
HAL Id: hal-00279961
https://hal.science/hal-00279961

Submitted on 15 May 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Graph-based deinterlacing
Jérôme Roussel, Pascal Bertolino

To cite this version:
Jérôme Roussel, Pascal Bertolino. Graph-based deinterlacing. ICIP 2008 - 15th IEEE Interna-
tional Conference on Image Processing, Oct 2008, San Diego, Californie, United States. pp.CD.
�hal-00279961�

https://hal.science/hal-00279961
https://hal.archives-ouvertes.fr


GRAPH-BASED DEINTERLACING

Jérôme ROUSSEL

ST Microelectronics S.A.
12 Rue Jules Horowitz B.P. 217

GRENOBLE - France

Pascal BERTOLINO

GIPSA-lab
Grenoble Institute of Technology

GRENOBLE - France

ABSTRACT

This article presents a new algorithm for spatial deinterlacing
that could easily be integrated in a more complete deinterla-
cing system. The spatial interpolation process often fails to
reconstruct edges that are diagonal or close to horizontal, lea-
ding to highly visible artifacts. Our solution aims at preser-
ving the linear structure continuity. It connects pieces of ho-
rizontal edges coming from neighboring lines to build graphs
which are then simplified in branches that represent the linear
structure of the scene. These branches give the exact direction
in which the interpolation has to be done. For the rest of the
image, a traditional directional spatial interpolation gives sa-
tisfactory results already. Although the number of pixels inter-
polated with this method is relatively small, the overall image
quality is subjectively well improved.

Index Terms— spatial deinterlacing, Laplacian extrema,
graph, edge interpolation

1. INTRODUCTION

Interlaced video still is widely used by broadcasters. In-
terlacing has been chosen to reduce bandwidth in order to
conciliate framerate and resolution. However, new flat panels
like plasma or L.C.D are progressive ones and thus require
the display of the whole image at time t. There is thus a high
interest in deinterlacing methods that allow a conversion from
interlaced to progressive. They can be classified in two major
families, the methods without motion compensation and the
ones with motion compensation [1, 2]. We will focus here on
the methods without motion compensation and more preci-
sely the adaptive methods. They consist in going towards the
temporal method in areas where there is no movement and
towards the spatial method in moving areas [3, 4, 5]. The spa-
tial interpolation process has its own limitations, mainly on
the rendering of edges close to horizontal [6, 7] and the tech-
nique proposed in this article addresses this particular point.
In the first part, we are going to make a state of the art sho-
wing that the limitation mentioned cannot be easily overcome.
Then, in a second part we will describe the different steps of
our method, based on the construction and simplification of
the Laplacian extrema. Finally, we will present our results.

2. EXISTING METHODS

Many methods and solutions have been proposed to per-
form spatial interpolation [8]. Majority of these methods try to
make the interpolation along the direction of contours, using
the so-called E.L.A method (Edge-based Line Averaging) [9].
This latter method detects the best direction Dir for interpo-
lation within a window centered on the missing pixel and then
makes the interpolation according to the found direction :

f̃(i, j) =
f(i− 1, j −Dir) + f(i + 1, j + Dir)

2
. (1)

f represents the interlaced input image and f̃ the interpola-
ted output image. (i, j) are the spatial coordinates where i
represents the line position number and j the column position
number. f is defined only for half of the lines, i.e. for i even
or odd.

Although it leads to a better interpolation of contours,
the method still has several limitations. Actually, the corre-
lation is done at the local level and remains quite sensitive
to noise. The edge direction thus happens to be wrong which
can lead to very annoying artifacts since it disrupts the struc-
ture of thin lines or edges. Many alternatives of this method
[10] make it possible to correct wrong direction interpolation
for a majority of image pixels, for instance by computing the
correlation between groups of pixels instead of pixel to pixel
(figure 1). However, the results of these methods always re-
main dependent on the size of the window used, that deter-
mines the maximum angle allowed for the reconstruction of
the contours. On the other side, the larger the window is, the
higher the risk of bad interpolation [11]. Different existing
features and metrics try to control an adequate window size
and introduce weights to reduce the number of false directions
[12, 13]. But methods used to calculate these weights signi-
ficantly increase the complexity of the solution. Actually, all
these alternatives only bring a final minor improvement and
do not allow to reconstruct correctly lines and edges close
to horizontal. This point is even more annoying in real time
where moving horizontal lines do not only look disrupted, but
also instable and highly flickering.

ha
l-0

02
79

96
1,

 v
er

si
on

 1
 - 

15
 M

ay
 2

00
8

Author manuscript, published in "15th IEEE International Conference on Image Processing, ICIP 2008, San Diego, California : United
States (2008)"

http://hal.archives-ouvertes.fr/hal-00279961/fr/
http://hal.archives-ouvertes.fr


Fig. 1. Principle of modified E.L.A.

