ 2 √ εT C.
Now, lim κ→0 g ε (κ) = 0. In fact z(κ, •) → z(0, •) = 0 weakly, according to the assumption of Theorem 3.8. According to Theorem 8.4.10, page 192, of [START_REF] Bogachev | Measure theory[END_REF],

the tensor product z(κ, •) ⊗ z(κ, •) converges weakly to zero. On the other hand (x, y) → K ε (x -y) is bounded and continuous on R 2 . By Fubini's theorem

g ε (κ) = R 2 z(κ)(dx)z(κ)(dy)K ε (x -y) → 0.
So, letting first κ → 0 in (3.18) and then ε → 0, (3.12) follows since g ε (t) ≥ 0 for all t ∈ [0, T ]. In fact, we even proved that the convergence in (3.12) is

uniformly in t ∈ [0, T ].
Remark 3.12 Since our coefficient in Theorem 3.6 is only measurable and possibly degenerate, to the best of our knowledge this result is really new.

For instance, in recent contributions by [START_REF] Bris | Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients[END_REF][START_REF] Figalli | Existence and uniqueness of martingale solutions for SDEs with rough or degenerate coefficients[END_REF], the diffusion coefficient is supposed to satisfy at least Sobolev regularity.

Theorem 3.8 will be useful for the probabilistic representation of the solution of (3.3) when β is non-degenerate.

The probabilistic representation of the deterministic equation

Despite the fact that β is multi-valued, by its monotonicity and because of (3.1), it is still possible to find a multi-valued map Φ : R → R + such that

β(u) = Φ 2 (u)u, u ∈ R, which is bounded, i.e. sup u∈R * sup Φ(u) < ∞.
In fact the value of Φ at zero is not determined by β.

We start with the case where Φ is non-degenerate. The value Φ(0) being a priori arbitrary, we can set

Φ(0) = [lim inf u→0 inf Φ(u), lim sup u→0 sup Φ(u)].
Definition 4.1 The (possibly) multivalued map β (or equivalently Φ) is called non-degenerate, if there exists some constant c 0 > 0 such that y ∈ Φ(u) ⇒ y ≥ c 0 for any u ∈ R.

The non-degenerate case

We suppose in this subsection β to be non-degenerate.

First of all we need to show that solutions of the linear PDE (3.9), which are laws of solutions to an SDE, are space-time square integrable. 

Y t = Y 0 + t 0 2a(s, Y s )dW s ,
where W is a standard (F t )-Brownian motion. For t ∈ [0, T ], let z(t) be the law of Y t and set z 0 := z(0).

1. Then z solves equation (3.9) with z 0 as initial condition.

There is

ρ ∈ L 2 ([0, T ] × R) such that ρ(t, •) is the density of z(t) for almost all t ∈ [0, T ].
3. z is the unique solution of (3.9) with initial condition z 0 having the property described in item 2. above. [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], related to L t f = a(t, x)f ′′ . In our case, existence and uniqueness follow for instance from [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], , see also [START_REF] Karatzas | Brownian motion and calculus[END_REF], Refinements 4.32, Chap. 5. We remark that the coefficients are not continuous but only measurable, so that space dimension 1 is essential.

The reader can also consult [START_REF] Rozkosz | On weak solutions of one-dimensional SDEs with time-dependent coefficients[END_REF][START_REF] Senf | On one-dimensional stochastic differential equations without drift and time-dependent diffusion coefficients[END_REF] for more refined conditions to be able to construct a weak solution; however those do not apply in our case.

Proof (of the Proposition 4.2).

1. The first point follows from a direct application of Itô's formula to ϕ(Y t ), ϕ ∈ S(R), cf. the proof of Theorem 1.4.

2. We first suppose that Y 0 = x 0 where x 0 ∈ R. In this case its law z 0 equals δ x 0 i.e. Dirac measure in x 0 . In Exercise 7.3.3 of [START_REF] Stroock | Multidimensional Diffusion Processes[END_REF], the following Krylov type estimate is provided:

E T 0 f (t, Y t )dt ≤ const f L 2 ([0,T ]×R) ,
for every smooth function f : [0, T ] × R → R with compact support.

