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Fault detection and isolation using sliding mode observer for ugertain
Takagi-Sugeno fuzzy model

Abdelkader Akhenak, Mohammed Chadli, 8dRagot and Didier Maquin

Abstract— This paper addresses fault detection and isolation In general, the nonlinear systems are firstly linearizednat a
(FDI) problem using a sliding mode fuzzy observer on the gperating point, and then robust techniques are applied to

basis of a uncertain Takagi-Sugeno (T-S) fuzzy model. First, ganarate residuals, which are robust against limited param
a robust fuzzy observer with respect to the uncertainties is ter variations

designed. The convergence of the fuzzy observer is performed
by the search of suitable Lyapunov matrices. It is shown how
to synthesis observers using a set of linear matrix inequalities However, this assumption of linearity is checked only in a
(LMI) conditions. Once the fuzzy observer is designed, FDI |imited vicinity of a particular operating point. The Takag

problem for nonlinear systems described by T-S fuzzy systems 3
using the fuzzy observer is presented. A bank of fuzzy observer Sugeno (T-S) fuzzy model approach can apprehend the

is then designed in order to investigate fault diagnosis problems. Nnonlinear behavior of a system, while keeping the simpficit

The validity of the proposed methodology is illustrated on a Of the linear models [5]. Indeed, the real physical systeras a

dynamic vehicle model. often nonlinear. As it is delicate to synthesize an obseiaer

an unspecified nonlinear system, it is preferable to reptese

this system with a fuzzy model. The idea of the fuzzy model
The objective of fault diagnosis is not only to decide if aapproach is to apprehend the global behavior of a system

fault is present in a system (fault detection), but also t® thby a set of local models (linear or affine), each local model

determination of the kind and the location (fault isolajion characterizing the behavior of the system in a particulaezo

or the characterization of the fault by some attributesl{fauof operation. The local models are then aggregated by means

identification). In general, the task of fault detection anaf an interpolation mechanism.

diagnosis is solved in two main steps: symptom generation . .
step and diagnostic step. In the first step, certain quasntitiRecemly' several research have exploited the fuzzy madelli

called symptoms are generated to indicate the state of tRBProach for fault detection and isolation [4][6][7]. Pak
process, and then in the second step, the relation betwedn[8] have presented the design of a robust adaptive fuzzy
symptoms and faults is established. Typically, this rezgir CPS€rver for uncertain nonlinear dynamic systems. In [9]
the selection of the most relevant symptoms, which are tob @Uthors have considered the design of sliding mode fuzzy
against noise, disturbances and standard changes of the QRserver for FDI.

tem. Modern approaches are based on a process model and ) ]
exploit the mathematical relations between different pssc !N this paper, we propose a methodology for the diagnosis of

signals. They enable a fine diagnosis but require deepgynamic nonlinear processes despribed by T-S models using
insight and understanding of the process and need muf$zZy observers. Typically, the design of a T-S fuzzy obeerv

effort to develop, particularly for nonlinear and Comp|exreo|uires a precise mathematical description of the plant
processes. under interest in the form of a T-S dynamic model, which

_ o includes both local linear models and activation functions
In the conventional model-based FDI schemes, which includfye |ocal linear models are state space affine models that

parameter estimation, observers and parity space methqgdg, pe derived directly from first principle or from empitica
are based on the deviation between measured and estimgigsghels.

process states or outputs and nominal ones, leading to

analytical symptoms [1][2][3][4]. Obviously, they reqair pishaner is organized as follows: section 2 gives the gener
accurate mathematical models of the system. However, 16, .y re of the considered uncertain T-S fuzzy model. In

task of establishing a mathematical description for Complesection 3, the design of sliding mode fuzzy observers is
nonlinear processes is often difficult and time consuminqreateol Section 4 gives a sensor and actuator FDI for

A. Akhenak is with Institut de Recherche en Syses Embarcs dynamic vehicle model, which is represented by a T-S fuzzy
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1. TAKAGI-SUGENO FUZZY MODEL REPRESENTATION I1l. SLIDING MODE FUZZY OBSERVER

