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ELLIPTIC EQUATIONS WITH DIFFUSION PARAMETERIZED
BY THE RANGE OF NONLOCAL INTERACTIONS

ARMEL ANDAMI OVONO & ARNAUD ROUGIREL

Abstract. We consider quasilinear elliptic equations where the diffusion at
each point depends on all the values of the solution in a neighborhood of this
point. The size of this neighborhood is parameterized by some non negative
number which represents the range of nonlocal interactions. For fixed values of
the parameter, the issue of the existence and local uniqueness of the solution
is addressed. In a radial symmetric setting, we give pointwise estimates of the
solutions and prove the existence of multiple solutions. Regarding bifurcation
theory, we show that many local branches of solutions may exist while, among
them, only one is global and has no bifurcation point.

1. Introduction

Let Ω be a non empty open bounded subset of R
n whose diameter is denoted by

L. Let also g : Ω × Ω → R be a measurable function such that

ess sup
x∈Ω

∫

Ω

g2(x, y) dy < ∞ (1.1)

and
f ∈ H−1(Ω). (1.2)

For any x in Ω and r in [0,∞), we define the nonlocal functional

`r(·)(x) : L2(Ω) → R, u 7→ `r(u)(x) =

∫

Ω∩B(x,r)

g(x, y)u(y) dy,

where B(x, r) is the closed ball of R
n with radius r and centered at x. We notice

that `0 = 0 and `r = `L for all r ≥ L, hence we will often restrict our attention to
the case where r belongs to [0, L]. In this paper we will investigate the properties
of the solutions to the nonlocal problem

(P- r)

{

−div
(

a(`r(u))∇u
)

= f in H−1(Ω)

u ∈ H1
0 (Ω),

(1.3)

where the diffusion coefficient a satisfies

a ∈ C(R, R), inf
R

a > 0, sup
R

a < ∞. (1.4)
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If Lipschitz regularity is needed, we will assume instead

a ∈ W 1,∞(R), inf
R

a > 0. (1.5)

If g ≡ 1 then `r(u)(x) =
∫

Ω∩B(x,r)
u(y) dy. In case where (P- r) modelizes mi-

gration of population, it means that the diffusion at x depends on the population
surrounding x. In the general case, the kernel g accounts for the fact that the
contribution to the diffusion process of points in the ball B(x, r) may be different.

The following examples modelize various diffusion process.
(i) g(x, y) = g(x−y) where g ∈ L2

loc(R
n). If, for instance g(x−y) = g(|x−y|) is a

radial decreasing function then the contribution of a point in B(x, r) will decrease
with respect to its distance from x. In that case, (1.1) holds since

∫

Ω

g2(x − y) dy =

∫

x−Ω

g2(y) dy ≤

∫

B(0,2R)

g2(y) dy,

where R is chosen so that Ω ⊂ B(0, R).
(ii) g(x, y) = g(y) where g ∈ L2(Ω). In particular, being given some subdomain

Ω′ of Ω, we may choose

g(y) = 1IΩ′(y) :=

{

1 if y ∈ Ω′

0 otherwise.

This model allows to fix which areas of Ω contribute specifically to the diffusion.
If r = 0 then (P- 0) is a linear local elliptic problem. In the case r = L, (P- L) is a
purely nonlocal problem and `L is the continuous linear form given by

`L(u) =

∫

Ω

g(y)u(y) dy ∀u ∈ L2(Ω).

The parameter r measures the range of the nonlocal interactions occurring in the
diffusion process. Here, (1.1) is also satisfied.

(iii) Of course, we may combine these two models by choosing

g(x, y) = g1(x − y)g2(y),

where g1 ∈ L2
loc(R

n) and g2 ∈ L2(Ω) so that (1.1) holds by the Cauchy-Schwarz
inequality.

Our very first aim is to describe the changes that occur in the structure of the
set of solutions to (P- r) as the parameter r varies from 0 to L. Indeed, in the case
(ii) where the kernel g is independent of x, M. Chipot and B. Lovat have shown
in [CL99] that (P- L) may have, for instance, three solutions. On the other hand,
(1.2), (1.4) implies that (P- 0) is uniquely solvable. So natural questions arise from
bifurcation theory:
(i) Do there exist branches1 of solutions starting from the solutions to (P- L) ?
(ii) Do there exist bifurcation point for these branches ?

For generic situations (see Corollary 4.2, Theorem 3.2), the answer to (i) is posi-
tive; this is a consequence of the implicit function theorem. However, surprisingly,

1see Definition 4.1
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it does not seem to exist bifurcation point, as suggested by numerical simulations.
Let us describe our result related to question (ii) in vague terms (see Theorem 4.1
for a precise statement). If the diffusion coefficient a is flat in some neighborhood
of 0 then there is a unique global branch of solutions and it has no bifurcation
point. Figure 1 depict a (possible) generic bifurcation diagram.

r

ur

r = 0

u
1
L

u
2
L

u
3
L

Global branch

Local branch

r = L

u0

Figure 1

It should be emphasize that these results hold for radial symmetric data (see
Section 4). Since the structure of nonlocal problems is not so rich than the one
of local problems, assumptions have to be strengthened in order to get useful
informations about the solutions. This lack of structure may be illustrated as
follows. Under assumptions (1.2), (1.4), the local problem

−div
(

a(u)∇u
)

= f in H−1(Ω), u ∈ H1
0 (Ω),

has a unique solution whereas (P- r) may have infinitely many solutions: see
[CM01]. The reader interested with other nonlocal diffusion problems may consult
for instance [ZP06] or [CCR06].

This paper is organized as follows. In Section 2, we give some existence and
uniqueness results. In particular, Corollary 2.1 states, in implicit function theo-
rem’s fashion, the existence of local branches of solutions. Section 3 is devoted to
the case where r = L and g is independent of x. Preliminary results needed to
the study of branches of solutions starting from r = L are given. In particular,
Theorem 3.2 characterizes situations where the implicit function theorem may be
applied and give, in the case r = L, a more powerful result than Corollary 2.1
(which hold in a wider setting). Finally, in section 4, we study radial symmetric
solutions. In a first part, some qualitative properties of radial solutions are given.
In a second part, we propose some answers to questions (i) and (ii) above.
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If O is an open part of R
n and 1 ≤ p ≤ ∞ then the norm of a function u in

Lp(O) will be denoted by ‖u‖p,O or simply by ‖u‖p if no confusion may occur. The
norm in H−1(Ω) will be denoted by ‖ · ‖∗.