The method proposed here overcomes the limitation of the
current directional spatial interpolation method since it is not
based anymore on a searching window. Typically it overrules
the wrong interpolation of edges close to horizontal, keeping
the results of the traditional spatial interpolation where the
results are already satisfactory. It can be added to a classical
spatial deinterlacing method that can itself be integrated in a
motion adaptive one.

3. EXTREMA EXTRACTION

With the existing methods, the objects that suffer a wrong
reconstruction are the ones for which the contours are ramps
or thin edges that are diagonally oriented, and the problem
becomes stronger as the contour direction approaches the ho-
rizontal. Such contours are disconnected or aliased by the de-
interlacing process. This shortcoming is all the more visible
that the visual system is very sensitive to continuity. To detect
the corresponding contour pixels, a vertical Laplacian filter
(i.e since only the vertical direction is involved, this is the se-
cond derivative of the intensity in the vertical direction) is ap-
plied to the image : It removes the low frequencies and keeps
the high frequencies in the vertical direction. The detection of
the extrema is carried out locally on the known lines of the
image by comparing the Laplacian value of a pixel ∆f(i, j)
with its two neighboring values ∆f(i−2, j) and ∆f(i+2, j).
Any resulting pixel has one of the three types : extremum
(either minimum or maximum) or not extremum (figure 2,
middle). A threshold T allows to reject extrema whose ab-
solute value is too weak to be relevant. Let H be the set of
maxima pixels and L the set of minima pixels :

H =

{
∆f(i, j) > 0
∆f(i, j) > max(∆f(i− 2, j), ∆f(i + 2, j)) + T

}
L =

{
∆f(i, j) < 0
∆f(i, j) < min(∆f(i− 2, j), ∆f(i + 2, j))− T

}

On the same line, the extrema of the same type can form
connected components (called segments in the sequel) accor-
ding to the horizontal 2-connectivity. Since the continuation
of the method is not founded on the traversing and the proces-
sing of pixels but on the traversing and the processing of seg-
ments, the traditional two-dimensional image structure is not

Fig. 2. Laplacian Extrema detection (middle) and the resul-
ting branches (right)

Fig. 3. Example of graph

suitable any more and is replaced with a higher level struc-
ture : namely the segment. Each segment will be a vertex
of a graph and will be characterized by its coordinates (line,
starting column), length, type (minimum or maximum) and
neighborhood.

4. GRAPH CONSTRUCTION

The chosen data structure is a compromise between the
memory size needed and the complexity to traverse H and
L. From a data-processing point of view, it is important to
note that the data structure used to store the graph is an ar-
ray of rows (one row per known line of the image). Each row
contains the chained list of the segments extracted in the cor-
responding line. Using chained lists is an easy and flexible
way to handle any number of segments in each line, but a 2D
array of segments could also be used.

In a first step, the image is browsed line by line and the
data structure is filled with the segments and each segment is
linked to its neighbors (figure 3). These links are the edges of
the graph and are actually materialized by pointers.

A segment on a line i has at most 4 neighbors of the same
type : NorthWest and NorthEast on line i− 2 and SouthWest
and SouthEast on line i + 2. By definition of the Laplacian,
neighbors of the same type situated North or South of the seg-
ment cannot exist. Neighbors situated on the same line as the
segment are not taken into account because no interpolation
will be needed between them since the content of line i al-
ready exists. A consequence is that the link between two seg-
ments has either the direction NorthWest to SouthEast (or (\))
or NorthEast to SouthWest (or (/)).