This implies the existence of a density (t, y) → p t (x 0 , y) for the measure (t, y) → E( T 0 f (t, Y t )dt). and

[0,T ]×R f (t, y)p t (x 0 , y)dtdy ≤ const f L 2 ([0,T ]×R) ,
and const does not depend on x 0 , but only on lower and upper bounds of a. This obviously implies that sup

x 0 ∈R [0,T ]×R p 2 t (x 0 , y)dtdy < ∞.
This implies assertion 2., when Y 0 is deterministic.

If the initial condition Y 0 is any law z 0 (dx), then clearly the density of Y t is z t (dy) = ρ(t, y)dy where ρ(t, y) = R u 0 (dx)p t (x, y).

The considerations above prove the existence part of the following representation theorem, at least in the non-degenerate case.

Theorem 4.4 Suppose that Assumption 3.1 holds. Let u 0 ∈ L 1 L ∞ such that u 0 ≥ 0 and R u 0 (x)dx = 1. Suppose the multi-valued map Φ is bounded and non-degenerate. Then there is a process Y , unique in law, such that

there exists χ ∈ (L 1 L ∞ )([0, T ] × R) with            Y t = Y 0 + t 0 χ(s, Y s )dW s (weakly) χ(t, x) ∈ Φ(u(t, x)), for dt ⊗ dx-a.e. (t, x) ∈ [0, T ] × R Law density of Y t = u(t, •) u(0, •) = u 0 , (4.4 
) We note that, since Y i t has a law density for all t > 0, the stochastic integrals in (4.4) are independent of the chosen Borel version of χ. Remark 4.3 now implies that the laws of Y 1 and Y 2 (on path space) coincide. Proof. Set µ 0 = R v 0 (y)dy, which we can suppose to be greater than 0.

with u ∈ C([0, T ]; L 1 (R)) L ∞ ([0, T ] × R).
Then the function u(t, x) = v(t,x) µ 0 solves equation (3.2) 

∂ t u = 1 2 ∂ 2 xx ( β(µ 0 u) µ 0 ), u(0, •) = v 0 µ 0 .

The degenerate case

The degenerate case is much more difficult and will be analyzed in detail in the forthcoming paper [START_REF] Barbu | Probabilistic representation for solutions of a porous media equation: the irregular degenerate case[END_REF]. In this subsection we only explain the first two steps in the special case where our β of Section 1 is of the form β(u) = Φ 2 (u)u and the following properties hold: Property 4.8 Φ : R → R is single-valued, continuous on R -{0}. Remark 4.9 A priori Φ(0) is an interval; however, by convention, in this subsection, we will set Φ(0) := lim inf ε→0+ Φ(u). This implies that Φ is always lower semicontinuous.

We furthermore assume that the initial condition u 0 and Φ are such that we have for the corresponding solution u to (1.1) (in the sense of Proposition Remark 4.11 As will be shown in [START_REF] Barbu | Probabilistic representation for solutions of a porous media equation: the irregular degenerate case[END_REF] Property 4.10 is fulfilled in many interesting cases, for a large class of intial conditions. In fact, we expect to be able to show that u(t, •) is even locally of bounded variation if so is u 0 . Proposition 4.12 Suppose that Property 4.8 holds. Let u 0 ≥ 0 be a bounded integrable real function such that R u 0 (x)dx = 1 and the corresponding solution u to (1.1) satisfies Property 4.10. Then, there is at least one process Proof (of Proposition 4.12). We denote the solution to equation (3.3), by

Y such that        Y t = Y 0 + t 0 Φ(u(s, Y s ))dW s in law Law density(Y t ) = u(t, •), u(0, •) = u 0 ( 4 
u = u(t, x). Let ε ∈]0, 1] and set β ε (u) = (Φ(u)+ε) 2 u, Φ ε (u) = Φ(u)+ε, u ∈ R. Propo- sition 3.4 provides the solution u = u ε to the deterministic PDE equation (3.3) ∂ t u = 1 2 ∂ 2 xx (β ε (u)), u(0, x) = u 0 (x).
We consider the unique solution Y = Y ε in law of

       Y t = Y 0 + t 0 Φ ε (u(s, Y s ))dW s Law density(Y t ) = u ε (t, •) u ε (0, •) = u 0 . (4.7) 
Since Φ + ε is non-degenerate, this is possible because of Theorem 4.4.