2. Existence and uniqueness results

The main result of this section is Corollary 2.1 which is a kind of implicit function
Theorem: see Remark 2.1. Theorem 2.1 states that (P- r) has at least a solution
for all non negative parameter r. Theorem 2.2 is a local uniqueness result. These
results make use of the following Lemmas. If the reader wish to simplify the
analysis without losing the essential ideas, he/her may choose g ≡ 1.

Lemma 2.1. Under assumption (1.1), for all u, v in H1
0 (Ω) and r, s in [0, L], there

holds for a.e. x ∈ Ω,

|`r(u)(x) − `s(v)(x)| ≤ C1 sup
Ω

‖g(x, ·)‖2

(

‖∇(u − v)‖2 + |r − s|
1

n∨3‖∇v‖2

)

,

where C1 is a constant depending only on Ω, n and L; supΩ ‖g(x, ·)‖2 stands for
the square root of left-hand side of (1.1) and n ∨ 3 is the maximum between the
dimension n of Ω and 3.

Proof. We have

|`r(u)(x) − `s(v)(x)| ≤
∫

Ω∩B(x,r)

|g(x, y)(u− v)(y)| dy +

∫

Ω∩(B(x,s)\B(x,r))

|g(x, y)v(y)| dy. (2.1)

Let us estimate the latter integral. If n = 1, H1
0(Ω) is continuously embedded in

C(Ω). Then denoting by C the norm of this embedding, it is smaller than

C‖v‖∞

∫

Ω

|g(x, y)|1IB(x,s)\B(x,r)(y) dy ≤ C‖v‖∞ sup
Ω

‖g(x, ·)‖2|2s − 2r|1/2.

If n = 2 then we choose p = 6. If n ≥ 3, let p = 2n/(n − 2). Thus for any n ≥ 2,
by the Hölder inequality and Sobolev’s embedding, the latter integral in (2.1) can
be estimated by

(

∫

Ω∩(B(x,s)\B(x,r))

|g(x, y)|p
′

dy
)1/p′

‖v‖p,Ω ≤

C
(

∫

Ω

|g(x, y)|p
′

1IB(x,s)\B(x,r)(y) dy
)1/p′

‖∇v‖2,

where p′ is the conjugate exponent of p. Moreover, using again Hölder’s inequality
with q := 2/p′, there holds

∫

Ω

|g(x, y)|p
′

1IB(x,s)\B(x,r)(y) dy ≤
(

∫

Ω

|g(x, y)|2 dy
)1/q

|B(x, s) \ B(x, r)|1/q′ .
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Since |B(x, r)|, the measure of B(x, r) is equal to cnrn, we get
∫

Ω∩(B(x,s)\B(x,r))

|g(x, y)v(y)| dy ≤ C1

(

∫

Ω

|g(x, y)|2 dy
)1/2

|s − r|
1

p′q′ ‖∇v‖2.

If n = 2, p′q′ = 3 whereas p′q′ = n for n ≥ 3. Thus for all n ≥ 1,
∫

Ω∩(B(x,s)\B(x,r))

|g(x, y)v(y)| dy ≤ C1 sup
Ω

‖g(x, ·)‖2|r − s|
1

n∨3‖∇v‖2.

In the same way,
∫

Ω∩B(x,r)

|g(x, y)(u− v)(y)| dy ≤ C sup
Ω

‖g(x, ·)‖2|B(x, r)|
1

n∨3‖∇(u − v)‖2. (2.2)

Combining these two estimates, going back to (2.1) and using |B(x, r)| ≤ |B(0, L)|,
we obtain the desired estimate. �

Lemma 2.2. If (1.1), (1.2), (1.4) hold then for any (u, v) in H1
0 (Ω) × L2(Ω)

satisfying

−div
(

a(`r(v))∇u
)

= f in H−1(Ω),

one has

‖∇u‖2 ≤
‖f‖∗

inf
x∈Ω

a(`r(v))(x)
.

Proof. Test the above equation with u and use the continuity of f on H1
0 (Ω). �

Theorem 2.1. If (1.1), (1.2), (1.4) hold then for all r in [0, L], the problem (P- r)
defined by (1.3), has at least one solution.

Proof. We introduce the functional

Tr : L2(Ω) → L2(Ω) (2.3)

v 7→ u, the solution in H1
0 (Ω) to − div

(

a(`r(v))∇u
)

= f.

Let M := k(Ω)‖f‖∗/ infR a where k(Ω) is the Poincaré constant. Then Lemma 2.2
implies that Tr maps the closed ball of L2(Ω) with radius M and centered at the
origin into itself. Then we conclude by using the Schauder fix point theorem in a
standard way. �

Theorem 2.2. Under the assumptions (1.1), (1.2), (1.5), let r0 ∈ [0, L] and ur0

be a solution to (P- r0) satisfying

C1 supΩ ‖g(x, ·)‖2‖f‖∗‖a
′‖∞

{

inf
x∈Ω

a(`r0
(ur0

))(x)
}2 < 1. (2.4)

Then there exist ε, δ > 0 such that for any non negative r ∈ [r0 − ε, r0 + ε], (P- r)
has an unique solution in B(ur0

, δ, H1
0 (Ω)), the closed ball of H1

0 (Ω) with radius δ
and centered at ur0

.

In (2.4), C1 is the constant of Lemma 2.1 and ‖a′‖∞ stands for ess supx∈R
|a′(x)|.
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Proof. We apply the Banach fix point theorem in the ball B(ur0
, δ, H1

0(Ω)) where
the value of the radius δ will be fixed below.

For simplicity, put K(g) := C1 supΩ ‖g(x, ·)‖2. Let η1 > 0 satisfies the two
conditions:

inf
Ω

a(`r0
(ur0

)) − ‖a′‖∞η1 > 0 (2.5)

c1 :=
K(g)‖f‖∗‖a

′‖∞
{

inf
Ω

a(`r0
(ur0

)) − ‖a′‖∞η1

}2 < 1. (2.6)

The existence of such number η1 is insured by (1.5) and (2.4). Let also ε > 0 be
such that

K(g)
q(ε)c2

1 − c1

+ q(ε)K(g)‖∇ur0
‖2 ≤ η1, (2.7)

where q(r) := |r|1/n∨3 for all r ∈ R and

c2 :=
K(g)‖f‖∗‖a

′‖∞‖∇ur0
‖2

{

inf
Ω

a(`r0
(ur0

)) − ‖a′‖∞η1

}2 .

