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come    

In the second half of the 20 th century, the people and governments started to become aware that the "take -make -waste" system, which resulted from the industrial revolution, is not sustainable. The assumptions on infinite material "sources" of raw materials and material "sinks" to absorbe industrial and domestic wastes could not hold any longer because of the exponential growth of world population and accelerated widespreding of industry and consumption.

In their inspiring book on system engineering, Blanchard and Fabrycky [1, p.555] state that "Green manufacturing should be an objective adopted by producers to reduce the environmental impact of their products and production operation continuously. Real environmental improvement requires a system lifecycle approach to guide design decisions and operational policies". Several driving factors such as: a) competitive differentiation, b) customer consciousness, c) legal regulations, and d) fight for improving profitability have led to this new way of thinking and even to new standards such as ISO 14,000 series.

A new science of sustainability called "Industrial Ecology" was born [START_REF] Frasch | Industrial ecology. A.. Philosophical Introduction[END_REF]Frasch ], [ This paper aims at proposing the usage of genetic algorithms for optimal scheduling of disassembly lines. The remaining part of this paper is organised as it follows. First, the main concepts and research directions in modelling, optimization and control in disassembly processes are reviewed.

Then, the optimal scheduling problem of a disassembly line is formulated.

A short description of genetic algorithms is given next. Experimental results on solving the optimal disassembly problem by a genetic algorithm are given before presenting the paper conclusions. "design for produceability and disposability" of the book on system engineering of Blanchard and

DISASSEMBLY-A MAIN STAGE IN

RECYCLING

Fabrycky [START_REF] Blanchard | Systems Engineering and Analysis[END_REF] contains an excellent introduction to product and system design to facilitate remanufacturing.

Since disassembly processes can be viewed as discrete, event -driven systems [START_REF] Cassandras | Introduction to Discrete Event Systems[END_REF]Cassandras, Lafortune], Petri nets can be a natural solution.

There are lots of reported results. For example, Moore, Gungor and Gupta [START_REF] Gungor | Disassembly process planning using Petri Nets[END_REF] propose Disassembly Petri nets to take into account operation precedence constraints in planning aplications. Penev and Ron [START_REF] Penev | Determination of a disassembly strategy[END_REF] proposed Disassembly graphs. Kuo, Zhang

and Huang [START_REF] Kuo | Disassembly analysis for electromechanical products: a graph based heuristic approach[END_REF] describe Disassembly trees which associate for each branch the direction of the disassembly operation by adapting the Assembly trees proposed by Henrioud [START_REF] Henrioud | Contribution à la conceptualisation de I'assemblage automatise: nouvelle approche en vue de la détermination des processus d'assemblage[END_REF]. The usage of object oriented Petri nets proposed by Lakos [START_REF] Lakos | From Coloured Petri Nets to Object Petri Nets[END_REF],

to model disassembly processes is analysed by Duta, Filip and Henrioud [START_REF] Duta | Determination of the optimal disassembly sequence using decision trees[END_REF].

For balancing the operation of the disassembly line, Duta, Filip and Henrioud [START_REF] Duţă | Applying equal piles approach to disassembly line balancing problem[END_REF] utilize the method of equal piles approach proposed Rekiek [START_REF] Rekiek | [END_REF]. To model products associated with incomplete, imprecise, and, sometimes, wrong information, Fuzzy reasoning Petri nets are proposed by Gao and Zhou [START_REF] Gao | Fuzzy reasoning Petri nets for demanufacturing process design[END_REF] to make real-time disassembly scheduling decisions possible.

A review of state-of-art implementations of control structures for disassembly line is given by Duta and Filip [15].