This section proposes sliding mode unknown input fuzzy
The major motivation for the fuzzy modelling methodologyobserver (SMUIFO) based on a nonlinear combination of
is that local modelling is simpler than global modellinglocal unknown input observers. The proposed structure in-
because locally there are less relevant phenomena, avfives sliding terms allowing to compensate the unceiitzsnt
interactions are simpler. Typically, this is done by divigi and the unknown inputs. The proposed sliding mode fuzzy
the full range of all possible operating conditions intoesay  observer of the T-S model (1) has the following form:
regimes where in each regime the system is represented by M
local linear models [5][10]. The different operating regisn | 4 — Z 1 (€) (Ai:?: +Biw+ D + G (y—9) +vi + Oéz')
can have either different local model structures (hetero i1
geneous) or same local model structures (homogeneoug). M
Obviously, it is assumed that the whole operating range o y= Zﬂi () Ciz
the system is completely covered by these regimes. Here, i=1 3)
consider using the following fuzzy uncertain dynamic modell_et us note that; anda; can be considered as variables

Fo represgnt a complex nonlinear sy;tem with unknOW{R/hich compensate respectively the errors due to the unknown
inputs, which includes both local analytic linear modelsl an;,, +s and the model uncertainties. Their specific strestur

fuzzy membership functions: will be described further. Our objective is to design gain

M matricesG; and variablesy; € R™ and o; € R", that
T = Z wi (§) ((Ai + AAj)x + Byw + Ryw + Di) guarantee the asymptotic convergence: dbwards:.
by To establish the conditions for the asymptotic convergence
f the fuzzy observer (3), let us define the state and output
= (&) O, 0
Y ;M (&) Gz estimation errors:
" @ e = -2 (4a)
with: > p;(§) =1 and 0< p;(€) <1 Vie Iy M
i=1 T = —y = i Cie 4b
wherex € R"™ is the state vectorpy € R™ the input vector, Y vy ;N (©) (4)

w € R, ¢ < n, contains the unknown inputs ande RP
1 X . X ; N N

the measured outputs_. Matncﬂse_ R*n an_dBl € R" m estimation error is:

denote the state matrix and the input matrix associated wit [P

theith local model. Matrices?; € R"™*? are the distribution . 1 _

i . L. e = i i Ai'6+AA¢l’+Riw*l/i*O[i 5
matrices of unknown inputsD; € R is introduced to take ; ]Zzl i (&) s (€) ( ! ) ®)
into account the operating point of the system. At |gsis . _
the so-called decision vector which may depend on some with: - Aj; = Ai — GiC; 6

subset of the known inputs and/or measured variables §eorem 1: The error of state estimation (10) converges
define the operating regimes. globally asymptotically to zero if there exists a symmetric
positive definite matrixP € R™*™, matricesiW, € R"*P
&nd positive scalarg;, f» and 33 satisfying the following
gonditions for alli, j € I,:

Using the equations (1) and (3), the dynamic of the state

The matricesA A; are unknown time-varying matrices with
appropriate dimensions, which represent parametric unc
tainties in the model. This kind of uncertainties is known a
unmatched uncertainties. We also consider that the unknown
input w are bounded.

[AA] <6; and o] <p )

A?P+PAi *C?W]T7chi+ (/3251-2+ﬂ3)1 P
<0
]

The activation functiong.;(§) are not Boolean ones, then The gains; and the termsy; andq; of the fuzzy observer
several local models are active at each time and the coeffB) are given by the following equations:

cientsu;(€) i € {1,..., M} quantify the relative contribution

P —p11

M
of each local model to the global model. The choice of th vi = p%z;lwp* > i (©)CTry
number M of local models for that multiple model may | i, «0 "y Ty LT
be mtwtw_ely dor_1e by taklng into account a certain numbe a; =B (1+B2) 62 sz PS5 (6)CTry
of operating regimes. Matriced,, B;, D;, R; and C; can 2ryTy =
be obtained by using the direct linearization of an a prior{ ., — ¢ { vi =0
nonlinear model around operating points, or alternatiysly @ =0 ®)
using an identification procedure [11], [12], [13]. From a G; =P 'w,. (9)

practical point of view, matricesA;, B;, D;, R; and C; )
describe the system's local behaviour arounditheregime. The proof of the asymptotic convergence of the T-S observer
and also relaxed conditions can be found in [14].