Put δ := q(ε)c2/(1 − c1). Then, for any non negative r ∈ [r0 − ε, r0 + ε] and v in
B(ur0

, δ, H1
0 (Ω)), the function u := Tr(v) (see (2.3) for the definition of Tr) satisfies

∫

Ω

a(`r(v))∇u∇ϕ dx =

∫

Ω

a(`r0
(ur0

))∇ur0
∇ϕ dx

for each test function ϕ in H1
0 (Ω). The choice ϕ = u − ur0

yields

inf
Ω

a(`r0
(ur0

))

∫

Ω

|∇(u − ur0
)|2 dx ≤

∫

Ω

|a(`r(v)) − a(`r0
(ur0

))| |∇u| |∇(u− ur0
)| dx. (2.8)

Let η := K(g)(δ + q(r − r0)‖∇ur0
‖2). By Lemma 2.1,

|`r(v)(x) − `r0
(ur0

)(x)| ≤ η.

Thus, with (1.5) and the Cauchy-Schwarz inequality

‖∇(u − ur0
)‖2 ≤

‖a′‖∞‖∇u‖2

inf
Ω

a(`r0
(ur0

))
η.

Moreover, since η ≤ η1 due to the properties of q,

inf
Ω

a(`r(v)) ≥ inf
Ω

a(`r0
(ur0

)) − ‖a′‖∞η1. (2.9)

In view of Lemma 2.2 and (2.9), we have

‖∇(u − ur0
)‖2 ≤

‖f‖∗‖a
′‖∞

inf
Ω

a(`r0
(ur0

))
{

inf
Ω

a(`r0
(ur0

)) − ‖a′‖∞η1

}η (2.10)

≤ c1δ + q(ε)c2 (since q(r − r0) ≤ q(ε))

= δ,
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by definition of δ. Hence Tr maps B(ur0
, δ, H1

0 (Ω)) into itself. Let us prove that
Tr is a contraction in this ball. For this consider v1, v2 in B(ur0

, δ, H1
0 (Ω)) and put

ui = Tr(vi) for i = 1, 2. Arguing as in (2.8), using Lemma 2.1 and recalling that
K(g) := C1 supΩ ‖g(x, ·)‖2, we get

inf
Ω

a(`r(v2))

∫

Ω

|∇(u1 − u2)|
2 dx

≤

∫

Ω

|a(`r(v1)) − a(`r(v2))| |∇u1| |∇(u1 − u2)| dx

≤ K(g)‖a′‖∞‖∇(v1 − v2)‖2‖∇u1‖2‖∇(u1 − u2)‖2.

Thus, thanks to Lemma 2.2,

‖∇(u1 − u2)‖2 ≤
K(g)‖f‖∗‖a

′‖∞
inf
Ω

a(`r(v1)) inf
Ω

a(`r(v2))
‖∇(v1 − v2)‖2. (2.11)

By (2.9), the above coefficient is uniformly bounded by

K(g)‖f‖∗‖a
′‖∞

{

inf
Ω

a(`r0
(ur0

)) − ‖a′‖∞η1

}2

which is strictly less than 1 by (2.6). Hence Tr is a contraction. We conclude by
using the Banach fix point theorem. �

Let us denote by F the nonlinear operator

F : [0,∞) × H1
0 (Ω) → H−1(Ω) (2.12)

(r, u) 7→ −div
(

a(`r(u))∇u
)

− f.

Clearly, F (r, v) = 0 means that v is solution to (P- r).

Corollary 2.1. Under the assumptions and notation of Theorem 2.2 (in particular
ur0

denotes a solution to (P- r0) satisfying (2.4)), there exists a Hölder continuous
function u : [(r0 − ε) ∨ 0, r0 + ε] → H1

0 (Ω) such that

F (r, v) = 0 in [(r0 − ε) ∨ 0, r0 + ε] × B(ur0
, δ, H1

0 (Ω))

if and only if v = u(r).

Remark 2.1. This result is a non smooth version of the implicit function theorem.
Indeed, if a′ is continuous and, for a.e. x ∈ Ω, g(x, ·) can be extended outside of Ω by
a function lying in H1(Rn) then F is of class C1 and the implicit function theorem
may be applied to give a differentiable curve of solutions r 7→ u(r). In our setting, F
is not necessarily differentiable with respect to u (because a′ ∈ L∞(R)), however we
obtain a Hölder continuous branch of solutions through ur0

(with Hölder exponent
1/n ∨ 3).

Proof of Corollary 2.1. The existence of the function u follows from Theorem 2.2,
hence there remains to prove its Hölder regularity. For this, let ε, δ be as in
the statement of Theorem 2.2 and r, s in [(r0 − ε) ∨ 0, r0 + ε]. Let, as above,
K(g) := C1 supΩ ‖g(x, ·)‖2, q(r) = r1/n∨3 and u(r), u(s) be the unique solution to
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(P- r) and (P- s) in B(ur0
, δ, H1

0 (Ω)). Then arguing as in (2.10), ‖∇(u(r)−u(s))‖2

is estimated by

K(g)‖f‖∗‖a
′‖∞

inf
Ω

a(`r(ur)) inf
Ω

a(`s(us))

(

‖∇(u(r) − u(s))‖2 + q(r − s)‖∇u(s)‖2

)

.

By (2.9), (2.6) and Lemma 2.2,

(1 − c1)‖∇(u(r)− u(s))‖2 ≤ q(r − s)
K(g)‖f‖2

∗‖a
′‖∞

{

inf
Ω

a(`r0
(ur0

) − ‖a′‖∞η1

}3 ,

which shows the Hölder continuity of u(·). �

Corollary 2.2. Under the assumptions (1.1), (1.2) and (1.5), the following propo-
sitions hold true.
(i) If r is small enough then (P- r) has an unique solution.
(ii) If

C1 supΩ ‖g(x, ·)‖2‖f‖∗‖a
′‖∞

infR a2
< 1 (2.13)

then (P- r) has an unique solution for all r in [0, L].