The distance between two neighboring segments of the
same type S1 and S2 is the Euclidean distance d(S1, S2), cal-

ha
l-0

02
79

96
1,

 v
er

si
on

 1
 - 

15
 M

ay
 2

00
8



culated between the closest extremities of S1 and S2. Two
neighboring segments S1, S2 are linked if they are close en-
ough compared to their respective length L1, L2, i.e if they
satisfy the following condition :

d(S1, S2) < dmin(L1, L2) ∗ ke (2)

In our experiments, k is fixed to 0.7 which is the value of Kell
factor.

5. GRAPH SIMPLIFICATION

Once the segments have been interconnected, depending
on the image content and the threshold T , many complex
graphs with cycles can be obtained, each one with many
segments and links. Each graph must be split into the most
likely branches, i.e in such a way that only the longest li-
near branches are kept since they represent contours in the
image rather than noise or texture. For a given segment type,
a branch is either a sequel of consecutive segments linked by
(\) or a sequel of consecutive segments linked by (/).

To perform the simplification process, each link must be
aware of the length of its branch so that any link must be re-
moved if needed, just with a local decision. To weight each
link with the right length, two browsing passes are necessary
in the array of rows. It is much more simple than a true graph
traversal that would complicated to handle and time consu-
ming. The first pass browses the array from top to bottom
while the second pass does it from bottom to top (note that
doing it conversely would provide the same result). In a given
row each segment is processed independently, since the only
information needed is the kind of links it has and their weight.

For instance, the total length of a (\) branch is obtained
by starting from a segment with no NorthWest link, by follo-
wing the (\) branch, and from 1, adding 1 to the branch length
each time a segment is crossed. When the end of the branch
is reached, the total length is known and must be propagated
back to the whole branch during a second ascending pass.

Now the graphs are ready to be simplified : A segment
may have 0, 1, 2, 3 or 4 links (figure 4). If it has zero or one
link (it is alone in a graph or this is the extremity of a branch),
there is nothing to do. If it has 2 links of the same direction,
it belongs to one branch and there is nothing to do. If it has 2
links of different directions or if has 3 or 4 links, this means
that it belongs to two branches. In these cases, among the 2,
3 or 4 links, the one(s) corresponding to the shorter branch is
(are) removed (figure 2, right). A thresholding on the branch
length can also be done to process the contours at a given
resolution.

6. INTERPOLATION

The interpolation is carried out using a forward (from
West to East) traversing of each remaining branch. Let S1
and S2 be two connected segments described by their lengths

Fig. 4. The 6 link configurations (apart from a rotation)

Fig. 5. Interpolation principle

L1 and L2, their starting coordinates (YS1 , Xstart1) and
(YS2 , Xstart2). The pixels to be interpolated with our method
correspond to the segment SI whose extremities XstartI

and
XendI

are linearly interpolated from the extremities of the
segments S1 and S2 (figure 5) :

XstartI
= Xstart1 +

∣∣∣∣ Xstart2 −Xstart1

2

∣∣∣∣ (3)

XendI
= Xend1 +

∣∣∣∣ Xend2 −Xend1

2

∣∣∣∣ (4)

f̃(i, j) =
1

2
f

(
YS1 , Xstart1 +

⌈
(j −XstartI

)× (L1 − 1)

(LI − 1)

⌉)
+

1

2
f

(
YS2 , Xstart2 +

⌈
(j −XstartI

)× (L2 − 1)

(LI − 1)

⌉)
(5)

j ∈
[
XstartI

, XendI

]

LI is the size of the segment to interpolate XendI
−

XstartI
+ 1. YS1 and YS2 represent the ordinates i − 1 and

i + 1 (or i + 1 and i− 1).

7. RESULTS

Our algorithm has been tested on different sequences and
still images which have been interlaced. On the lighthouse
image, the ELA method [12] does not rebuild the horizontal
edges and a strong aliasing appears, while our method recons-
tructs the continuity of these edges (figure 6). In the Barbara
image, the ELA method makes a wrong interpolation by being
mistaken about direction of the trouser strips, while our me-
thod reconstructs them as the original image (figure 7). Note
that the method is not curvature dependent and taht it can re-
built straight or curved contours. However, differences bet-
ween ELA and our method are not high on PSNR because
only few pixels are modified as we can note in table 1. As far
as processing time is concerned, the method only performs
very simple computations and the amount of chained list data
to be analyzed is rather small.

ha
l-0

02
79

96
1,

 v
er

si
on

 1
 - 

15
 M

ay
 2

00
8



Fig. 6. Comparison of the original image (left column), ELA
(middle column) and our method (right column)

Fig. 7. Comparison of the original image (left column), ELA
(middle column) and our method (right column)

8. CONCLUSION

Our method is not based on the principle of existing me-
thods. It thus does not suffer from their limitations. Our me-
thod aims at correcting the most unpleasant artifacts for the
human eye by detecting them directly. It is based on the conti-
nuity of object borders in order to reconstruct them. Finally,
our method can be added to all the traditional methods to im-
prove their weak point without a high added cost.