PROBLEM FORMULATION
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Disassembly of manufactured products induces both disassembly costs and revenues from the parts saved by the process. Thus, at the planning stage a good trade-off has to be found that depends, both on the "depth" of the disassembly, and on the sequence of operations. The optimization of the ratio between gain and cost can be accomplished by using an appropriate distribution of the disassembly tasks on workstations, an assignment that provides a maximal value for the total profit. The optimization problem depends upon the structure of the disassembly system: if it is made up of a single workstation, the costs depend mainly upon the process duration. If the system is a line, the costs depend mainly upon the line balancing, all the more if it is highly manual. Another problem that occurs during a disassembly process is how deep the disassembly sequence must go so as to maximize the outcome of this process. In [START_REF] Duta | Determination of the optimal disassembly sequence using decision trees[END_REF]Duta,Filip,and Henrioud], [START_REF] Duta | A Real Time Solution to Control Disassembly Processes[END_REF]Duta,Henrioud ,and Caciula] it was shown that an incomplete disassembly sequence can be more profitable than a complete one. Destructive and dismantling operations have to be taken into consideration, as well.

Hence, we have to deal with a multi-criteria optimization problem of a disassembly process: maximizing the benefit it brings deciding how deep the disassembly sequence can go and minimizing the costs using an optimal scheduling along the line. A decision in a scheduling problem upon many criteria is a NP-hard to solve problem [START_REF] Filip | Sisteme suport pentru decizii ( Decision Support Systems} Editura Tehnica[END_REF]Filip]. Stochastic algorithms have already been used to fulfill a multi-criteria optimization problem in [START_REF] Minzu | Stochastic algorithm for tasks assignments in single or mixed-model assembly lines[END_REF]Minzu and Henrioud].

In this paper we consider that the line structure was given and propose an algorithm which will allow finding a disassembly sequence and its assignment on workstations that optimizes a very simple function which integrates the income from the parts and the cycle time of the disassembly line.

In this paper we address the case of disassembly lines where the cycle-time is not merely the sum of all operative and logistic times but it also depends strongly upon the line balancing. The objective is to find the most profitable disassembly sequence taking into account, on one hand -the end-of-life options for each part or subassembly of a given product, and on the other handthe operational times for a given assignment of the tasks on the disassembly workstations.

A cost function which combines both disassembly costs and revenues was proposed in [START_REF] Duta | A method for dealing with multi-objective optimization problem of disassembly processes[END_REF]Duta,Filip,and Henrioud ].

cy r f t = (1)
where: r is the revenue associated to each disassembled part and t cy is the cycle time.

The global revenue is the sum of partial revenues obtained according to the end-of-life destinations of the disassembled parts. These partial revenues are established by experts after repeated disassembly processes.

1..

k k r r k nc = = ∑ (2)
NPE #2 Se trage o bara deasupra "1…n" in formula [START_REF] Frasch | Industrial ecology. A.. Philosophical Introduction[END_REF] where: nc is the number of final components or the number of subassemblies obtained after the disassembly process.

The cycle time can be defined like the operational time of the slowest workstation on the line ( )

max i i cy j W j tasks on W t t ∈ = ∑ (3) 
where: i W is the i-th workstation, j is the index of the disassembly operation which requires the operational time t j

We make the following assumptions: a) The disassembly line is linear (flowshop type).

b) The end-of-life revenues of the subassemblies are known.

c) The operational costs are included in the final incomes.

d) The criterion of maximizing the outcome depending of the success rate of disassembly operations has been taken into consideration.

e) The failure of the disassembly process is an event that can also occur since certain parts of the product could be deformed and impossible to be separated without destruction.

f) The disassembly line is operated in a continuous flow regime.

Evaluating the function from Eq. ( 1) reveals the profit on a time unit, which is an important indicator for the productivity of the disassembly system. This function also takes into account the value of the cycle time obtained for a well-balanced line. The optimization can be made both for the manual and automatic disassembly lines.