Proof. The existence follows from Theorem 2.1. The uniqueness is obtained from
(2.11) with ui = vi. Indeed (2.13) is clearly a sufficient condition. Moreover (see
(2.2)), K(g) may be replaced in (2.11) by C1 supΩ ‖g(x, ·)‖2|B(0, r)|1/n∨3. Hence,
we get the uniqueness for small r. �

For specific diffusion coefficients a, the local uniqueness result of Theorem 2.2
may be applied for r0 := L while multiple solutions to (P-L) exist: see Remark
3.1. The following theorem gives another local uniqueness result. The main differ-
ence with Theorem 2.2 concerns (i) the assumptions on a′: it is assumed that we
control a′ only a some neighborhood of 0 (see (2.15)); (ii) the fact that we obtain a
uniqueness result in some tube of [0, L]×H1

0 (Ω) with uniform section (in Theorem
2.1, δ depends a priori on r0).

Theorem 2.3. Under the assumptions (1.1), (1.2) and (1.5), assume in addition
that

(i) there exists some positive number µ1 such that a(µ1) = min[0,µ1] a;
(ii) for all r in [0, L], ur is a solution to (P- r) and

0 ≤ `r(ur)(x) ≤ µ1 for a.e x ∈ Ω; (2.14)

(iii) for some number δµ > 0, there holds

C1 sup
Ω

‖g(x, ·)‖2‖f‖∗‖a
′‖∞,[−δµ,µ1+δµ]

1

a(µ1)2
< 1. (2.15)

Then there exists δ > 0 (independent of r and ur) such that for all r ∈ [0, L], (P- r)
has an unique solution in B(ur, δ, H

1
0 (Ω)).
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Proof. It is similar to the contractivity-part of the proof of Theorem 2.2. Let η1 > 0
satisfies the two conditions :

a(µ1) − ‖a′‖∞,Iη1 > 0 (2.16)

K(g)‖f‖∗‖a
′‖∞,I

{

a(µ1) − ‖a′‖∞,Iη1

}2 < 1, (2.17)

where I stands for [−δµ, µ1 + δµ]. Let δ > 0 satisfies

K(g)δ ≤ min(δµ, η1). (2.18)

Then for any solution u to (P- r) belonging to B(ur, δ, H
1
0 (Ω)), one has due to

Lemma 2.1 and (2.14),

−K(g)δ ≤ `r(u) ≤ `r(ur) + K(g)δ.

Thus for a.e. x ∈ Ω, `r(u)(x) belongs to I owing to (2.18) and (2.14). Hence, (see
(2.11)),

‖∇(u − ur)‖2 ≤
K(g)‖f‖∗‖a

′‖∞,I

inf
Ω

a(`r(ur)) inf
Ω

a(`r(u))
‖∇(u − ur)‖2.

Now infΩ a(`r(ur)) ≥ a(µ1) by assumptions (i), (ii). Moreover

a(`r(u)) ≥ a(`r(ur)) − K(g)‖a′‖∞,Iδ

≥ a(µ1) − ‖a′‖∞,Iη1,

by (2.18). Hence

‖∇(u − ur)‖2 ≤
K(g)‖f‖∗‖a

′‖∞,I
{

a(µ1) − ‖a′‖∞,Iη1

}2‖∇(u − ur)‖2.

Thus uniqueness follows from (2.17). �

3. The case where r = L and g is independent of x

In this section, we will assume that r = L and g is independent of x, namely

g(x, y) = g(y), g ∈ L2(Ω). (3.1)

In this case, `L becomes a purely nonlocal functional in the sense that it is inde-
pendent of the spacial variable. We have

`L(u) =

∫

Ω

g(y)u(y) dy.

Therefore (1.3) reads here

(P- L)

{

−a(`L(u))∆u = f in H−1(Ω)

u ∈ H1
0 (Ω).

(3.2)

The solutions to (P- L) are proportional to the solution ϕ of

−∆ϕ = f in H−1(Ω), ϕ ∈ H1
0 (Ω). (3.3)

More precisely, we may state the following result.
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Theorem 3.1. [CL99] Suppose that (1.2), (1.4) and (3.1) hold. If uL is a solution
to (P- L) then

u =
ϕ

a
(

`L(uL)
) (3.4)

and `L(uL) is solution to

µa(µ) = `L(ϕ), µ ∈ R. (3.5)

Conversely, if µ is solution to (3.5) then u = ϕ/a(µ) is solution to (P- L) and
`L(u) = µ. As a consequence, (P- L) has as much solutions as Equation (3.5).

Remark 3.1. If uL is a solution to (P- L) then contrary to (2.13), the condition
(2.4) which reads here

C1‖g‖2‖f‖∗‖a
′‖∞

a(`L(uL))2
< 1, (3.6)

does not imply the uniqueness for (P- L). Indeed, let µ1 < µ2 be positive numbers.
Assuming `L(ϕ) > 0, we consider the Lipschitz continuous function a defined for
all µ ∈ R by (see Figure 2)

a(µ) =











`L(φ)
µ1

if µ ≤ µ1
`L(φ)

µ2

if µ ≥ µ2

affine if µ1 ≤ µ ≤ µ2.

Then, according to Theorem 3.1, (P- L) possesses two solutions u1
L, u2

L such that
`(u1

L) = µ1 and `(u2
L) = µ2. Moreover (3.6) reads for uL = u1

L,

C1‖g‖2‖f‖∗`(ϕ)

µ1µ2a(µ1)2
< 1

and holds true if µ2 is sufficiently large. In what case, Theorem 2.2 yields that
(P- r) has a unique solution in a neighborhood of u1

L if r is close enough to L.

In order to proceed further, we need to assume that

a ∈ C1(R, R), inf
R

a > 0, sup
R

a < ∞. (3.7)

Let
F : R × H1

0 (Ω) → H−1(Ω), (r, u) 7→ −div
(

a(`r(u))∇u
)

− f,

where r 7→ `r is extended on (−∞, 0) by setting `r = `−r for r < 0. From (3.7),
F is continuously differentiable with respect to u and its partial derivative with
respect to u is the bounded linear operator defined, for all v ∈ H1

0 (Ω), by

DuF (r, u)v = −div
(

a(`r(u))∇v
)

− div
(

a′(`r(u))`r(v)∇u
)

. (3.8)

Theorem 3.2. Under assumptions (1.2), (3.1) and (3.7), let u be a solution to
(P- L). Then DuF (r, u) is an isomorphism between H1

0 (Ω) and H−1(Ω) if and only
if

`L(u)a′
(

`L(u)
)

6= −a
(

`L(u)
)

. (3.9)

Moreover, if (3.9) does not hold then the kernel of DuF (r, u) is the one-dimensional
space spanned by u.