In the case of common output matrig'{ = C), we have model is described as follows [19]:

M N
i=1 i=1
: , o . " OF OF
and it suffices to replacg indices byi in conditions (7). A = — . Byj= — (14b)
Ox :r:r(;)_) ow z::r“('?_)
D; = F(z9 w9) - Az® - Buw®  (14c)

IV. APPLICATION TO AUTOMATIC STEERING OF VEHICLE
The previous model (14) has been established on the basis of

A. Vehicle Takagi-Sugeno model representation the nonlinear model (11) considering that the different elod
parameters are perfectly known. In fact, some parameters ar

Different models related to automatic steering of vehigleen uncertain. It is particularly true for the cornering stéss

been studied in the literature [15][16][17] [18]. Here, wecCoefficientsc; andc,. These uncertainties can be modelled

have chosen to consider the coupling model of longitudindls bounded additive perturbations:

and lateral motions of a vehicle. This model, already used

. . ) o ) = Acy and ¢, = ¢q9 + Ac 15
in [15], is strongly nonlinear and is given by the following cf = et By Cr =G0+ A6 (15)
equations: with |Acy| < dy and|Ac,| < d,. Therefore, these uncer-
tainties are taken into account in the considered modeltwhic

u = vr—fg+ (s = kz)uz +c v s + £ (11a)is now written as:

- g M "Mu T M ) '
. (cf+cr) (be, — acy) crd+T6 .

= _—qur— - J 11 — . . ) ) .
0 ur Y + " + i (11b) z ;,uz (y1) ((Az + AA) x + Byw + D; ) (16)
.= (bc,,facf)vi (b207-+a20f)r+ ald + acsd (110) y=Cu

Iu Iu I,

Three local models were chosen for this application. This
where,u, v and r are the longitudinal velocity, the lateral number gives a good compromise between the quality of
velocity and the yaw rate, respectively, is the steering the obtained model and its complexity. The membership
angle, T is the traction and/or braking force. Table 1 listsfunctions which are triangular as shown figure 1 only depend
the parameters of the above vehicle model. on the longitudinal velocityu.

Parameters of the vehicle system

H, (u®) H,u(®) Ha(u(®)

M | Mass of the full vehicle 1480 kg

I. | Moment of inertia 2350 kg.m? oer
g | Acceleration of gravity force 9.81 m/s” oer
f Rotating friction coefficient 0.02 o7
a | Distance from front axle to C& 1.05 m Nl
b | Distance from rear axle to CG 1.63m N
c; | Cornering stiffness of front tyres | 135000 N/rad Nl

0.3

¢ | Cornering stiffness of rear tyres | 95000 N/rad
ki | Lift parameter from aerodynamics| 0.005 Ns®/m?
ko | Drag parameter from aerodynami¢sd.41 Ns*/m?

0.2

0.1

Q
14 15 16 17 18 19

The nonlinear vehicle dynamics can be written as follows: ] ]
Fig. 1. Membership functions

i(t) = F(z(t), w(t)) (12a)
y(t) = Cx(t) (12b)
with The model uncertainties are such that:
C = [é 8 ?‘| (13) AAi,(j,k) = QAi’(j,k)’f] j,k‘ & {1,3} and: € {1,3}

where 4; ;1) denotes the(j, k)th element ofA; and 6§ =
where ' is a nonlinear function of the state vector=  0.1. The functionn(t) is a piece-wise constant function
[u v 7], w gathers the two inputs andT" andy(t) gathers which magnitude is uniformly distributed on the interval
the two inputsy; = w andy, = r. As it is delicate to [0 1]. Its time evolution is depicted on figure 2.

synthesize an observer for a nonlinear system, we preferrgle numerical values of the different matricds, B;, D;
to represent this system with a T-S fuzzy model. Then, wandC' are:

10.99 7x10%

propose to linearize the nonlinear model (12) around some —0.052  0.403 0.239
operating pointgz(® w(?)]. Next, we integrate the set of the 4, — | —0.366 —10.82 —13.743| By = |91.216 —10-4
linear models in a T-S fuzzy model [5]. The proposed T-S 0.728  0.388  —11.890 60.319 0




0;’ [T > longitudinal velocity —> %1
0:8 3 observer 1
0.7 :
| u
06 : PN
o ! > —> u3
05 DA [ >  global observey .
0.4 ; o —>» 73
0.3 |
02t ; | | s
o1l 3 3 yaw rate observer R
0 5 10 15 2 J > > "2
Fig. 2. Piece-wise constant function Fig. 3. Block diagram of the banc observer-based FDI