Since Φ is bounded, using Burkholder-Davies-Gundy inequality one obtains 

E{Y ε t -Y ε s } 4 ≤ const(t -s) 2 , ∀ε > 0. ( 4 
|Y ε t -Y ε s | > λ}) = 0, ∀λ > 0.
This implies condition (4.7) of Theorem 4.10 in Section 2.4 of [START_REF] Karatzas | Brownian motion and calculus[END_REF]. Condition This is here trivially satisfied since the law of Y ε 0 is the same for all ε. Thus the same theorem implies that the family of laws of Y ε , ε > 0, is tight.

Consequently, there is a subsequence Y n := Y εn converging in law (as C[0, T ]-valued random elements) to some process Y . We set Φ n := Φ εn and u n := u εn where we recall that u n (t, •) is the law of Y n t .

We also set

X n t = Y n t -Y n 0 . Since [X n ] t = t 0 Φ 2 n (u n (s, Y n s ))ds,
and E([X n ] T ) is finite, Φ being bounded, the continuous local martingales X n are indeed martingales.

By Skorokhod's theorem there is a new probability space ( Ω, F , P ) and processes Ỹ n , with the same distribution as Y n so that Ỹ n converge P -a.e. to some process Ỹ , of course distributed as Y , as C([0, T ])-random elements.

In particular, the processes Xn := Ỹ n -Ỹ n 0 remain martingales with respect to the filtrations generated by themselves. We denote the sequence Ỹ n (resp. Ỹ ), again by Y n (resp. Y ). Remark 4.14 We observe that, for each t ∈ [0, T ], u(t, •) is the law density of Y t . Indeed, for any t ∈ [0, T ], Y n t converges in probability to Y t ; on the other hand u n (t, •), which is the law of Y n t , converges to u(t, •) in L 1 (R) uniformly in t, cf. [START_REF] Ph | The continuous dependence on ϕ of solutions of u t -∆ϕ(u) = 0[END_REF], Theorem 3 and the preceeding remarks. We set

W n t = t 0 1 Φ n (u n (s, Y n s ))
dY n s .

Those processes W n are standard (Y Once the previous equation is established for the given u, the statement of Proposition 4.12 would be completely proven because of Remark 4.14. In fact, that Remark shows in particular the third line of (4.6).

We consider the stochastic process X (vanishing at zero) defined by X t = Y t -Y 0 . We also set again X n t = Y n t -Y n 0 .

Taking into account Theorem 4.2 of Ch. 3 of [START_REF] Karatzas | Brownian motion and calculus[END_REF], as in Remark 3.11, to establish (4.9) it will be enough to prove that X is a Ymartingale with In order to prove the martingale property for X, we need to show that E ((X t -X s )Θ(Y r , r ≤ s)) = 0.

But this follows because Y n → Y a.s. (so X n → X a.s.) as C([0, T ])-valued processes; so for each t ≥ 0, X n t → X t in L 1 (Ω) since (X n t , n ∈ N) is bounded in L 2 (Ω) and E ((X n t -X n s )Θ(Y n r , r ≤ s)) = 0.

It remains to show that X 2 t -t 0 Φ 2 (u(s, Y s ))ds, t ∈ [0, T ], defines a Ymartingale, that is, we need to verify that

E (X 2 t -X 2 s - t s Φ 2 (u(r, Y r ))dr)Θ(Y r , r ≤ s) = 0.
The left-hand side decomposes into 2(I 1 (n) + I 2 (n) + I 3 (n)) where Now we go on with the analysis of I 2 (n) and I 1 (n). I 2 (n) equals zero because X n is a martingale with quadratic variation given by [X n ] t = t 0 Φ 2 n (u n (r, Y n r ))dr.

