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Abstract

We consider a class of degenerate reaction-diffusion systems with quadratic nonlin-
earity and diffusion only in the vertical direction. Such systems can appear in the
modeling of photochemical generation and atmospheric dispersion of pollutants.
The diffusion coefficients are different for all equations. We study global existence
of solutions.

Nous considrons une classe de systmes dgnrs de raction-diffusion avec une non-
linarit quadratique et avec diffusion uniquement dans la direction verticale. De tels
systmes peuvent apparatre dans la modlisation de la synthse de polluants par rac-
tions photochimiques et de leur dispersion atmosphrique. Les coefficients de diffusion
sont diffrents pour chaque quation. Nous tudions l’existence globale de solutions.

Key words: reaction-diffusion systems, degenerate parabolic system, global
existence
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1 Introduction

The goal of this paper is to analyze global existence in time of solutions to
reaction-diffusion systems of the type considered in (4) and combined from var-

∗ Corresponding author.
Email addresses: michel.pierre@bretagne.ens-cachan.fr (M. Pierre,),

picard@bretagne.ens-cachan.fr (R. Texier-Picard).

Preprint submitted to Elsevier 7 April 2008



ious models in (16), (7), (17) and which describe, in particular, the atmospheric
dispersion of ozone and other photochemically generated pollutants. Three
main coupled difficulties appear in these systems, set in a three-dimensional
spatial domain:

• First, the diffusion occurs only in the vertical direction: consequently, the
system is ’degenerate’.

• However, transport of species hold in all directions.
• Even if diffusion occurred in all directions (that is, even if the linear part of

the system was strictly parabolic), global existence of solutions would not
be obvious because of the structure of the nonlinear reaction terms.

It is proved in (4) that, if the diffusion coefficients are all the same, then
global existence of classical solutions does hold. Our goal here is to tackle
the more difficult situation where these coefficients are different from each
other and to give some global existence result.

Besides their interest with respect to the mentioned applications, these sys-
tems contain several theoretical questions of interest for lots of other reaction-
diffusion systems. Let us describe more precisely an explicit family of these
systems, and we will come back to more details on the corresponding difficul-
ties.

Although we will consider more general systems, we focus on the atmospheric
diffusion model of (4) to describe and comment the equations. If the geograph-
ical area to be considered is represented by a bounded regular open subset Ω
of R2, the equations for atmospheric dispersion can be written in a cylindrical
domain Q of the form

Q = {(x, y, z, t) ∈ R4, (x, y) ∈ Ω, z ∈ (0, 1), t ∈ (0, T )},

where z = 0 represents the surface of the earth and z = 1 the limit of the
troposphere.

Let the functions φi, i = 1 to n, represent the molecular densities of the
different species involved in the photochemical reaction. Then the reaction-
advection-diffusion equations can be written in the form

∂φi

∂t
= di

∂2φi

∂z2
+ ω1

∂φi

∂x
+ ω2

∂φi

∂y
+ ω3

∂φi

∂z
+ fi(φ) + gi, (1.1)

where the velocity field ω = (ω1, ω2, ω3) models the atmospheric current,
di is the diffusion coefficient for species i, and fi(φ) are nonlinear reaction
terms, representing the chemistry of the process, and the gi are source terms.
Throughout the paper we assume the following
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∀i = 1, ..., n

ωi : Q→ R is continuously differentiable

fi : Rn → R is continuously differentiable

di ∈ (0,+∞),

gi ∈ L∞(Q).

(1.2)

In most references mentioned above, an incompressibility condition ∇ · ω = 0
is assumed. We will not need this assumption in our analysis.

Boundary and initial conditions have to be specified. Since the diffusion
takes place in the vertical direction, boundary conditions are needed for z = 0
and z = 1. There is no horizontal diffusion, but conditions on the boundary
of Ω are needed where the advection field −ω is inward (and only there). We
denote by ∂−Q the corresponding part of the boundary of Q. It is defined as
follows: let ν = (ν1, ν2) ∈ R2 be the normal outward unitary vector at a point
of the boundary ∂Ω; then

∂−Q = {(x, y, z, t) ∈ ∂Ω× (0, 1)× (0, T ); ω1ν1 + ω2ν2 > 0} . (1.3)

We will choose the same boundary and initial conditions as in the references
already mentioned, namely

φi(x, y, z, 0) = φ0i(x, y, z) (t = 0),
∂φ

∂z
(x, y, 1, t) = 0 (z = 1),

− ∂

∂z
[diφi] + µiφi(x, y, 0, t) = ei(x, y, 0, t) (z = 0),

φi(x, y, z, t) = θi(x, y, z, t), (x, y, z, t) ∈ ∂−Q.


(1.4)

The condition at the top of the cylinder is a simple noflux condition, while the
condition at the surface of the earth takes into account a smooth nonnegative
prescribed flux ei due to anthropogenic and biogenic emission, and a deposition
flux µiφi. The coefficient µi represents a positive deposition velocity.

Note that our approach could handle as well any kind of ”reasonable” bound-
ary conditions. In particular, the following could be chosen instead of (1.4)
and may actually be more significant since it takes into account the transport
in the flux conditions:(

∂

∂z
[diφi] + ω3φi

)
(x, y, 1, t) = 0 (at z = 1),
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(
− ∂

∂z
[diφi] + ω3φi + µiφi

)
(x, y, 0, t) = ei(x, y, 0, t) (at z = 0).

The following conditions will be throughout assumed on the data:



∀i = 1, ..., n,

φ0i ∈ L∞(Ω× (0, 1)), ei ∈ L∞(Ω× (0, T )), θi ∈ L∞(∂−Q),

φ0i ≥ 0, ei ≥ 0, µi ∈ [0,+∞], θi ≥ 0,

∃ ζi ∈ [H2 ∩ L∞](Q) satisfying the conditions of (1.4).

