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1. Problem statement 

The Flexible Job Shop Problem (FJSP) is a generalization of the traditional Job Shop 
scheduling Problem (JSP), in which it is desired to process a set of n jobs on a set of m machines 
in the shortest amount of time. Every job Ji (i=1,…,N) consists of si operations 

iisii OOO ...,,, 21 which must be processed in the given order. Every operation must be assigned to 

a unique machine r, selected among a given subset, which must process the operation during irp  

units.  
Solving the flexible job shop consists in assigning a specific machine to each operation of each 

job as well as sequencing all operations assigned to each machine, such that successive operations 
of a job do not overlap and such that each machine processes at most one operation at a time. Job 
preemption and job splitting are not allowed. The objective is to find a schedule that minimizes the 
maximum completion time or makespan. As a generalization of the job shop problem, the FJSP is 
known to be strongly NP-Hard (Garey et al., 1976). Brucker and Schlie (1990) propose a 
polynomial algorithm for solving the FJSP with two jobs, in which the processing times are 
identical whatever the machine chosen to perform an operation. Brandimarte (Brandimarte, 1993) 
was the first to use a decomposition approach for the FJSP. He solved the assignment problem 
using some dispatching rules and then focused on the resulting job shop subproblems, which are 
solved using a tabu search heuristic. Hurink et al. (1994) propose to solve this problem with 
multiple capacities machines. Authors propose two neighborhoods which are based on the concept 
of block.  Chambers et al. (1996) proposed a Tabu Search method to solve the problem. Mastrolilli 
et al. (2000) proposed two structures of neighborhood based on the displacement of an operation 
in the disjunctive graph. Authors showed that if a feasible solution does not have a neighbor 
according to first neighborhood, then it is an optimal solution. The second neighborhood is an 
extension of the first one. It preserves the property of optimality in the event of absence of 
neighbor. Authors showed the connexity of the second neighborhood. According to their 
experiments, in spite of the absence of the connexity of the first type of neighborhood, this last 
gives better results than the second one because of the higher speed of execution. Kacem et al. 
(2002) used a genetic algorithm (GA) to solve the FJSP and they adapted two approaches to solve 
jointly the assignment and the sequencing subproblems. The first one is to approach by 
localization and the second one is an evolutionary approach controlled by the assignment model 
and applying GA to solve the FJSP. Xia and Wu (2005) proposed a hybrid of particle swarm 
optimization and simulated annealing as a local search algorithm. 

In this abstract, we propose to improve a discrepancy-based method, called CDDS, after being 
adapted to solve the flexible job shop problem in a precedent work (Ben Hmida et al., 2007b). So, 
we propose applying discrepancy on some pertinent variables chosen by using two types of 
heuristics. The remainder of this abstract is organized as follows. Section 2 introduces the 
principles of CDDS. Section 3 presents its adaptation for the problem under study and then 
proposes a discrepancy strategy to limit the tree search. Section 4 presents CDDS performance via 
an example and a series of tests. Finally, section 5 gives some concluding remarks and directions 
for future work.  



2. Climbing Depth-bounded Discrepancy Search 

CDDS is a tree search method based on the discrepancy principle to expand the search for 
visiting the neighborhood of the initial solution. It combines the Climbing Discrepancy Search 
(CDS) method (Milano et al., 2002) and the Depth-bounded Discrepancy Search (DDS) method 
(Walsh, 1997). CDDS method has been developed initially to solve Hybrid Flow Shop problems 
(Ben Hmida et al., 2007a) and has proved its efficiency in this domain. Then, it has been adapted 
to solve the flexible job shop problem and has provided promising results, especially with 
instances of a higher degree of flexibility (Ben Hmida et al., 2007b). The CDDS method starts 
from an initial solution suggested by a given heuristic. Hence nodes with discrepancy equal to 1 
are first explored then those having a discrepancy equal to 2, and so on. When a leaf with 
improved value of the objective function is found, the reference solution is updated, the number of 
discrepancy is reset to 0, and the process for exploring the neighborhood is restarted. To limit the 
tree search expansion, CDDS strategy applies discrepancies only at the top of the tree to correct 
early mistakes in the instantiation heuristic (for more details see Ben Hmida et al., 2007a). This 
method can be improved by using constraint propagation, e.g. the forward checking strategy 
(Haralick et al., 1980) which suppresses inconsistent values in the domain of not yet instantiated 
variables involved in a constraint with the assigned variable; one can also use a more refined 
mechanism. Although this method showed its efficiency for the resolution of the Hybrid Flow 
Shop problems (Ben Hmida et al., 2007a), it remains, nevertheless, difficult to adapt to the FJSP 
(Ben Hmida et al., 2007b). This is especially due to the considerable number of parameters to 
define: initial solution, search heuristics, discrepancy strategy, and tree search expansion. To 
improve our CDDS method for FJSP and more precisely for discrepancy strategy, we introduce 
some specific heuristics for applying discrepancies. 

3. Adaptation of CDDS for Flexible Job Shop Problem 

3.1.   Instantiation Heuristics 

It seems reasonable that the efficiency of the discrepancy-based methods depends closely on 
the quality of the initial solution (Harvey, 1995). In our approach, the initial solution is determined 
by the use of several heuristics: (1) Selection of operations: We first give the priority to the 
operation belonging to the job with the earliest start time (EST) and in case of equalities we 
consider the operation belonging to the job with the longest duration (LDJ). (2) Assignment of 
machines to operation: The operation previously chosen is assigned to the machine such that the 
task completes as soon as possible. This heuristic is called Earliest Completion Time (ECT). 
Heuristic is dynamic; the machine with the highest priority depends on the machines previously 
loaded. After both instantiations, we use a simple Forward Checking constraint propagation 
mechanism to update the finishing time of the selected operation as well as the starting time of the 
successor operation. We also maintain the availability date of the chosen resource.  