Ay = |—-0.989 —9.282 —16.213
| 0.507 0.333  —10.198

91.216 3 x10—4 analysis of the residuals,,, = y; — ¥, With k € {1,2,3},

[—0.085  2.895 1.925
Ba
60.319 2 x 10—4 generated by three observers ande {1, 2} The three

{3,359 7 % 10—4} The sensor fault detection and localization is based on the

[—0.031  2.065 0.693 1.548 7x 1074 observers, diagrammed in figure 3, depend on two inputs
Az = |—-1.141 8468 —17.870| B3 = |91.216 2x 104 and T applied to the system (11). The longitudinal velocity
| 0441 0303  —9.303 60.319 1x1074 observer and the yaw rate obseryeuse respectively only
[—0.832 0.087 0.392 L o o one outputy andr. The global observgruses two outputs
Di= | 5259 | Dy=|16.562| D3 = [20.951| C = {o 0 J wandr.
| —10.46 —8:496 —8.092 It is important to note that the implementation of this sligli
V. FAULT DETECTION AND ISOLATION FOR VEHICLE mode fuzzy observer induces a practical problem: when the
MODEL estimation error-, tends towards zero, the magnitudecqf

The objective of this part is to generate residuals thateefleMay increase without bound. This problem is overcome as
the faults acting on the system (16). An ideal residudPllows:

signal should remain zero in the fault-free case and non-

zero when fault occurs. Once a fault has been detected, , 213
it must be estimated. The fault estimation will specify the ifllryll > = ai=p(1+06)7;
type of fault, its duration, its amplitude and eventually

its probable evolution. In the literature, there are sdveral If [[ryll <e = ;=0

fault detection techniques. They are generally based on the termsa; are fixed to zero when the output estimation
change detection of the average and the variance. In thigror is such thafr, || < e, wheree is a threshold chosen by
FDI study, we will not deal with the detection thresholds ofhe user. In this case, the estimation error cannot converge
residuals. We will confine ourselves Only to the detectioth anto zero asymptotically but to a small neighborhood of zero

localization of sensor and actuator faults taking into aoto depending on the choice ef For this example, we fixed
the uncertainties modelling. at 10-3.

1T
PlC'ry

T
2ry Ty

A. Sensor fault detection and isolation Figures 4 and 5 show the additive signals that represent

gensor failures, the first one has been added to sensor 1 outpu
y1 between 5 and 10s, and the second one has been added
to sensor 2 outpug, between 13s and 18s.

In order to identify the sensor fault, we consider that th
actuators are faultlesso(= 0) while the output vectory
is corrupted by the sensor faulty. Then the system (16)

becomes:
M 0.1
T = Z j2z3 (yl) ((Az + AAZ)I' + BZ’U) + DZ) 012
i=1 0.08-
y = Cx+ Ay
(17) 0.04-
Three fuzzy observers are designed, one based on the I« &t T 20
gitudinal velocity observey; = u, the second based on the Fig. 4. Sensor failuredy,
yaw ratey, = r and the last is based on the two outputs
andr.

Using the numerical values of state matricésand output 1) FDI using global observgr the simulation results of
matrix C, we can easily checked that the following observthe fault detection and isolation based on the global oleserv
ability conditions are satisfied. are illustrated on the figures 6 and 7. The residyals )
. . Sy and (r — 73) (see figures 6 and 7) show only the moment
vie{l, 2,3 andj € {1, 2}, rank4;, C(j,3)) =3 of th(e appez';lrance and disappearance of sensor faults withou
which implies that it is possible to estimate the state tgfou being able to locate the fault. So, there is an instantaneous
either the first outputx (y1) or the second one (y2). fault detection at time of appearante and disappearance



15
-0.04-
1k

-0.08- , 05k (e

0]

0.1 ) s 3 ) 10 12 1z 16 18 0
Fig. 5. Sensor failure\ys 0] K 7 & & o 12 1216 18 0
Fig. 10. r and#; using longitudinal velocity observer
10s of fault. Between this two times 10s[ there is a non 00
. . . Of
detection of fault. We can conclude that this are derivatc
residues because they was not well conceived. 0.04-
-0.08-
0.15
0.1 7 015 4 T 58 o1z 17 6 18 0
0.05- 1 Fig. 11. r — #; using longitudinal velocity observer
0.05 V/
e and isolation (localization). We consider that the sensoes
Z 4 [5) g 10 1z 14 16 18 0 . .y .
Fig. 6. u — 43 using global observer faultless Ay = 0). The figure 12 shows the additive signal

that represent the actuator failufe® in the steering anglé
between 7 and 15s. The T-S fuzzy model (11) described the