(1.5)

The last regularity condition of (1.5) above could be weakened. It is only
needed to reduce more easily the situation to homogeneous boundary con-
ditions, keeping in particular the L2-regularity of the various derivatives in-
volved.

Now, we come to the assumptions on the structure of the nonlinearity
f = (fi)1≤i≤n. We recall in Section 4 the specific 20×20 nonlinearity mentioned
in (4) and introduced in (7), (17). We will actually consider more general
nonlinearities with the three following properties.

First, we assume that f preserves positivity of the solutions, namely quasi-
positivity

∀i = 1, ..., n, ∀φ ∈ [0,+∞)n with φi = 0, fi(φ) ≥ 0. (1.6)

This assumption is quite natural in this context.

Next, as one knows, one cannot expect global existence in time without any
structure assumption on the nonlinearities. In (4), a so-called ”intermediately
quasi-conservative” triangular structure of the system of Section 4 is exploited
to prove global existence (assuming also that all the di’s are equal). Namely,
five ordered relations are satisfied by the fi which allow to progressively make
L∞ estimates on the φi when the di are all equal; these five relations are
recalled in (4.1).

Here, we will only assume ONE global dissipative property on the nonlinearity
f , namely

∃ a1, · · · an ∈ R,∃b1, · · · bn ∈ R,∀i = 1, ..., n, ai > 0,

∀φ ∈ R+n
,
∑n

i=1 aifi(φ) ≤ ∑n
i=1 biφi.

(1.7)
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Obviously, this assumption is satisfied by the nonlinearity in Section 4: add
up for instance the five relations of (4.1). We may notice that, when all the
coefficients di’s are equal, say di = d, and when, for instance ∀i, bi = 0 (to
simplify), then the function W =

∑
i aiφi satisfies

Wt − d
∂2W

∂z2
+ ω · ∇W ≤

∑
i

aigi.

From this and the corresponding boundary conditions on W , we directly de-
duce an L∞-estimate on W and, by nonnegativity of all the φi’s, an L∞-
estimate on all of them. Global existence of solutions then easily follows.

The situation is quite more delicate when the diffusion coefficients are different
from each other. It is known that, even for 2×2 systems with good nondegen-
erate diffusions and one (or even two!) conservative properties of type (1.7),
blow up in finite time may occur (see e.g. (15)). Then, two kinds of results
may be obtained for non degenerate diffusions:
- either, we assume more structure on the nonlinearity: for a 2× 2 system for
instance, we may moreover assume that an L∞-estimate is available for the
first component; then, an L∞-estimate may also be deduced for the second
component (see (11)) and global existence follows. This idea may be general-
ized to n × n systems with a so-called ”triangular structure” which allow to
successively obtain L∞ estimates on the components, see (12). In these situa-
tions, global classical solutions are obtained.
- another point of view is to look for global ”weak solutions” which may not
be in L∞ for all time. This is the choice made in (14),(3) and it leads to global
existence results for a quite larger class of nonlinearities. It may be proved in
particular that global existence of weak solutions holds for systems with the
(only) structure (1.7) and for which the nonlinear growth is at most quadratic.
A recent work (6) analyzes the size of the possible set of singularities of these
weak solutions in a specific quadratic system.

Here, we will restrict our analysis to the (at most) quadratic situation and
assume (like for the system of Section 4 and like in many more reaction-
diffusion models arising in chemistry, biochemistry, biology, etc):

∃k ≥ 0, ∀φ ∈ Rn, |f(φ)| ≤ k [1 + |φ|2]. (1.8)

This ’quadratic assumption’ is consistent with our approach here which is
mainly based on an a priori L2-estimate. Indeed, as noticed in (15), (3),
assumption (1.7) together with nonnegativity ensure that the solutions are
bounded in L2(Q) if the diffusions are nondegenerate. Here, the situation is
more delicate since diffusion occurs only in one direction. We are not able
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to prove this L2-estimate in general. The considerations made in Section 5
indicate that there may be none in general. Strangely enough, if we assume
that ω1, ω2 do not depend on the vertical component z (see (2.8)), then this
L2-estimate does hold. It follows that the nonlinear terms are bounded in L1.
Since we are able to reduce the problem to a one-dimensional situation, it is
then possible to bootstrap the estimates and reach L∞. Thus, global existence
of classical solutions based on an a priori L2-estimate is the main contribu-
tion of this paper. Global existence in time is obtained no matter the various
values of the di’s in (0,+∞). Note that assumption (2.8) is discussed in some
situations (see e.g. (16) page 1108), when one-dimensional lagrangian models
are considered. We do not know how much it is necessary in our context, but
it appears quite naturally in the analysis (see the discussion in Section 5).

Next section is devoted to a (classical) change of variable which reduces the
first order part of the differential operator to a single ∂Φ/∂t operator. The
main point is that, when (2.8) holds, then the diffusion operator in the vertical
variable z remains invariant in the new set of variables and the new system
is a family of one-dimensional parameter-dependent nondegenerate reaction-
diffusion systems to which we can apply more classical approaches. Global
existence of solutions is then proved in Section 3. We recall in Section 4 the
specific nonlinearity mentioned in (4). Then the last Section 5 is devoted to
some remarks and to some open problems that we find interesting, together
with a self-contained presentation of preliminary lemmas.