9. REFERENCES

[1] Kenji Sugiyama and Hiroya Nakamura, “A method of
de-interlacing with motion compensated interpolation,”
Consumer Electronics, IEEE Transactions on, vol. 45,
no. 3, pp. 611–616, 1999.

[2] Kenji Sugiyama, Yoshiyuki Yamada, and Naoya Sagara,
“Improvement of motion compensated inter-field inter-
polation method for de-interlacing,” in TENCON 2006.
2006 IEEE Region 10 Conference, Nov. 2006, pp. 1–4.

[3] Tero Koivunen, “Motion detection of an interlaced vi-
deo signal,” Consumer Electronics, IEEE Transactions
on, vol. 40, no. 3, pp. 753–760, 1994.

Interpolated pixels
% of Number

Sequences Size detected of Number % of
pixels segments the image

Lighthouse 768× 512 7.44 14613 6927 1.76
Barbara 576× 720 5.64 17161 11242 2.71
Starwars 576× 720 1.94 1797 3125 0.75

Table Tennis 480× 720 4.2 6035 8493 2.46
Means 4.8 9901 7446 1.92

Table 1. Number of pixels and segments interpolated by our
method for one still image and several video sequences

[4] Shyh-Feng Lin, Yu-Ling Chang, and Liang-Gee Chen,
“Motion adaptive interpolation with horizontal motion
detection for deinterlacing,” Consumer Electronics,
IEEE Transactions on, vol. 49, no. 4, pp. 1256–1265,
2003.

[5] Lejun Yu, Jintao Li, Yongdong Zhang, and Yanfei Shen,
“Motion adaptive deinterlacing with accurate motion
detection and anti-aliasing interpolation filter,” Consu-
mer Electronics, IEEE Transactions on, vol. 52, pp.
712–717, 2006.

[6] Assaf Almog, Avi Levi, and Alfred M. Bruckstein,
“Spatial de-interlacing using dynamic time warping,”
Image Processing, IEEE Transactions on, vol. 2, pp. II–
1010–13, 2005.

[7] C. Ballester, M. Bertalmı́o, V. Caselles, L. Garrido,
A. Marqués, and F. Ranchin, “An inpainting based de-
interlacing method,” in accepted for publication in IEEE
Transactions on Image Processing, 2007.

[8] G. de Haan and E.B. Bellers, “Deinterlacing - an over-
view,” Proceedings of the IEEE, vol. 86, no. 9, pp. 1839–
1857, 1998.

[9] T. Doyle, “Interlaced to sequential conversion for edtv
applications,” in 2nd International Workshop Signal
Processing of HDTV, 1988, pp. 412–430.

[10] Tao Chen, Hong Ren Wu, and Zheng Hua Yu, “Efficient
deinterlacing algorithm using edge-based line average
interpolation,” Optical Engineering, vol. 39, pp. 2101–
2105, september 2000.

[11] Hoon Yoo and Jechang Jeong, “Direction-oriented inter-
polation and its application to de-interlacing,” Consu-
mer Electronics, IEEE Transactions on, vol. 48, pp.
954–962, 2002.

[12] Min Kyu Park, Moon Gi Kang, Kichul Nam, and
Sang Gun Oh, “New edge dependent deinterlacing al-
gorithm based on horizontal edge pattern,” Consumer
Electronics, IEEE Transactions on, vol. 49, no. 4, pp.
1508–1512, 2003.

[13] Min Byun, Min Kyu Park, and Moon Gi Kang, “Edi-
based deinterlacing using edge patterns,” IEEE Inter-
national Conference on Image Processing, vol. 2, pp.
1018–1021, 2005.

ha
l-0

02
79

96
1,

 v
er

si
on

 1
 - 

15
 M

ay
 2

00
8