NONLOCAL DIFFUSION 11

a(µ)

µ1 µ2 µ

`L(ϕ)
µ

Figure 2

Proof. By the Fredholm alternative and the open mapping theorem, DuF (r, u) is
an isomorphism if and only if its kernel is trivial. A function v in H1

0 (Ω) lies in
this kernel if and only if

−∆
(

a
(

`L(u)
)

v + a′
(

`L(u)
)

`L(v)u
)

= 0 in H−1(Ω).

That is to say

v = −`L(v)
a′

(

`L(u)
)

a
(

`L(u)
) u. (3.10)

Applying `L on both side, we obtain

`L(v)
(

1 +
a′

(

`L(u)
)

a
(

`L(u)
) `L(u)

)

= 0.

Thus (3.9) implies `L(v) = 0. Hence v = 0 by (3.10) and DuF (r, u) is an isomor-
phism. If (3.9) is not true that is to say if `L(u)a′

(

`L(u)
)

= −a
(

`L(u)
)

then u 6= 0
according to (1.4) and the kernel of DuF (r, u) is contained in R.u by (3.10). Since
we prove easily that DuF (r, u)u = 0, these two sets coincide which finish the proof
of the theorem. �

Corollary 3.1. Under the assumptions (1.2), (3.1) and (3.7), suppose in addition
that g can be extended outside of Ω by a function g belonging to H1(Rn). If each
solution to (P-L) satisfies (3.9) then there exists ε > 0 with the following property.
For all r in [L−ε, L], (P- r) and (P-L) have the same (finite) number of solutions.

Proof. According to (3.7), the solutions to (3.5) remain in a compact subset of R.
Thus if the number of solutions to (3.5) is infinite, there exist (µn)n≥0 and µ in R
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such that µn → µ, µn 6= µ and µn, µ solve (3.5) for all n ≥ 0. As a consequence

a(µn) − a(µ)

µn − µ
→ a′(µ)

and, using (3.5),

a(µn) − a(µ)

µn − µ
=

`L(ϕ)/µn − `L(ϕ)/µ

µn − µ
→ −

`L(ϕ)

µ2
= −

a(µ)

µ
.

Thus a′(µ) = −a(µ)
µ

, so u := ϕ/a(µ) is, by Theorem 3.1, a solution to (P-L) which

does not satisfies (3.9) since `L(u) = µ. We conclude that under the assumptions
of the corollary, (P-L) has a finite number of solutions.

Let r > 0 and u ∈ H1
0 (Ω); u is extended by zero outside of Ω. Then, for each

x ∈ Ω,
∂

∂r
`r(u)(x) =

∫

Ω∩∂B(x,r)

g.u(σ) dσ.

Indeed, if g.u is continuous on R
n, we have

∂

∂r
`r(u)(x) =

∂

∂r

∫

B(x,r)

g.u(y) dy

=
∂

∂r

∫

‖σ‖=1

∫ r

0

g.u(x + sσ)sn−1 ds dσ

=

∫

‖σ‖=1

g.u(x + rσ)rn−1 dσ

=

∫

Ω∩∂B(x,r)

g.u(σ) dσ.

The general case follows by a density argument.
In particular,

∂

∂r
`r(u)(x)∣

∣

r=L

= 0. (3.11)

Hence using also (3.7), we may prove that F is C1 on (0,∞) × H1
0 (Ω) and

DrF (r, u) = −div
(

a′(`r(u))
∂

∂r
`r(u)∇u

)

. (3.12)

By Theorem 3.2 and the implicit function theorem, we deduce that for each solu-
tion uL to (P- L), there exists δ > 0 such that (P- r) possesses a unique solution
in B(uL, δ, H1

0 (Ω)). Since (P- L) has a finite number of solutions, we may con-
clude with a standard compactness argument that (P- r) and (P- L) have the same
number of solutions if r is sufficiently close to L. �

Remark 3.2. Let uL be a solution to (P- L) satisfying (3.9) and r 7→ u(r) be a
branch of solution to (P- r) starting from uL. By the implicit function theorem,

u′(L) = −DuF (L, uL)−1DrF (L, uL).
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From (3.11), there holds u′(L) = 0 thus Taylor’s expansion yields

u(r) = uL + o(r − L) in H1
0 (Ω)

where o(ε)/ε → 0 in H1
0 (Ω) as ε → 0. In the same way, for r close to zero, assuming

g ≡ 1 and denoting by u0 = ϕ/a(0) the solution to (P- 0), we have

u(r) = u0 − δ1(n)
a′(0)

a(0)
ru2

0 + o(r) in H1
0 (Ω), (3.13)

where δ1(1) = 1 and δ1(n) = 0 if n ≥ 1. Indeed, by the implicit function theorem,
u′(0) = −DuF (0, u0)

−1DrF (0, u0) that is to say, using (3.8),

∂

∂r
`r(u)(x)∣

∣

r=0

= 2δ1(n)u(x) a.e. x ∈ Ω (3.14)

and (3.12), we deduce that w := u′(0) is solution to

−a(0)∆w = 2δ1(n)a′(0)div(u0∇u0) = δ1(n)a′(0)∆(u2
0) in H−1(Ω).

Hence w = −δ1(n)a′(0)
a(0)

u2
0 and (3.13) follows.

Remark 3.3. Under the assumptions of Theorem 3.2, DuF (L, uL) is invertible if
and only if the tangents to the graph of a(·) and µ 7→ `L(ϕ)/µ are distinct at the
point µL = `L(uL). Indeed, by Theorem 3.2, DuF (L, uL) is non invertible if and
only if µL satisfies

a′(µL) = −
a(µL)

µL
.

Since µLa(µL) = `L(ϕ), we deduce that

a′(µL) =
d

dµ

(`L(ϕ)

µ

)

∣

∣

µ=µL

.

Hence, the graphs of a(·) and µ 7→ `L(ϕ)/µ have the same tangent at µL.