2 Change of variables

The system (1.1) can be viewed as a parabolic evolution problem, with de-
generacies in the horizontal variables x, y, where only advection takes place.
Following (4), we can also gather the horizontal advection terms and the time
derivative. Our strategy here is not to view (1.1) as a degenerate elliptic sys-
tem, as in (4), but to use a change of variables to get rid of the degeneracies. In
this section we introduce new coordinates and characterize the domain in the
new variables, then we write the system of equations in these new variables.
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2.1 The domain in the new coordinates

We define new coordinates (ξ, η) byx = β(ξ, η, z, t)

y = γ(ξ, η, z, t)

where β, γ are the solutions of the Cauchy problem

∂β

∂t
=−ω1(β(ξ, η, z, t), γ(ξ, η, z, t), z, t) (2.1)

∂γ

∂t
=−ω2(β(ξ, η, z, t), γ(ξ, η, z, t), z, t) (2.2)

β(ξ, η, z, 0) = ξ, (2.3)

γ(ξ, η, z, 0) = η. (2.4)

These solutions are defined for all t ∈ (0, T ) and of class C1 in all variables,
according to the assumptions on ω1, ω2 (see (1.2)). In the new variables, the
relevant domain is no longer cylindrical. But, if we define

Dz,t = {(ξ, η) ∈ R2, (β(ξ, η, z, t), γ(ξ, η, z, t)) ∈ Ω},

we can assert that, for fixed (z, t) ∈ (0, 1)× (0, T ), the transformation

Λz,t : (ξ, η) 7→ (x = β(ξ, η, z, t), y = γ(ξ, η, z, t))

defines a diffeomorphism from Dz,t to the section Ω of the cylinder Q.

Indeed, for fixed (z, t), and for (x, y) ∈ Ω given, then (ξ, η) = [Λz,t]
−1(x, y) is

uniquely determined by ξ = α(t), η = δ(t), where (α, δ) is the unique solution
to the backward Cauchy problem

αs =ω1(α(t− s), δ(t− s), z, t− s),

δs =ω2(α(t− s), δ(t− s), z, t− s),

α(0) =x,

δ(0) = y.

We consider now the whole 4-dimensional domain

D = {(ξ, η, z, t) ∈ R2 × (0, 1)× (0, T ), s.t.(ξ, η) ∈ Dz,t}

and characterize its boundary. Obviously the faces z = 0, z = 1, t = 0
and t = T of Q are simply transported by the diffeomorphism to similar
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faces of D. To identify the part ∂−Q of the boundary of Q, we introduce the
distance function d(·) to ∂Q. It is regular near ∂Ω×(0, 1)×(0, T ) and satisfies
∇d = (ν1, ν2, 0, 0) on this part of the boundary. If we denote

d̃(ξ, η, z, t) = d(β(ξ, η, z, t), γ(ξ, η, z, t), z, t),

then, we have the characterization:

[(ξ, η, z, t) ∈ ∂D] ⇔ [d̃(ξ, η, z, t) = 0].

Moreover, using the chain rule and equations (2.1)-(2.2), we obtain

∂d̃

∂t
=
∂d

∂t
− ω1

∂d

∂x
− ω2

∂d

∂x
,

so that, on ∂Ω× (0, 1)× (0, T ), we have

∂d̃

∂t
= −ω1ν1 − ω2ν2. (2.5)

According to the definition (1.3) of ∂−Q, we deduce:

Lemma 1 Define the function τ by

∀(ξ, η, z, t) ∈ D, τ(ξ, η, z, t) = inf{σ ≥ 0,∀s ∈ [σ, t], (ξ, η, z, s) ∈ D}.

Then the following equivalence holds:

[(Λz,t(ξ, η), z, t) ∈ ∂−Q] ⇐⇒ [(ξ, η, z, t) ∈ ∂−D],

where

∂−D = {(ξ, η, z, τ(ξ, η, z, t)), (z, t) ∈ (0, 1)× (0, T ), (ξ, η) ∈ ∂Dz,t}, (2.6)

Indeed, we know by (2.5) that

∂−D =

{
(ξ, η, z, t) ∈ ∂D; (z, t) ∈ (0, 1)× (0, T ), (ξ, η) ∈ ∂Dz,t,

∂d̃

∂t
< 0

}
.

Since d̃ is constant on ∂D, ∂d̃/∂t is the fourth component of the normal
outward vector to ∂D. It is negative at a point (ξ, η, z, t) of ∂D if and only if
D is ”above” this point, that is if t = τ(ξ, η, z, t). Whence the lemma.
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2.2 The new system of equations

Now we write the system of equations (1.1-1.4) in the new variables ξ, η, z, t.
Denoting

φi(x, y, z, t) = φi(β(ξ, η, z, t), γ(ξ, η, z, t), z, t) = Φi(ξ, η, z, t), (2.7)

we differentiate Φi with respect to t. Using the chain rule and equations (2.1)-
(2.2), we obtain

∂Φi

∂t
(ξ, η, z, t) =

(
∂φi

∂t
− ω1

∂φi

∂x
− ω2

∂φi

∂y

)
(β(ξ, η, z, t), γ(ξ, η, z, t), z, t).

We now make the following crucial assumption:

The functions ω1, ω2 are independent of the vertical variable z. (2.8)

Then the functions β and γ do not depend either on z and we have the
equalities:

∂Φi

∂z
(ξ, η, z, t) =

∂φi

∂z
(β(ξ, η, t), γ(ξ, η, t), z, t),

∂2Φi

∂z2
(ξ, η, z, t) =

∂2φi

∂z2
(β(ξ, η, t), γ(ξ, η, t), z, t).

With these notations we can rewrite equations (1.1) in the form

∂Φi

∂t
= di

∂2Φi

∂z2
+ ω3

∂Φi

∂z
+ Fi(Φ) +Gi, (2.9)

where the new nonlinear term is defined by Fi(Φ) = fi(φ) and the function
Gi(ξ, η, z, t) is defined from gi as in (2.7) .