0.08- 4
0.1
0.04- B
0.12-
/ 0.08-
-0.04- B
0.04
-0.08- B

74 9 510 17 17 6 T 0 T 6 B 10 T 17
Fig. 7. r — 73 using global observer Fig. 12. Actuator faultAd

16 18 0

2) FDI using longitudinal velocity observer the simula-  vehicle model (14) becomes as follows:
tion results of the fault detection and isolation based @n th
longitudinal velocity observerare illustrated on the figures . N N
8, 9, 10 and 11. The residuals — @;) and (r — ;) (see &=y i) ((Av: +Adi)z + B { T } +Di)18)
figures 9-11) generated by the obsegvallow to detect and =1
locate the fault sensor on the yaw rate outpufThe fault In order to develop an actuator fault detection and localiza
detection and localization is possible by this longitudination method, a sliding mode unknown input fuzzy observers

velocity observer, because this observer does not depen¢an be used. The first idea most obvious is to develop an
on the faulty output . sliding mode observer without inpuésand7’. The structure

of the observer is given by the following equations:

M

i=1
j=Ci
19)
wherev;, «; andG; are given by (8) and (9).
P Z 5 3 10 12 1216 8 0 . . N X
Fig. 8. w and; using longitudinal velocity observer . Steering angle) —Estimationd + A¢
0.0 |
0.01- -
0 e o 0
0.011
0 2 4 6 8 10 12 14 16 18 0
-0.0: L3 & 10 12 12 16 18 0

2 g
Fig. 9. w — @1 using longitudinal velocity observer . .
Fig. 13. ¢ 4+ AJ using unknown input fuzzy observer (19)
B. Actuator fault detection and isolation

In this section, an unknown input sliding mode fuzzy obit is easy to notice on the figures 13-15 that the actuator of
server (3) is proposed as a method for actuator fault detectithe steering angle is faulty. Indeed, the difference betwee



TractionT'

— Estimation?’

0.5-

0.3-
0.2-
0.1+

ob———

considered based on the synthesized sliding mode unknown
input fuzzy observers.

The validity of the proposed FDI approach has been carried
out on a vehicle dynamic model represented by a Takagi-
Sugeno fuzzy model taking account parametric uncertaintie

0 L L \ L . | . L L
. 2 4 6 8 10 12 14 16 18 0

Fig. 14. T using unknown input fuzzy observer (19)

(1]

the two plots in Figure 13 shows the effect of actuator fault[2]
AJ.

The actuator residual generation is obtained if the matriX3!
M ui(y)B; is of full column rank and if the input
number is less than the output number of the sysigra ). [4]

As the output estimation is based on the compensation of the
two inputsd + Aé andT (considered unknowns) and model [5]
uncertaintiesA 4; by the sliding mode terms; andv;, the
unknown input estimation is given by considering the T-Sjg)
model (18) and the sliding mode observer (19) as follows

[71
~ A M
0+ A6 _ R
P R TS ) Gty = ) k) (20)
i=1
o [8]
=1
(9]
0.2 T T T T T
0.1 - B
] [10]
[11]
0.1} E
07 2 7 & g 1012 14 16 18 0 [12]
Fig. 15. AJ and its estimate\d
. L . 3
Figure 16 shows the actuator fault estimation erkor— AJ.
This error is mainly due to the coupling between the temns [14]
(compensation of model uncertainties) andcompensation
of the unknown input) through the estimation errgr
[15]
[16]
[17]
0.0 % 1t 1z 17 1% 152 (18]
Fig. 16. Actuator fault estimation erroAé — Ad
[19]

VI. CONCLUSION

In this work, we are concerned with the fault detection
and isolation problem of an uncertain nonlinear system
represented by a Takagi-Sugeno fuzzy model. The strategy
used is based on the sliding mode unknown input fuzzy
observer designed by the resolution of a set LMI conditions.
Then detection and isolation of sensor and actuator fatdts a
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