4. Radial solutions

This section is devoted to the study of the behaviour of solutions ur to (1.3)
as the parameter r ranges from 0 to L. More precisely, denoting by u0, uL two
solutions of (P- 0) and (P- L), we would like to compare ur with u0 and uL. For
instance in the case where uL ≤ u0, we wish to show that for all r in [0, L],

uL ≤ ur ≤ u0.

The main tool for this aim is Proposition 4.2 which state the monotonicity of
the solution to elliptic problems with respect to the coefficient of diffusion. This
proposition hold in a radial symmetric setting, what is why this section is concerned
with radial solutions. A second king of results deals with the existence of local or
global branches of solutions and the non existence of bifurcation point: see Theorem
4.1 and Corollary 4.2.

In the sequel, we will assume that Ω is the open ball of R
n with radius L/2

and centered at zero so that L remains the diameter of Ω. For each function u in
L2

r (Ω), the subspace of L2(Ω) consisting of radial functions, we will denote by ũ
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the function of L2(0, L/2) associated with u, namely ũ(‖x‖) = u(x) for a.e. x in
Ω. In this section we will make use of the following assumptions.

f ∈ L2
r (Ω) (4.1)

g(x, y) = g(y), g ∈ L2
r (Ω) (4.2)

a ∈ C(R, R), inf
R

a > 0, sup
R

a < ∞ (4.3)

f ≥ 0 a.e. in Ω (4.4)

g ≥ 0 a.e. in Ω. (4.5)

4.1. A linear problem. For

A ∈ W 1,∞(Ω) radial, inf
Ω

A > 0, (4.6)

consider the linear problem

−div
(

A(x)∇u
)

= f in L2(Ω), u ∈ H2(Ω) ∩ H1
0 (Ω). (4.7)

Proposition 4.1. If (4.1), (4.6) hold then (4.7) has a unique solution u. Moreover
it is radial and for a.e. t in [0, L/2],

−(Ãũ′)′ −
n − 1

t
Ãũ′ = f̃(t) (4.8)

ũ′(t) = −
1

Ã(t)

∫ t

0

(s

t

)n−1
f̃(s) ds. (4.9)

Proof. It is well known that (4.7) has a unique radial solution satisfying (4.8). In

order to prove (4.9), put U := Ãũ′. Then by (4.8),

−U ′ −
n − 1

t
U = f̃ .

Hence (Utn−1)′ = −tn−1f̃ and (4.9) follows by integration. �

Proposition 4.2. Under the assumptions (4.1), (4.4), let A, B ∈ C(Ω) be positive
radial functions such that A ≤ B in Ω. Denote respectively by u and v the solution
to

− div
(

A(x)∇u
)

= f in H−1(Ω), u ∈ H1
0(Ω)

and

− div
(

B(x)∇v
)

= f in H−1(Ω), v ∈ H1
0 (Ω).

Then u ≥ v a.e. in Ω.

Proof. First assume that A and B are smooth functions. By (4.9) and A ≤ B, for
each t in [0, L/2], one has ũ′(t) ≤ ṽ′(t). Thus, since ũ(L/2) = ṽ(L/2) = 0,

ũ(t) =

∫ t

L/2

ũ′(s) ds ≥

∫ t

L/2

ṽ′(s) ds = ṽ(t).

Hence u ≥ v.
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In the general case, let ε be any positive number such that infΩ A − ε > 0. Put
Aε := A − ε and denote by uε the solution to

−div
(

Aε(x)∇uε

)

= f in H−1(Ω), uε ∈ H1
0 (Ω).

Since Aε + ε ≤ B, there exists An, Bn in C1(Ω) satisfying

An → Aε, Bn → B in C(Ω)

0 < c ≤An(x) ≤ Bn(x) ∀x ∈ Ω, ∀n ≥ 0,

where c is a constant independent of n and x. Let un and vn be the solutions to
the linear problem corresponding to the diffusions An and Bn. The first part of
this proof yields that un ≥ vn. By a compactness argument, we deduce that, up
to a subsequence,

un −−−→
n→∞

uε, vn −−−→
n→∞

v a.e. in Ω.

Thus uε ≥ v. Also by the same compactness argument, up to a subsequence,
uε → u as ε → 0. Finally, u ≥ v. �

4.2. Back to the nonlocal problem. Let us first investigate the quantitative
properties of the set of solutions to (P- r). For this purpose, wider assumptions on
the kernel g may replace (4.2), (4.5), namely, we will assume (1.1) and that g is
radial in the following sense: for all rotation R of R

n,

g(Rx, Ry) = g(x, y) for a.e. (x, y) ∈ Ω × Ω. (4.10)

In the sequel, we will apply Proposition 4.2 with A(x) = a(`r(u)(x)). So we need
the continuity of x 7→ a(`r(u)(x)) on Ω. This will be insured by the following
assumptions on g.

g(·, y) ∈ C(Ω) a.e. y ∈ Ω (4.11)

|g(x, y)| ≤ h(y) a.e. (x, y) ∈ Ω × Ω, h ∈ L2(Ω). (4.12)

In order to control the sign of ur, we will assume

g ≥ 0 a.e. in Ω × Ω. (4.13)

We are now in position to state an existence result for radial solutions.

Proposition 4.3. If (1.1), (4.1), (4.3), (4.10) hold true then (P- r) has at least a
radial solution.

Proof. For all v in L2
r (Ω), a(`r(v)) is radial since it is easily proved that for all

rotation R of R
n, `r(v)(Rx) = `r(v)(x) for a.e. x ∈ Ω. Thus, we can show easily

that Tr defined by (2.3) maps L2
r (Ω) into itself. The assertion follows by a fix point

argument (see the proof of Theorem 2.1). �

We will show in Proposition 4.2 that (P- r) has multiple solutions for suitable
diffusion coefficients. If ϕ is the solution to (3.3) then, for all r in [0, L], we denote
by Ir the interval

Ir := [inf
Ω

`r(ϕ), sup
Ω

`r(ϕ)].
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We will make use of the following result which is, in some sense, a generalization
of Theorem 3.1 to the case r ∈ [0, L].

Lemma 4.1. Under the assumptions (4.1), (4.3), (4.4), (4.10)-(4.13), let r ∈ [0, L]
and suppose that the function a has the following properties. There exist 0 ≤ m ≤
M such that

a(m) = max
[m,M ]

a a(M) = min
[m,M ]

a (4.14)

ma(m) ≤ min Ir max Ir ≤ Ma(M). (4.15)

Then (P- r) admits a radial solution u and

m ≤ `r(u) ≤ M a.e. in Ω.