For simplicity we denote by Λt instead of Λz,t the diffeomorphism introduced
in section 2.1 (which is now independent of z). Then the boundary conditions
(1.4) can be written in the new coordinates in the form
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Φi(ξ, η, z, 0) =φ0i(Λ0(ξ, η), z) (2.10)

∂Φi

∂z
(ξ, η, 1, t) = 0 (2.11)(

− ∂

∂z
[diΦi] + µiΦi

)
(ξ, η, 0, t) = ei(Λt(ξ, η), 0, t) (2.12)

∀(ξ, η, z, t) ∈ ∂−D, Φi(ξ, η, z, t) = θi(Λt(ξ, η), z, t), (2.13)

Note that for the problem (2.9)-(2.13), the variables ξ and η play the role of
parameters. We have to deal with a usual nondegenerate parabolic problem in
the variables (t, z), where the boundary conditions (2.11) and (2.12) have a
usual form, namely



∂Φi

∂t
− di

∂2Φi

∂z2
− ω3

∂Φi

∂z
= Fi(Φ) +Gi ,

∂Φi

∂z
= 0 for z = 1,

− ∂

∂z
[diΦi] + µiΦi = ei for z = 0.

(2.14)

A particularity is that the domain D is not a cylinder in the variable t. For
each (ξ, η), the evolution is to be solved in the open (possibly empty) subset

Iξ,η := {t ∈ (0, T ); (ξ, η, z, t) ∈ D}, (2.15)

which is an (at most denumerable) union of intervals, independent of z, each
of them being of the form (τ−, τ

+) where τ− = τ(ξ, η, z, t) for some t (again
τ−, τ

+ are independent of z). By virtue of (2.6), we can assert that the ”initial”
value of Φi at the point (ξ, η, z, τ−) is prescribed as follows

Φi(ξ, η, z, τ−) = φ0i(Λ0(ξ, η), z) if τ− = 0

Φi(ξ, η, z, τ−) = θi(Λτ−(ξ, η), z, τ−) if τ− > 0.
(2.16)

A technical remark: We will often have to make estimates of
∫
Q a(φi) for

regular functions a : R → [0,+∞). Then, using the above change of variables,
for some constant C depending only on the data (essentially on the sup norm of
the jacobian of Λz,t and of its inverse), we may bound I =

∫
Q a(φi)dx dy dz dt

by

I ≤ C
∫

D
a(Φi)dξ dη dz dt = C

∫
Ω̃
dξ dη

∫
(0,1)×Iξ,η

a(Φi)dz dt,

where

Ω̃ = ∪{Λz,t(Ω); (z, t) ∈ (0, 1)× (0, T )} = {(ξ, η) ∈ R2; Iξ,η 6= ∅}.
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If one has an estimate of the form

∫ τ+

τ−

∫ 1

0
a(Φi)dt dz ≤

∫ τ+

τ−

∫ 1

0
h(ξ, η, z, t) dt dz, (2.17)

for some integrable function h and for all (ξ, η) and all intervals (τ−, τ
+) ∈ Iξ,η,

then, summing up over all intervals (τ−, τ
+) and integrating in (ξ, η) leads to

I ≤ C
∫

D
h(ξ, η, z, t)dξ dη dz dt ≤ C

∫
Q
h(Λ−1

z,t (x, y), z, t)dx dy dz dt. (2.18)

3 Existence of global classical solutions

In this section, we state and prove our main existence result of global classical
solutions. For ψ ∈ L2(Q), we denote

Λψ =
∂ψ

∂t
−∇ · (ψ ω) + ψ∇ · ω,

computed in the sense of distributions. Note that, we formally have

Λψ =
∂ψ

∂t
− ω · ∇ψ,

this being true only when ψ is regular enough.

We also denote, for i = 1...n,

∀ψ ∈ L2(Q), Li(ψ) = Λψ − di
∂2ψ

∂z2

and L = (Li)1≤i≤n.

Theorem 2 Assume that (1.2),(1.5),(1.6),(1.7),(1.8) as well as (2.8) hold.
Then, for all g ∈ L∞(Q)n with g ≥ 0, there exists a unique nonnegative
solution to the following system


∀i = 1, ..., n, φi, ∂φi/∂z, ∂

2φi/∂z
2,Λφi ∈ L2(Q), φi ∈ L∞(Q)

Lφ = f(φ) + g on Q

∀i = 1, ..., n, boundary and initial conditions (1.4) hold.

(3.1)

A starting point of the analysis is the following lemma on the linear part of
the system.
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Lemma 3 Assume that (1.2),(1.5) and (2.8) hold. Then, for all gi ∈ L2(Q),
there exists a unique solution to the following system


φi, ∂φi/∂z, ∂

2φi/∂z
2,Λφi ∈ L2(Q)

Liφi = gi on Q

boundary and initial conditions (1.4) hold.

(3.2)

Moroever, [gi ≥ 0] ⇒ [φi ≥ 0] and [gi ∈ L∞(Q)] ⇒ [φi ∈ L∞(Q)].

This lemma follows from classical results that may be found in (13), (1), (8),
(9). However, we give in Section 5 the main steps in its proof, and we point
out how assumption (2.8) has to be used even in this lemma.

In order to prepare existence results for the complete nonlinear system, we
first truncate the nonlinearities. Let M > 0 and ϕM ∈ C∞(R) such that

0 ≤ ϕM ≤ 1, ϕM = 1 on
[
−M

2
,
M

2

]
, ϕM = 0 outside [−M,M ].

We define

∀φ ∈ Rn, fM(φ) = f(φ)ϕM(|φ|2).

We denote fM = (fM
i )i etc.

Lemma 4 Assume that (1.2),(1.5),(1.6) and (2.8) hold. Then, for all g ∈
L∞(Q)n with g ≥ 0, there exists a unique solution to the following truncated
system


∀i = 1, ..., n, φi, ∂φi/∂z, ∂

2φi/∂z
2,Λφi ∈ L2(Q), φi ∈ L∞(Q)

Lφ = fM(φ) + g on Q

∀i = 1, ..., n, boundary and initial conditions (1.4) hold.