GENETIC ALGORITHMS

Genetic algorithms are optimization solvers used in many areas due to their capacity to reduce the combinatorial complexity of NP-complete problems. They do not give the global optimal solution, but a local optimal one by exploiting a defined search space. A genetic algorithm starts with a set of randomly generated possible solutions called initial population. Each member of a population is encoded as a chromosome. Chromosomes are represented by a combination of numbers or characters which contain information about the solution. A score named fitness coefficient is assigned to each chromosome based on the viability of the solution. Chromosomes with high scores are chosen as parents to create a new population. The objective is to obtain children with better scores. To avoid the uniformity of the population and to increase the space of research, at each step of creation, two processes may occur namely: crossover and mutation. Crossover combines the features of two or more parents into one child chromosome. Mutation generates a child similar with his parent with one or more genes altered. These operations ensure the diversity of the new generated population [START_REF] Goldenberg | Genetic Algorithms in Search, Optimization and Machine Learning[END_REF]Goldenberg,].

Once established the initial population and defined the three types of operations (reproduction, crossover, mutation), a genetic algorithm provides new members of population until a stop condition is fulfilled. Usually, this criterion is given by a maximal/minimal value of the objective function obtained after a number of iterations of the genetic algorithm.

EXAMPLE

To test the genetic algorithm, consider the example of the disassembly of a Motorola radio set described by Salomonski and Zussman, [START_REF] Salomonski | On-line Predictive Model for Disassembly Process Planning Adaptation[END_REF]. The corresponding Disassembly Petri Net is given in the figure 1.

Figure 1. Disassembly Petri Net of a radio set

The disassembly process is represented four distinct possible sequences of transitions:

{ } 

, , t t t

For the present study we considered that there are three workstations on the line. An alternative destructive task is done only on a station that can perform both destructive and non-destructive operations. We say that this kind of workstation is a "mixed" one. Thus, workstations 2 and 3 are considered mixed. In other words, when a task is moved from one station to another, the type of the operation is changed together with its operational time.

We supposed that the tasks 1 t and 4

t can be performed in a non-destructive way on the first workstation and in a destructive way on the second one. For the task 6 t a destructive disassembly is done on the third station and a non-destructive disassembly is performed on the second workstation.

In accordance with the Petri Net given in figure 1, the correspondent operational times on the initial partition of the tasks on the workstations are:

{ } 0.92, 0.07, 0.07, 0.12, 0.95, 0.75, 0.75, 0.95

i Τ =
Taking into consideration the times for the alternative destructive operations, the set above becomes: { } 0.95, 0.07, 0.07, 0.15, 0.95, 0.90, 0.75, 0.95

f Τ =
The final revenues are calculated with the method proposed in [START_REF] Duta | Determination of the optimal disassembly sequence using decision trees[END_REF]Duta ,Filip,and Henrioud] by using the data from the Petri Net given in the figure 1. The corresponding sets of revenue values are:

{ } 

f R = -
The objective is to maximize the value of the function of the equation ( 1) by finding the sequence that maximizes the final revenue and, in the same time, ensures a good balance of the disassembly line (e.g. minimizing the cycle time).

In our problem, a chromosome is represented by the possible tasks assignment matrix S which elements are:

1 if thetask jcanbeassignedtotheworstation i 0 if thetask jcan't beassignedtotheworstation i ij s  =   Where 1.. i n = and 1.. j m =
(n is the number of workstations and m -the number of disassembly operations)

A matrix S can be the solution of our optimization problem only if it satisfies the following constraints:

1. The non-divisibility constraint that does not allow a task to be assigned to more than one station.

{ } 0,1 ij s ∈ (3) 2. 
The assignment constraint that it requires that each task be assigned to exactly one station.