Proof. The set

E :=
{

u ∈ L2
r (Ω) : m ≤ `r(u) ≤ M a.e. in Ω

}

is closed, convex and non empty. Indeed, ϕ/a(m) belongs this set due to (4.14)
and (4.15).

By (4.14), for all v in E, a(m) ≥ a(`r(v)) ≥ a(M). Moreover, a(`r(v)) is radial
and belongs to C(Ω) due to (4.11), (4.12) and Lebesgue’s Theorem. Proposition
4.2 then yields

ϕ

a(m)
≤ Tr(v) ≤

ϕ

a(M)
.

Since g is non negative,

`r(ϕ)

a(m)
≤ `r(Tr(v)) ≤

`r(ϕ)

a(M)
.

Thus Tr(v) (defined by (2.3)) belongs to E according to (4.15). We conclude with
the Schauder fix point theorem. �

Proposition 4.4. Under the assumptions (4.1), (4.3), (4.4), (4.10)-(4.13), let r ∈
[0, L] and suppose that the function a has the following properties. There exist
0 < M1 < m2 < M2 such that

a(0) = max
[0,M1]

a a(M1) = min
[0,M1]

a max Ir ≤ M1a(M1) (4.16)

a(m2) = max
[m2,M2]

a a(M2) = min
[m2,M2]

a

m2a(m2) ≤ min Ir max Ir ≤ M2a(M2).

Then (P- r) has at least two solutions.

Proof. We apply Lemma 4.1 with m = 0 and M = M1 to get a solution u such
that `r(u) ≤ M1 a.e. in Ω. Using again this lemma with m = m2 and M = M2, we
obtain a solution v to (P- r) with m2 ≤ `r(v). Since M1 < m2, u and v are distinct
solutions. �
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Remark 4.1. There exists functions a satisfying the conditions of Proposition 4.4.
Indeed, let r ∈ (0, L], a(0) > 0 and M1 := 2 max Ir/a(0). We put

a(M1) :=
a(0)

2
and suppose that a is decreasing on [0, M1]. Thus (4.16) holds. Besides, suppose
that f , g satisfy the assumptions of Lemma 4.1 together with f 6≡ 0 and g > 0
a.e. in Ω × Ω. Then min Ir > 0 by the strong maximum principle. Let m2 >
M1 and define a(m2) := min Ir/m2. Finally, let M2 > m2 be such that M2 :=
2 max Ir/a(m2) and define a(M2) := a(m2)/2. We have

m2a(m2) = min Ir ≤ max Ir = M2
a(m2)

2
= M2a(M2).

We suppose that a is decreasing on [m2, M2]. Hence m2, M2 fit also the assumptions
of the proposition.

Clearly, this procedure may be repeated to construct diffusion coefficient a lead-
ing to the existence of any finite number of solutions for (P- r).

Let us investigate the qualitative properties of radial solutions.

Proposition 4.5. Under the assumptions (4.1), (4.3), (4.4), (4.10)-(4.13), let ϕ
be the solution to (3.3). Then, for any r in [0, L] and any radial solution ur to
(P- r), one has

ϕ

sup[0,∞) a
≤ ur ≤

ϕ

inf [0,∞) a
a.e in Ω.

Proof. Since f, g, ur are non negative, the following trivial estimates hold

inf
[0,∞)

a ≤ a(`r(ur)) ≤ sup
[0,∞)

a.

Proposition 4.2 yields the result. �

Until the end of this paper, we will focus on the case where g is independent
of x. By Theorem 3.1, the solutions to (P- 0) and (P-L) are ordered. More
precisely, u0 = ϕ/a(0) is solution to (P- 0) and any solution uL to (P- L) satisfies
uL = ϕ/a(µL) for some solution µL to (3.5). Taking into account the monotonicity
of u 7→ `r(u), we obtain different type of results according to whether a(0) ≤ a(µL)
or not. We will first assume that a(0) ≤ a(µL) so that uL ≤ u0.

Corollary 4.1. Under assumptions (4.1)-(4.5), assume in addition that the func-
tion a has the following property. There exits a solution µL to (3.5) such that
a(µL) = sup[0,∞) a and a(0) = inf [0,∞) a. Then uL = ϕ/a(µL) is solution to (P- L)
and any radial solution ur to (P- r) satisfies

uL ≤ ur ≤ u0.

Proof. We have u0 = ϕ/ inf [0,∞) a. Moreover, according to Theorem 3.1, uL is
solution to (P- L) thus the assertion follows from Proposition 4.5. �

Proposition 4.6. Under the assumptions (4.1)-(4.5), consider any parameter r
in [0, L] and assume the following.
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(i) There exits a solution µL to (3.5) such that a(µL) = max[0,µL] a and

sup
x∈Ω

`r(ϕ)(x) ≤ a(0)µL. (4.17)

(ii) a(0) = min[0,µL] a.

Then there exists a solution ur to (P- r) with uL ≤ ur ≤ u0 a.e. in Ω (uL :=
ϕ/a(µL)).

Proof. Define a : R → R by

a(µ) =











a(µ) if 0 ≤ µ ≤ µL

a(0) if µ ≤ 0

a(µL) if µL ≤ µ

(4.18)

and, in view of Proposition 4.3, consider a solution ur of

−div
(

a(`r(u))∇u
)

= f in L2(Ω), u ∈ H2(Ω) ∩ H1
0 (Ω) ∩ L2

r (Ω).

By Corollary 4.1 and the definition of a, uL ≤ ur ≤ u0. Since uL, g ≥ 0,

0 ≤ `r(ur) ≤ `r(u0) =
`r(ϕ)

a(0)
≤ µL,

according to (4.17). Therefore a(`r(ur)) = a(`r(ur)) and ur is a solution to (P- r)
satisfying the desired estimates. �

Proposition 4.7. If (4.1)-(4.5) hold and a is non decreasing on [0, `L(u0)] then
for any r in [0, L] and uL solution to (P- L), there exists a solution ur to (P- r)
such that

a
(

`L(uL)
)

a
(

`L(u0)
)uL ≤ ur ≤ u0.

Proof. If v ∈ L2
r (Ω) satisfies

a
(

`L(uL)
)

a
(

`L(u0)
)uL ≤ v ≤ u0

then, since g, u0 ≥ 0, and a is non decreasing on [0, `L(u0)], we deduce

a(0) ≤ a
(

`r(v)
)

≤ a
(

`r(u0)
)

≤ a
(

`L(u0)
)

.