(3.3)

Moreover, for all i = 1, ..., n, φi ≥ 0.

This lemma is obtained in a standard way by a fixed point argument: we
indeed have a Lipschitz perturbation of a ”good” linear operator. Again, we
indicate the main arguments in the last section. Preservation of positivity is
due to the quasi-positivity of fM . Uniqueness is standard for reaction-diffusion
systems in the family of classical uniformly bounded solutions.
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Remark. To prove existence of solutions on Q with the nonlinearity f itself,
the game consists in proving L∞-estimates on the solution of the approximate
system (3.3) which do not depend on M . Then choosing M large enough, a
solution of (3.3) will also be a solution of (3.1).

We will now denote by C any constant depending only on the data
(but not on M).

For simplicity, from now on, we will often write ψt, ψz, ψzz, ... for the deriva-
tives of a function ψ.

Thanks to the assumption (2.8), we may use the change of coordinates of
Section 2. The system (3.3) is equivalent to the system (2.14-2.16) with F (Φ)
replaced by FM(Φ) = fM(φ). For each (ξ, η), we will make estimates on the
set

G = {(z, t) ∈ (0, 1)× (τ−, τ
+)}

for all time intervals (τ−, τ
+).

We first start by the key L2-estimate which is valid essentially only under
assumption (1.7).

Proposition 5 Let φ be the solution of the truncated system (3.3) and Φ the
solution of the corresponding system in the new variables. Then

∀(ξ, η), for all interval (τ−, τ
+), ‖Φ‖L2(G) ≤ C(τ+ − τ−)1/2. (3.4)

Remark. As we know, Φ is defined for t in the domain Iξ,η (see (2.15)) which
is the union of the intervals (τ−, τ

+). Summing up the above estimate on all
of the sub-intervals (τ−, τ

+) of Iξ,η leads to

‖Φ‖2
L2[(0,1)×Iξ,η ] ≤ C T. (3.5)

We can then go back to the initial function φ and, through the computations
(2.17,2.18), obtain the bound ‖φ‖L2(Q) ≤ CT .

Proof: We set W =
∑

i aiΦi, Z =
∑

i diaiΦi, where the coefficients ai are
defined in (1.7). Summing all the equations in the Φi’s (see (2.14) with FM

instead of F ), we have, using also Assumption (1.7):

Wt − Zzz − ω3Wz =
∑

i

aiF
M
i (Φ) +

∑
aiGi ≤

∑
i

biΦi + C.
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Since ai > 0 for all i, one has
∑

i biΦi ≤ AW for some A > 0 depending
only on the ai, bi. Then, we deduce the following inequality from which the L2

estimate will follow:

Wt − Zzz − ω3Wz ≤ AW + C. (3.6)

We set σ := Z/W so that we may write

Wt −
(
σW

)
zz
− ω3Wz ≤ AW + C. (3.7)

A main point is that, thanks to the positivity of the Φi, ai,

0 < min
i
di ≤ σ ≤ max

i
di. (3.8)

As in (15), (3), we will exploit this property to get an L2(G)-estimate on W
which obviously implies the expected L2-estimate on Φ. We do it by duality.
For this, let Θ ∈ C∞0 (G),Θ ≥ 0. We introduce the nonnegative solution θ of
the dual problem


−θt − σθzz + (ω3θ)z − Aθ = Θ on G

θz = r(2 z − 1)θ for z = 0, 1

θ = 0 at t = τ+,

(3.9)

where r ∈ (0,+∞) is such that

r σ − ω3 ≥ 0 for z = 1, −r σ − ω3 ≤ 0 for z = 0. (3.10)

This choice of r is possible since σ is bounded from below and |ω3| is bounded
from above. We denoteR(z) = r(z2−z) so thatR′(z) = r(2z−1). In particular,

[θz = r(2z − 1)θ] ⇔ [e−Rθ]z = 0. (3.11)

Multiplying (3.6) by θ ≥ 0 and using Z = σW lead to

0 ≥
∫

G
θ[Wt − Zzz − ω3Wz − AW − C].

This writes
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0 ≥
∫

G
(WΘ− Cθ)−

∫ 1

0
[θW ](z, τ−)dz + a, (3.12)

where a denotes the integrated terms in z, namely

a =
∫ τ+

τ−
{[−θZz − ω3θW + θzZ](1, t)− [−θZz − ω3θW + θzZ](0, t)} dt,

which, according to the boundary conditions on the Φi’s and θ, is equal to

a =
∫ τ+

τ−
Wθ[rσ − ω3](1, t) + θ[W (ω3 + rσ) + Σiai(µiΦi − ei)](0, s).

By the choice of r as in (3.10) and thanks to µi ≥ 0, ei ∈ L∞, we deduce

that a ≥ −C
∫ τ+

τ−
θ(0, t) dt. Together with (3.12) and the fact that W (·, τ−) is

a given L∞-function, this leads to

∫
G
WΘ ≤ C

{∫ 1

0
θ(z, τ−)dz +

∫ τ+

τ−
θ(0, t)dt+

∫
G
θ

}
. (3.13)

The next task is now to prove

∫ 1

0
θ(z, τ−)dz +

∫ τ+

τ−
θ(0, t)dt+

∫
G
θ ≤ C(τ+ − τ−)1/2‖Θ‖L2(G). (3.14)

Then, the expected estimate of Proposition 5 will follow by duality. To obtain
(3.14), we actually prove maximal L2-regularity for the parabolic operator
involved in (3.9), namely

∫
G
θ2 + (θt)

2 + (θz)
2 + (θzz)

2 ≤ C
∫

G
Θ2. (3.15)

Indeed, assuming (3.15), we then obtain, by setting ρ := (τ+ − τ−)1/2:

∫
G
θ ≤ |G|1/2

{∫
G
θ2
}1/2

≤ ρ
{
C
∫

G
Θ2
}1/2

.