I 1 (n) = E (X 2 t -X 2 s - t s Φ 2 (u(r, Y r ))dr)Θ(Y r , r ≤ s) -E (X n t ) 2 -(X n s ) 2 -
We treat finally I 1 (n). We recall that X n → X a. s. as a random element in C([0, T ]) and that the sequence E (X n t ) 4 is bounded, so (X n t ) 2 are uniformly integrable. Therefore, we have Hence Lebesgue dominated convergence theorem implies (4.13).

E (X n t ) 2 -(X n s ) 2 )Θ(Y n r , r ≤ s) -E (X 2 t -X 2 
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Theorem 1 . 4

 14 (i) Let us assume the existence of a solution Y for (1.3). Then u : [0, T ] × R → R + provides a solution in the sense of distributions of (1.1) with u 0 := u(0, •).

Assumption 3 . 1

 31 Let β : R → 2 R be an m-accretive graph with the property that there exists c > 0 such that w ∈ β(u) ⇒ |w| ≤ c|u|. (3.1) Remark 3.2 In particular, β(0) = 0 and β is continuous at zero. We use again the representation β(u) = Φ 2 (u)u with Φ being a non-negative bounded multi-valued map Φ : R → R.

  Heaviside case where Φ(x) = H(x -e c ) and in the non-degenerate case Φ(x) = H(x -e c ) + ε. Proof (of Proposition 3.4).

5 .

 5 Finally, uniqueness of the equation in D ′ ([0, T ] × R) follows from Theorem 1 and Remark 1.20 of [16]. Remark 3.6

Proposition 4 . 2

 42 Suppose a : [0, T ] × R → R to be a bounded measurable function which is bounded below on any compact set by a strictly positive constant.We consider a stochastic process Y = (Y t , t ∈ [0, T ]) on a stochastic basis (Ω, F, (F t ), P ), being a weak solution of the SDE

Remark 4 . 5

 45 If Φ is single-valued then χ u ≡ Φ(u).Proof. Existence has been established above. Concerning uniqueness, given two solutions Y i , i = 1, 2 of (4.4) i.e.(1.3). By u i (t, •), i = 1, 2, we denote the law densities of respectively Y i , i = 1, 2 with corresponding χ 1 and χ 2 .The multi-valued version of Theorem 1.4 says that u 1 and u 2 solve equation (1.1) in the sense of distributions, so that by Proposition 3.4 (uniqueness for (3.3)) we have u 1 = u 2 , and also χ 1 = χ 2 a.e.

Corollary 4 . 6

 46 Consider the situation of Theorem 4.4 and let v 0 ∈ L 1 L ∞ be such that v 0 ≥ 0. The unique solution v to equation (3.2) with initial condition v 0 is non negative for any t ≥ 0. Moreover, the mass R v(t, x)dx does not depend on t.

( 4 . 5 ) 4 . 4 . 7

 45447 Hence, the result follows from Theorem 4.Remark We note that if Φ is merely bounded below by a strictly positive constant on every compact set and if the solutions u are continuous on [0, T ] × R, then Theorem 4.4 and Corollary 4.6 still hold. In fact, Stroock-Varadhan arguments contained in Remark 4.3 are still valid if χ u is strictly positive on each compact set.

3. 4 )

 4 the following: Property 4.10 Φ 2 (u(t, •)) : R → R is Lebesgue almost everywhere continuous for dt a.e t ∈ [0, T ].

( 4 . 6 )

 46 of the same theorem requires lim λ→+∞ sup ε>0 P {|Y ε 0 | ≥ λ} = 0.

Remark 4 .

 4 15 Let Y n (resp. Y) be the canonical filtration associated with Y n (resp. Y ).

  quadratic variation [X] t = t 0 Φ 2 (u(s, Y s ))ds. Let s, t ∈ [0, T ] with t > s and Θ a bounded continuous function from C([0, s]) to R.