1 ij i s = ∑ (4)
3. The precedence constraint that invokes technological order so that if task i is to be done before task j ( i<j ), then i cannot be assigned to a station downstream from task j

1 1 0 n n ki kj k k k s k s = = ⋅ - ⋅ ≤ ∑ ∑ (5) 
The steps of the genetic algorithm are:

Step 1 Generating the initial population. There are three workstations and eight operations (tasks). The matrix of the possible task assignment is:

1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0

0 0 0 0 1 1 1 1 M     =      
We generated 24 matrices S that fulfill the constraints ( 5)-( 7) by using the method presented in [START_REF] Duta | A method for dealing with multi-objective optimization problem of disassembly processes[END_REF]Duta,Filip,and Henrioud]. We randomly chose three of them as shown bellow:

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1

S     =       2 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1 S     =       3 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1 S     =      
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The repartition of tasks on the workstations is presented in the figure.2. Step 2 Evaluating by the value of the objective function

The fitness coefficients f1 and f2 are defined by calculating the value of the objective function from the equation ( 1) for each complete disassembly sequence of the radio set given in the Figure 1. . 

Step 3 Selection

The selection of the individuals is made in accordance with their robustness so as to generate a more robust and healthy population. We can not utilize the roulette method of selection because it generates non valid individuals (that does not respect the three constraints specified before). Matrices S 1 and S 3 are the strongest.

Step 4 Crossover

If we have two matrices A and B of the same dimensions

A= { } ij a 1.. i n = , 1.. j m = B= { } ij b 1.. i n = , 1.. j m =
The crossover operator ⊕ is defined as follows: 

ij a ⊕ 0 ( 0 0) ( 1 1) 1 ( 1 0) ( 0 1) ij ij ij ij ij ij ij ij ij
= = = =  =  = = = = 
We also define a special matrix called mask matrix 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0

MSK     =      
Calculating S 1 ⊕ MSK and S 3 ⊕ MSK we obtained two chromosomes that have two genes crossed: a new chromosome and a copy of chromosome S 2 :

4 2

1 1 1 0 0 0 0 0 ( ) 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 1

S S     = =       5 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 1 S     =      
Step 5 Mutation A mutation can be made by the movement of one task between two neighboring stations. A new individual is obtained from S4 As a result the genetic algorithm is iterated until a stop condition is accomplished. After 20 iterations the maximal value of the objective function remains 0.95. So the optimal assignment of tasks is given by the matrix S 5. The value of the function from the equation ( 1) is given in euro/second. For the example presented the algorithm was implemented in the C++ language and executed on a AMD-Athlon processor at 1,8 Ghz

CONCLUSIONS

A new computation method in the problem of the optimization of the disassembly sequences was proposed in this paper. It has the advantage of taking into account the operational durations, as well as the profit achieved after a disassembly process from the valorization of the obtained components or subassemblies. In a balanced disassembly line, the cycle time has the lowest value so the operational costs are minimized. The algorithm does not optimize the balance of the disassembly line, but give a solution that improves this balance.

Applying an evolutionary algorithm, some "undetectable" solutions of the problem can be taken into account. However, using genetic algorithms implies a lot of information. The result is obviously obtained faster than using the backtracking method. In the disassembly process a local and fast solution for the optimal disassembly sequence is preferred to the complex and slower algorithms.

  Several types of recycling of end-of-life manufactured goods are possible such as : a) reusing of components and modules of high value, b) refurbishing and partial reconstruction of a good returned from the market, c) recovery of the raw material or energy by incineration and melting.

Figure 2

 2 Figure 2 Assignment of tasks on the three stations for the initial population

Step 6

 6 Replacing the initial populationPerformances of the new population are represented in the table2

Table 1 Evaluation of the initial population

 1 

				fitness	strength average
		f 1	f 2	(f 1 +f 2 )/2 fitness %	
	S 1	0.5	0.6	0.55	33%	1
	S 2	0.5	0.43	0.46	27%	0.80
	S 3	0.75	0.6	0.675	40%	1.20
	sum			1.685	100%	
	average			0.5616	33%	

Table 2 Evaluation of the new population

 2 

			fitness	strength	average
	f 1	f 2	(f 1 +f 2 )/2 fitness %
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