∫ 1

0
θ(z, τ−)dz = −

∫ τ+

τ−

∫ 1

0
θt ≤ ρ

{∫
G
(θt)

2
}1/2

≤ ρ
{
C
∫

G
Θ2
}1/2

.

Then, starting from the embedding estimate

∀t ∈ (τ−, τ
+), θ(0, t) ≤

{∫ 1

0
[θ2 + (θz)

2](z, t) dz
}1/2

,
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we have similarly, using again (3.15)

∫ τ+

τ−
θ(0, t)dt ≤

∫ τ+

τ−
dt
{∫ 1

0
[θ2 + (θz)

2] dz
}1/2

≤ ρ
{
C
∫

G
Θ2
}1/2

.

Whence (3.14). It remains to prove (3.15). We set U := e−Rθ where R is
defined in (3.11). Obviously, it is sufficient to prove (3.15) with θ replaced by
U . The function U satisfies an equation of the form

−Ut − σUzz + a(z, t)U + b(z, t)Uz = Θ̂,

U(·, τ+) = 0,

Uz = 0 at z = 0 & z = 1,


(3.16)

where a, b are uniformly bounded by C and Θ̂ = e−RΘ.

Multiply the equation in U by −Uzz and integrate by parts to obtain:

∫ 1

0
−∂t

1

2
[Uz]

2 + σ[Uzz]
2 =

∫ 1

0
[−Θ̂ + aU + bUz]Uzz. (3.17)

Since σ is bounded from below, we can use Young’s inequality to control the
right-hand side as follows:

∫ 1

0
[Θ̂ + aU + bUz]Uzz ≤

∫ 1

0

σ

2
[Uzz]

2 + C[Θ̂2 + U2 + (Uz)
2]. (3.18)

Absorbing the term in (Uzz)
2 and exploiting the linear Gronwall’s inequality

in the term (Uz)
2, we deduce from (3.17), (3.18) and U(τ+) = 0, the following

estimate on Gt = (t, τ+)× (0, 1):

∫
Gt

[Uzz]
2, sup

s∈(t,τ+)

∫ 1

0
[Uz]

2(s) ≤ C
∫

Gt

Θ̂2 + U2. (3.19)

Going back to (3.16), we derive
∫
Gt

(Ut)
2 ≤ C

∫
Gt

Θ̂2 +U2 which, together with

U(·, t) = −
∫ τ+

t Ut(·, s)ds, leads to

∫ 1

0
U2(z, t)dz ≤ C

∫ τ+

t

∫ 1

0
(Ut)

2 ≤ C
∫ τ+

t

∫ 1

0
Θ̂2 + U2.

Integration of this Gronwall’s inequality in t→
∫ 1
0 U

2(t) gives∫
G
U2 + (Ut)

2 ≤ C
∫

G
Θ̂2.
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This inequality coupled with (3.19) leads to (3.15) with θ replaced by U , and
this ends the proof of Proposition 5.

Now, we recall classical estimates on the heat operator in one space dimension
(see e.g. (10)):

Lemma 6 Let ψ be a solution on G of



ψt − dψzz − ω3ψz = F,

ψz = 0 for z = 1,

−dψz + µψ = e ∈ L∞(0, T ) for z = 0,

ψ(z, 0) = ψ0 ∈ L∞(0, 1).

(3.20)

Then, for C = C(T, d, ω3, µ, e, ‖ψ0‖∞),

∀r ∈ (1, 3), ‖ψ‖Lr(G) ≤ C[1 + ‖F‖L1(G)],

∀p ∈ (1, 3/2), q = 3p/(3− 2p) ‖ψ‖Lq(G) ≤ C[1 + ‖F‖Lp(G)],

∀p > 3/2, ‖ψ‖L∞(G) ≤ C[1 + ‖F‖Lp(G)].

Remark. These estimates may be found for instance in (10). The only remark
to be done is that the constants above do not indeed depend on G and in
particular do not depend on τ+ − τ− even if this difference becomes small. A
simple way to see it is to notice that a solution on the interval I = (τ−, τ

+) is
the restriction to I of a solution on the fixed length interval I1 = (τ−, τ− + T )
with a left hand-side F̃ equal to F on I and to zero on I1 \ I. Then, for
instance, the first inequality is obtained as follows from the same inequality
on the ’fixed’ domain G1 = (0, 1)× I1:

‖ψ‖Lr(G) ≤ ‖ψ‖Lr(G1) ≤ C[1 + ‖F̃‖L1(G1)] = C[1 + ‖F‖L1(G)].

Lemma 7 Let φ be the solution of the truncated system (3.3) and Φ the so-
lution of the corresponding system in the new variables. Then

∀(ξ, η), for all interval (τ−, τ
+), ‖Φ‖L∞(G) ≤ C. (3.21)

Proof: We start with the L2-estimate of Proposition 5 where we even forget
the precise dependence in (τ+−τ−), that is to say, we start with: ‖Φ‖L2(G) ≤ C.

By the ’quadratic hypothesis’ (1.8): ‖FM(Φ)‖L1(G) ≤ C.

By the first statement of Lemma 6: ∀r ∈ (2, 3), ‖Φ‖Lr(G) ≤ C.
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By (1.8) again: ∀p ∈ (1, 3/2), ‖FM(Φ)‖Lp(G) ≤ C.

By the second statement of Lemma 6: ∀q < +∞, ‖Φ‖Lq(G) ≤ C.

By (1.8): ∀m < +∞, ‖F (Φ)‖Lm(G) ≤ C.

Finally, by the last statement of Lemma 6: ‖Φ‖L∞(G) ≤ C.
Lemma 7 follows.

Proof of Theorem 2: As explained in the Remark following Lemma 4, we
apply the uniform estimate of Lemma 7 to the solution of the truncated system
(3.3). We choose M larger than the constant C of Lemma 7. Then, the solution
of the truncated system (3.3) is also a solution of the true system (3.1).