Proposition 4.2 yields

u0 ≥ Tr(v) ≥
ϕ

a
(

`L(u0)
) .

Recall that Tr is defined by (2.3) and notice that ϕ = a
(

`L(uL)
)

uL for all solution
uL. We conclude with the Schauder fix point theorem. �

In the sequel, we will assume that a(0) ≥ a(µL) so that u0 ≤ uL. We obtain
finer results because this assumption agree well with the monotonicity of `r. For
any u, v in L2(Ω), denote by [u, v] the set

{

w ∈ L2(Ω) : u ≤ w ≤ v
}

.

Then we have the
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Proposition 4.8. Under the assumptions (4.1)-(4.5), assume in addition that

(i) there exits a solution µL to (3.5) with a(µL) = min[0,µL] a;
(ii) a(0) = max[0,µL] a.

Then there exists a radial solution to (P- r) in [u0, uL] where uL := ϕ/a(µL).

Proof. We use a fix point argument in [u0, uL]∩ L2
r (Ω). If v lies in this non empty

closed and convex set then, by (4.5),

0 ≤ `r(v) ≤ `r(uL) ≤ `L(uL) = µL in Ω.

Thus (i), (ii) yield a(0) ≥ a
(

`r(v)
)

≥ a(µL). From Proposition 4.2, we infer

u0 ≤ Tr(v) ≤ uL.

We conclude with the Schauder fix point theorem. �

Definition 4.1. Being given u : [0, L] → H1
0 (Ω), the graph of u is called a (global)

branch of solutions if

(i) u ∈ C([0, L], H1
0 (Ω)),

(ii) u(r) is solution to (P- r) for all r in [0, L].

If u is defined only on a subinterval of [0, L] with positive measure then we will
speak about a local branch of solutions.

Definition 4.2 ([AP93]). Let {(r, u(r)) : r ∈ [0, L]} be a branch of solutions and
r0 ∈ [0, L]. Then (r0, u(r0)) is called a bifurcation point for this branch if there
exists a sequence (rn, un) in [0, L] × H1

0 (Ω) such that for all n, un is a solution to
(P- rn), un 6= u(rn) and

(rn, un) −−−→
n→∞

(r0, u(r0)) in R × H1
0 (Ω).

Theorem 4.1. Under the assumptions and notation of Proposition 4.8, assume in
addition that a ∈ W 1,∞(R) and, for some positive number δµ, it holds that

C1‖g‖2‖f‖∗‖a
′‖∞,[−δµ,µL+δµ]

1

a(µL)2
< 1, (4.19)

where C1 is the constant of Lemma 2.1. Then

(i) for all r in [0, L], (P- r) possesses a unique radial solution ur in [u0, uL];

(ii) {(r, ur) : r ∈ [0, L]} is a branch of solutions without bifurcation point;

(iii) it is the only global branch of solutions;

(iv) if, in addition, a is non increasing on [0, µL] then r 7→ ur is non decreasing.

Proof. In view of Proposition 4.8, let ur be any radial solution to (P- r) lying in
[u0, uL] and a define by (4.18). Then ur is solution to

−div
(

a(`r(u))∇u
)

= f in H−1(Ω), u ∈ H1
0 (Ω). (4.20)

According to (4.19) and a ≥ a(µL), a satisfies (2.13) so that, by Corollary 2.2, the
above problem is uniquely solvable. Thus we have proved the first assertion (i) of
the theorem.
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The solution to (4.20) satisfies (2.4) with a = a. Moreover, the positivity of g
and u0 yields

0 ≤ `r(ur) ≤ `r(uL) ≤ `L(uL) = µL.

Thus, by Corollary 2.1, {(r, ur) : r ∈ [0, L]} is a branch of solutions for the original
problems. Besides, Theorem 2.3 prevents the existence of bifurcation point. In
order to prove (iii), let {(r, vr) : r ∈ [0, L]} be a branch of solutions. The set

{

r ∈ [0, L] : ur = vr

}

is closed since ur−vr is continuous. Moreover, ur satisfies (2.14) for µ1 = µL hence
this set is also open according to Theorem 2.3. By connexity, it is empty or equal
to [0, L]. Since u0 = v0, it must be equal to [0, L]. This proves the uniqueness of
global branch.

There remains to prove that (ur) is non decreasing. For this let r, s ∈ [0, L],
r < s and v in [ur, uL] ∩ L2

r (Ω). Then

`r(ur) ≤ `s(v) ≤ `L(uL)

and since a is non increasing, we deduce a
(

`r(ur)
)

≥ a
(

`s(v)
)

≥ a
(

`L(uL)
)

. By
Proposition 4.2, it follows that ur ≤ Tr(v) ≤ uL. Thus the Schauder fix point the-
orem provides a solution to (P- s) belonging to [ur, uL]∩L2

r (Ω). By the uniqueness
result in [u0, uL], this solution is us. Thus ur ≤ us. �

Corollary 4.2. Suppose that f , g satisfy (4.1), (4.2), (4.4), (4.5) and g can be
extended outside of Ω by a function belonging to H1(Rn). Then there exist functions
a(·) satisfying (3.7) and u2

L solution to (P-L) with the following property. There
exist at least a local branch of solutions starting from u2

L but there is no global
branch starting from u2

L.

Proof. It is clear that we can construct functions a satisfying (3.7) and the following
conditions (see Fig. 3).

(i) There exits a solution µ1 to (3.5) with a(µ1) = min[0,µ1] a.
(ii) a(0) = max[0,µ1] a.
(iii) C1‖g‖2‖f‖∗‖a

′‖∞,[0,µ1]
1

a(µ1)2
< 1.

(iv) There exists µ2 > µ1 solution to (3.5) with µ2a
′(µ2) 6= a(µ2).

By Theorem 3.1, for i = 1, 2, ui := ϕ/a(µi) is solution to (P-L) and µi = `L(ui).
By (iv), Theorem 3.2 and the implicit function theorem, there is a local branch of
solutions starting from u2.

Theorem 4.1 yields the existence of a unique global branch of solutions and this
branch passes through u1. Since µ2 > µ1, we deduce that u1 6= u2. Hence there is
no global branch starting from u2. �
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