Φ 2 2 n 2 n 1 ( 2 nRΦ 2 Φ 2 J 1 (

 22212221 (u(r, Y n r ))dr Θ(Y n r , r ≤ s) ,I 2 (n) = E (X n t ) 2 -(X n s ) 2 -(u n (r, Y n r ))dr Θ(Y n r , r ≤ s) , (u n (r, Y n r )) -Φ 2 (u(r, Y n r )) drΘ(Y n r , r ≤ s) .We start by showing the convergence of I 3 (n). Now Θ(Y n r , r ≤ s) is dominated by a constant. Therefore, since Φ n , Φ are uniformly bounded anda 2 -b 2 = (a -b)(a + b), by the Cauchy-Schwarz inequality, it suffices to consider the expectation of t s (Φ n (u n (r, Y n r )) -Φ(u(r, Y n r ))) 2 dr (4.10)which is equal tot s E(Φ n (u n (r, Y n r )) -Φ(u(r, Y n r ))) (u n (r, y)) -Φ(u(r, y))) 2 u n (r, y)dy.This equals J 1 (n) + J 2 (n) -2J 3 (n) whereJ (u n (r, y))u n (r, y)dy J 2 (n) = t s dr (u(r, y))u n (r, y)dy J 3 (n) = t s dr R Φ n (u n (r, y))Φ(u(r, y))u n (r, y)dy. (u(r, y))u(r, y)dy = t s R β(u(r, y))dy To show that I 3 (n) → 0 as n → ∞, it suffices to show that lim n→∞ the same arguments as in Point 3. of Proposition 3.4, it follows that Φ 2 n (u n )u n → Φ 2 (u)u in σ(L 1 , L ∞ ) as n → ∞ which immediately implies (4.11).Furthermore, by Fatou's lemma and since Φ n ≥ Φ, n (r, y))Φ(u(r, y))u(r, y)dydr which by the lower semicontinuity of Φ, implies (4.12).

E Φ 2

 2 s )Θ(Y r , r ≤ s) → 0, when n → ∞. It remains to prove that t s (u(r, Y r )) -Φ 2 (u(r, Y n r ))Θ(Y n r , r ≤ s)dr → 0. (4.13) Now, for fixed dr-a.e. r ∈ [0, T ], Φ(u(r, •)) has a Lebesgue zero set of discontinuities. Moreover, the law of Y r has a density. So, let N (r) be the null event of all ω ∈ Ω such that Y r (ω) is a point of discontinuity of Φ(u(r, •)). For ω / ∈ N (r) we have lim n→∞ Φ 2 (u(r, Y n r (ω))) = Φ 2 (u(r, Y r (ω))).

  for almost all t > 0, always exists, via Lemma 3.7. It remains to check if it is indeed square integrable on every [κ, T ] × R.

	Remark 3.10 The weak continuity of z(t, •) implies that
	sup
	t∈[0,T ]

  Remark 4.3 A necessary and sufficient condition for the existence and uniquess in law of solutions for the equation in Proposition 4.2, is that Y solves the martingale problem of Stroock-Varadhan, see Chap. 6 of

  .6) Corollary 4.13 Suppose that Property 4.8 holds. Let u 0 ∈ L 1 L ∞ be such that u 0 ≥ 0 and that the corresponding solution u to (1.1) satisfies Property 4.10. The unique solution u to equation (3.2) is non-negative for any t ≥ 0.

Moreover, the mass R u(t, x)dx is constant in t ∈ [0, T ].

  n t ) -Wiener processes since [W n ] t = t and because of Lévy's characterization theorem of Brownian motion. Then

	one has	Y n t = Y n 0 +	0	t	Φ n (u n (s, Y n s ))dW n s .
	We aim to prove first that			
					t
		Y t = Y 0 +			Φ(u(s, Y s ))dW s .	(4.9)
				0	

Consequently, by Jensen's inequality and Fubini's Theorem, Let us consider the solution u

that is, u solves equation (3.2), in the sense of (3.3), assuming the initial condition u 0 is an a.e. bounded probability density. Define

where c 1 ∈ Φ(0). Note that, because β is non-degenerate and 

where W is a classical Brownian motion on some filtered probability space and Y 0 is a random variable so that u 0 is the density of its law.

Consider now the law v(t, •) of the process Y t . We set a(t, x) = χ 2 u (t,x) 2

. Since

On the other hand u itself, which is a solution to (3.2) (in the sense of (3.3)), The three authors are grateful to the three Referees who gave significant suggestions to improve the quality of the paper.
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