Uniqueness is classical in the class of uniformly bounded solutions.

4 A specific nonlinearity f

Here, as a main example, we reproduce the 20 × 20 system mentioned in (4)
and introduced in the context of pollutants models in (7) and (17).

The nonlinear part is given as follows.

f1(φ) = −k1φ1 + k22φ19 + k25φ20 + k11φ13 + k9φ11φ2 + k3φ5φ2

+k2φ2φ4 − k23φ1φ4 − k14φ1φ6 + k12φ10φ2 − k10φ11φ1 − k24φ19φ1,

and

f2(φ) = k1φ1 + k21φ19 − k9φ11φ2 − k3φ5φ2 − k2φ2φ4 − k12φ10φ2

f3(φ) = k1φ1 + k17φ4 + k19φ16 + k22φ19 − k15φ3

f4(φ) =−k17φ4 + k15φ3 − k16φ4 − k2φ2φ4 − k23φ1φ4

f5(φ) = 2k4φ7 + k7φ9 + k13φ14 + k6φ7φ6 − k3φ5φ2 + k20φ17φ6

f6(φ) = 2k18φ16 − k8φ9φ6 − k6φ7φ6 + k3φ5φ2 − k20φ17φ6 − k14φ1φ6

f7(φ) =−k4φ7 − k5φ7 + k13φ14 − k6φ7φ6

f8(φ) = k4φ7 + k5φ7 + k7φ9 + k6φ7φ6

f9(φ) =−k7φ9 − k8φ9φ6

f10(φ) = k7φ9 + k9φ11φ2 − k12φ10φ2

f11(φ) = k11φ13 − k9φ11φ2 + k8φ9φ6 − k10φ11φ1

f12(φ) = k9φ11φ2
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f13(φ) =−k11φ13 + k10φ11φ1

f14(φ) =−k13φ14 + k12φ10φ2

f15(φ) = k14φ1φ6

f16(φ) =−k19φ16 − k18φ16 + k16φ4

f17(φ) =−k20φ17φ6

f18(φ) = k20φ17φ6

f19(φ) =−k21φ19 − k22φ19 + k25φ20 + k23φ1φ4 − k24φ19φ1

f20(φ) =−k25φ20 + k24φ19φ1.

As noticed and strongly used in (4), this nonlinearity satisfies the five following
relations.



f1 + f2 + f13 + f15 + f19 + f20 = 0

f7 + f8 + f9 + f10 + f11 + f12 + f13 + f14 = 0,

f17 + f18 = 0,

f3 + f4 + f16 ≤ k1φ1 + k22φ19,

f5 + f6 ≤ 2k4φ7 + k7φ9 + k13φ14 + 2k18φ16.

(4.1)

Summing up these five relations yields the assumption (1.7). Let us emphasize
that we only use this last global dissipative relation, and not the five ones
separately. On the other hand, we exploit the quadratic structure (see next
Section for more comments on other kinds of systems).

5 Comments and open problems

In this section, we first give direct and elementary proofs of the preliminary
Lemmas 3 and 4. Then we make some comments and indicate open problems.

Proof of Lemma 3. Preliminary remark: One way to prove this linear lemma
is to use the results in (1), (8), (9). However, in these references, solutions are a
priori less regular than stated in the lemma. Roughly speaking, Λφi, ∂

2φi/∂z
2

are found in an H−1-type space rather than in L2. We do not know how to
prove the L2 regularity in general (see open problems below). On the other
hand, under the assumption (2.8), we are able to do it. For simplicity, we take
advantage of the change of variable introduced in Section 2 and we provide a
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more selfcontained proof.

Let ζi ∈ [H2 ∩ L∞](Q) as in assumption (1.5). Then, setting by translation
ψi := φi− ζi, in order to prove existence of φi as in Lemma 3, we may assume
all the data equal to zero except for the right-hand side gi ∈ L2(Q).

Now by Assumption (2.8) and thanks to the change of variables described in
Section 2, we are reduced to solving the new following system on each interval
[τ−, τ

+):

∂Φi

∂t
− di

∂2Φi

∂z2
− ω3

∂Φi

∂z
= Gi ,

∂Φi

∂z
= 0 for z = 1,

− ∂

∂z
[diΦi] + µiΦi = 0 for z = 0,

Φi(ξ, η, z, τ−) = 0.


(5.1)

This problem is nondegenerate and it is well-known (see e.g. (10)) that for
Gi given in L2(G), it has a (unique) solution with derivatives in L2 and the
corresponding estimates, namely

∫ τ+

τ−

∫ 1

0
|(Φi)t|2 + |(Φi)zz|2 + |(Φi)z|2 dt dz ≤ C

∫ τ+

τ−

∫ 1

0
|Gi|2 dt dz, (5.2)

where C depends only on the data. The function Gi is measurable with respect
to (ξ, η). The above estimate preserves this measurability for the solution Φ
: indeed, if Gi depends continuously on (ξ, η), then so does the solution by
(5.2). Now, if G is in L2 in the four variables, it may be approximated in L2(G)
and a.e in (ξ, η) by regular functions. Again, (5.2) ensures the convergence and
the measurability of the limit. Moreover, according to the computations (2.17,
2.18) and to those of Section 2, we also have∫

Q
|Λφi|2 + |(φi)z|2 + |(φi)zz|2 ≤ C.

For the last statement of Lemma 3, we may again use the change of variable
of Section 2. We are back to a system of type (5.1) with

0 ≤ gi ≤ ‖gi‖∞ < +∞

and nonnegative bounded boundary data instead of zero data. It is well-known
that they provide nonnegative bounded solutions.