3.2.   Tree search expansion  

To limit the tree search expansion, we propose to introduce a lower bounding strategy. In fact, 
a lower bounding strategy is useful to speed-up the search for the optimal solution and to improve 
the quality of the first solution found in the tree. The following trivial lower bound is computed 
after a variable instantiation:   
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min  (where Cij is the completion time of Oij) 

3.3.   Discrepancy strategy 

In our problem, the initial leaf (with 0 discrepancy) is a solution since we do not constrain the 
makespan value. We may use the discrepancy principle to expand the tree search for visiting the 
neighborhood of this initial solution. In a previous work, we have developed three strategies to 
apply discrepancy:  

- Considering discrepancy only on operation selection variables;  
- Considering discrepancy only on resource allocation variables;  
- Mix the two kinds of discrepancies.  



This latter strategy gives best solutions (Ben Hmida et al., 2007b), but all of the three 
strategies lead to a huge computing time since they visit the entire neighborhood and recalculate 
starting times of operations and their assignments following the dynamic heuristic (ECT). To 
restrict it, we propose to backjump on promising choice points (Huguet et al., 2004). We therefore 
decide to apply discrepancy on some relevant variables chosen by using two types of heuristics: 

- Permutation of two adjacent critical operations carried out by the same 
resource (discrepancy on selection variable).   

- Replacement of a critical operation on another resource (discrepancy on 
allocation variable but restricted to critical operations).   

This led us to recalculate only the starting times of a subset of operations who are actually 
concerned with the discrepancy.   

4. Computational results 

The CDDS procedure described in Section 3 has been tested on different problem instances 
from literature (Brandimarte, 1993; Hurink et al. 1994).  

- Brandimarte: The data set consists of 10 problems with number of jobs ranging from 10 
to 20, number of machines ranging from 4 to 15, and number of operations for each job 
ranging from 5 to 15. 

- Hurink: The data set consists of 129 test problems created from 43 classical JSP 
instances. They divide the test problems into three subsets, Edata, Rdata and Vdata, 
depending on the average number of alternative machines for each operation. The number 
of jobs ranges from 6 to 30, the number of machines ranges from 5 to 15. 

Table 2. Comparison with the Tabu Search of Mastrolilli and Gambardella (M.G.) on 10 FJSP instances from 
Brandimarte 

instances n m LB M.G. CDDS %dev CPU(M.G.) CPU(CDDS) 
Mk01 10 6 36 40 40 0.0 0.01 0.1 
Mk02 10 6 24 26 26 0.0 0.73 0.2 
Mk03 15 8 204 204* 204* 0.0 0.01 0.2 
Mk04 15 8 48 60 60 0.0 0.08 0.03 
Mk05 15 4 168 173 182 5.2 0.96 0.2 
Mk06 10 15 33 58 60 3.4 3.26 0.1 
Mk07 20 5 133 144 139 -3.5 8.91 0.3 
Mk08 20 10 523 523* 523* 0.0 0.02 0.8 
Mk09 20 10 299 307 307 0.0 0.15 0.4 
Mk10 20 15 165 198 212 7.1 7.69 0.3 

Average       1.2 2.18 0.26 
 
Table 2 compares our CDDS algorithm with the Tabu Search algorithm proposed by 

Mastrolilli and Gambardella (2000) on 10 FJSP problem instances from Brandimarte (1993). The 
second and third columns report the number of jobs and the number of machines for each instance, 
respectively. The fourth column reports the best known lower-bound (Mastrolilli and Gambardella, 
2000). The fifth column reports the best results of TS. The sixth and the seven columns report our 
makespan with the relative deviation with respect to TS algorithm. The remaining columns report 
the CPU time. Results show that solutions are comparable in time and quality. 

Table 3 shows computational results over two instance classes. The first column reports the 
data set, the second column the number of instances for each class, the third column the average 
number of alternative machines per operation. The next column reports the percentage deviation of 
the best solution obtained by our CDDS, with respect to the best known lower bound. The table 
shows that our algorithm is stronger with a higher degree of flexibility (Hurink Vdata).  

Table 3.Deviation percentage over the best known lower bound 

Data set num alt CDDS (%) 

Brandimarte 10 2.59 17.02 
Hurink Edata 43 1.15 15.81 



Hurink Rdata 43 2 9.85 
Hurink Vdata 43 4.31 1.11 

5. Conclusions and further works 

In this abstract a Climbing Depth-bounded Discrepancy Search (CDDS) method is presented 
to solve Flexible Job Shop Scheduling problems with the objective of minimizing makespan. Our 
CDDS approach is based on ordering heuristics and involves a backjumping heuristic to apply two 
types of discrepancies. The test problems are benchmarks used in the literature. Our results are not 
better compared with those obtained using a Tabu Search, but in terms of makespan, we can 
consider that the CDDS method provides promising results. Developments can still be done to 
improve the solution’s quality of CDDS algorithm. Moreover, other variants of CDDS algorithm 
may be envisaged for instance by including efficient lower bounds for the FJSP. 
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