20



Proof of Lemma 4. As in the previous proof, we use the change of variable
of Section 2 and we are lead to the system

∂Φi

∂t
− di

∂2Φi

∂z2
− ω3

∂Φi

∂z
= FM

i (Φ) +Gi ,

∂Φi

∂z
= 0 for z = 1,

− ∂

∂z
[diΦi] + µiΦi = ei for z = 0,

Φi(ξ, η, z, τ−) = Φ0i(ξ, η, z).


(5.3)

We have here a globally Lipschitz perturbation of the previous linear system.
Since all data are in L∞, by a classical fixed point Theorem, we obtain unique
uniformly bounded solutions on (0, T ). Measurability with respect to (ξ, η) is
preserved in this approach.

To prove that the positivity is preserved when the data are nonnegative, in-
stead of solving directly with the right-hand side FM , we first do it with FM

replaced by FM ◦ Π where Π : Rn → (R+)n is the orthogonal projection onto
the positive cone (R+)n of Rn. The assumption (1.6) implies that, for all i and

all Φ ∈ Rn, [FM
i

(
Π(Φ)

)
]Φ−i ≥ 0. Then, multipliying the i-th equation of the

modified system by Φ−i and using boundary conditions lead to

− ∂

∂t

1

2

∫ 1

0
(Φ−i )2 − di

∫ 1

0

{
(Φ−i )z

}2
− ω3

2

{
(Φ−i )2

}
z
≥ 0.

Integrating this inequality in t proves that Φ−i = 0, whence the positivity of
the solutions of the modified system. But, since FM = FM ◦Π on the positive
cone, Φ is also solution of the initial system.

About the L2-estimate: The main ingredient in the proof of Theorem 2 is
the L2-estimate given in Proposition 5. We could ask whether such an estimate
would be true without the assumption (2.8). Let us make the question more
precise. If, as in the proof of Proposition 5, we set W =

∑
i aiφi, Z =

∑
i diaiφi,

then summing the n equations in (1.1), we obtain similarly to (3.12):

Wt − [σW ]zz + ω · ∇W − AW ≤ C, (5.4)

where

0 < min
i
di ≤ σ =

Z

W
≤ max

i
di < +∞.

We do not know whether the inequality (5.4) implies an L2-estimate on W as
in Proposition 5. The dual problem is
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− θt − σθzz −∇ · (ω θ)− Aθ = Θ. (5.5)

The goal would be to prove L2-estimates for this equation (see (3.15)). Tech-
nically, when we multiply it by −θzz as in the proof of Proposition 5, then it is
not clear what to do with the new terms of the form ω1θxθzz. After integration
by parts, they become θz[ω1zθx + ω1θxz]. The last term can be treated easily,
but it is not so clear for the first one...except if ω1z = 0, whence the hypothesis
(2.8).

We would like to emphasize that it is not even obvious to obtain L2-estimates
for the main linear operator involved in the system (1.1). More precisely, let

θt − θzz − ω · ∇θ = Θ, (5.6)

with ’good boundary conditions’ and Θ ∈ L2(Q). Does this imply ”maximal
regularity”, namely

θt − ω · ∇θ, θzz ∈ L2(Q)? (5.7)

The above approach (multiplying by θzz) fails in general in exactly the same
way as for the more general operator with the σ-term (and as just explained).

Therefore, here is a first open problem: for which ω does (5.6) imply (5.7)
when Θ ∈ L2(Q)?
One can find partial results in the literature from the theory of so-called ultra-
parabolic operators (see e.g. (2)). Strangely enough, it follows from this theory
that, for instance, for ω(x, y, z, t) = (z, 0, 0), the answer would be positive,
although ω1z 6≡ 0...But, the approach in (2), based on hypoellipticity of the
operators, would not apply for instance to ω = (z, x− tz, 0).

Once the previous problem is understood, a second open problem would be to
understand for which ω the solutions of (5.5) satisfy

Θ ∈ L2(Q) ⇒ θ, θzz, θt +∇ · (ωθ) ∈ L2(Q).

This would be a first step in solving our main problem without Assumption
(2.8).

A third open problem is to understand what happens in dimensions greater
than 3. A main point in our approach is that we reduced the problem to a
one-dimensional one. Assume more generally that we have a problem in di-
mension d > 3 with no diffusion in a number d′ of the directions. Then, with
an assumption like (2.8), we may reduce the problem to a (d−d′)-dimensional
problem. We still keep the L2-estimate of Proposition (5), but, if d − d′ > 1,
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we cannot any more reach L∞-estimates as for d−d′ = 1. It is very likely that
we can then obtain global ”weak”-solution in the spirit of (14), (3), but this
needs to be done.

Another interesting fourth problem is when the nonlinearities are superquadratic.
Several models are mentioned in (16) (see pages 143, 167, 209) which come
with this structure. But the question is interesting for itself. Even when the
diffusions are not degenerate, the problem is not yet completely understood.
Some partial results are however known. For instance, if the right hand-side
presents some ”triangular structure”, L∞-estimates may successively be ob-
tained on all the components (see (11), (12)). This approach is based on Lp-a
priori estimates and it would be necessary to first extend them to a degenerate
situation. It is probably necessary to first understand it in the case p = 2 (as
in the previous problems just mentioned).

Another approach would be to look for global weak solutions. If the nonlin-
earity allows an a priori L1-estimate on the right-hand side, we may expect
global weak-solutions as in (14). But this needs to be done.

One more open problem would be interesting to look at, with respect to appli-
cations. The models considered here are approximate ’simplified’ versions of
more elaborate ones: for instance, saying that no diffusion occurs in the hori-
zontal directions is just an approximation of the fact that diffusion does occur,
but is small. Therefore, a natural question would be to study what happens
exactly for the system with positive diffusion coefficients tending to zero in
the horizontal directions. Since very different diffusions coefficients generate
sharp behaviours in these systems, this question is not easy, but relevant.
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