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For a split semisimple Chevalley group scheme G with Lie algebra g over an arbitrary base scheme S, we consider the quotient of g by the adjoint action of G. We study in detail the structure of g over S. Given a maximal torus T with Lie algebra t and associated Weyl group W , we show that the Chevalley morphism π : t/W → g/G is an isomorphism except for the group Sp 2n over a base with 2-torsion. In this case this morphism is only dominant and we compute it explicitly. We compute the adjoint quotient in some other classical cases, yielding examples where the formation of the quotient g → g/G commutes, or does not commute, with base change on S.

Introduction

Let G be a split semisimple Chevalley group scheme over a base scheme S and let g be its Lie algebra. The quotient of g by the adjoint action of G in the category of schemes affine over S, that is to say, the spectrum of the sheaf of G-invariant functions of g, is traditionally called the adjoint quotient of g and denoted g/G. Let T ⊂ G be a maximal torus and t its Lie algebra. There is an induced action of the Weyl group W = W T on t and the inclusion t ⊂ g induces a natural morphism π : t/W → g/G. In this paper, we call it the Chevalley morphism.

The situation where the base is the spectrum of an algebraically closed field whose characteristic does not divide the order of the Weyl group is well documented. In this case π is an isomorphism, as proven by Springer and Steinberg [SS]. It is known also that the adjoint quotient is an affine space (see Chevalley [Ch], Veldkamp [Ve], Demazure [De]). There are counter-examples to these statements when the characteristic divides the order of the Weyl group. Another difficulty comes from the fact that we are considering the quotient g/ Ad(G) of the Lie algebra, and not G/ Int(G), and at some point this derivation causes some trouble (Steinberg [St,p.51] was also lead to the same conclusion).

In this paper, we turn our attention to the integral structure of the adjoint quotient and the Chevalley morphism, including the characteristics that divide the order of W . In other words we are interested in an arbitrary base scheme S, and in the behaviour of the previous objects under base change S ′ → S. It is not hard to extend the results from simple to semisimple groups, so for simplicity we restrict to simple Chevalley groups.

Our main result (theorems 3.2.4 and 3.3.3) is that in most cases the Chevalley morphism is an isomorphism, therefore reducing the calculation of g/G to the calculation of a quotient by a finite group:

Theorem 1 Let G be a split simple Chevalley group scheme over a base scheme S. Then the Chevalley morphism π : t/W → g/G is schematically dominant, and is an isomorphism if G is not isomorphic to Sp 2n , n 1.

Note that even when the base is a field, this improves the known results. Our proof follows a classical strategy. The main new imputs are: over a base field, a close analysis of the root systems and determination of the conditions of nonvanishing of the differentials of the roots (lemma 1.3.1), and over a general base, a careful control of the poles along the singular locus for the relative meromorphic functions involved in the proof. We treat separately the exceptional case (theorem 6.2.2):

Theorem 2 If G = Sp 2n then the Chevalley morphism is an isomorphism if and only if the base has no 2-torsion. Moreover, over an open affine subscheme Spec(A) ⊂ S, the ring of functions of g/G is A[c 2 , c 4 , . . . , c 2n ]

where the functions c 2i are the coefficients of the characteristic polynomial c 2i . The formation of the adjoint quotient commutes with arbitrary base change.

We see that for G = Sp 2n , the formation of the adjoint quotient commutes with base change. If this was true for all split simple Chevalley groups, then we could deduce the main theorem 1 above from the case S = Spec(Z) which is significantly easier (see corollary 3.2.5). Unfortunately it is not always so, and in order to see this, we study in detail the orthogonal groups in types B and D. Our main result is (see after the theorem and subsection 4.2 for the missing notations):

Theorem 3 If G = SO 2n or G = SO 2n+1 then over an open affine subscheme Spec(A) ⊂ S, the ring of functions of g/G is the following:

(i) if G = SO 2n : A[c 2 ,
c 4 , . . . , c 2n-2 , pf ; x(π 1 ) ǫ 1 . . . (π n-1 ) ǫ n-1 ], where x runs through a set of generators of the 2-torsion ideal A[2] ⊂ A, and ǫ i = 0 or 1, not all 0, (ii) if G = SO 2n+1 : A[c 2 , c 4 , . . . , c 2n , ; x(π 1 ) ǫ 1 . . . (π n ) ǫn ], where x runs through a set of generators of A[2] and ǫ i = 0 or 1, not all 0.

The functions that appear in the preceding theorem are the coefficients of the characteristic polynomial c 2i , the Pfaffian pf and some functions π i which we call the coefficients of the Pfaffian polynomial. The functions c 2i and pf are invariant, but the functions π i are invariant only after multiplication by a 2-torsion element. The definition of these objets needs some care, since it is not always the straightforward definition one would think of.

Using the theorem above, we prove that the formation of the adjoint quotient for the orthogonal groups commutes with a base change f : S ′ → S if and only if f * S[2] = S ′ [2], where S[2] is the closed subscheme defined by the ideal of 2-torsion. This holds in particular if 2 is invertible in O S , or if 2 = 0 in O S , or if S ′ → S is flat. We prove also that if S is noetherian and connected then the quotient is of finite type over S, and is flat over S if and only if S[2] = S or S[2] = ∅.

We feel it useful to say that when we first decided to study the adjoint quotient over a base other than a field, we started with some examples among the classical Chevalley groups and considered their Lie algebras. To our surprise, already in the classical case we could not find concrete descriptions of them in the existing literature (for example the Lie algebra of P SL n over Z). This lead to our study of the classical Lie algebras over arbitrary bases (subsection 2.4). We also faced the problem of relating the Lie algebra of a group scheme and of any finite quotient of it (subsection 2.1); note that this subsection holds for any smooth group scheme, not necessarily affine over the base. Let us finally mention that spin groups over Z have also been studied very recently in such a concrete way by Ikai [START_REF] Ikai | Spin groups over a commutative ring and the associated root data[END_REF], [START_REF] Ikai | Spin groups over a commutative ring and the associated root data (odd rank case)[END_REF].

Here is the outline of the article. In the end of this section 1 we give our notations and prove a combinatorial lemma about root systems which is crucial in all the paper. In section 2 we give two dual exact sequences

0 → L ie(K) ∨ → L ie(G) ∨ → ω 1 H/S → 0 and 0 → L ie(G) → L ie(K) → (ω 1 H/S
) † → 0 describing the relation between the Lie algebra of a smooth group scheme G and the Lie algebra of a quotient K := G/H (see more precise assumptions in propositions 2.1.1 and 2.1.6). Then we specialize to Chevalley groups and their Lie algebras over Z. We describe their weight decomposition (subsection 2.2), the intermediate quotients of G → G ad and Lie(G) → Lie(G ad ) (subsection 2.3) and we illustrate our results by describing the classical Chevalley Lie algebras (2.4). In section 3 we prove theorem 1 above. In the remaining sections 4, 5 and 6 we treat the examples of theorems 2 and 3 above by computing explicitly the map t/W → g/G (see theorem 4.3.3, corollary 4.3.4, theorem 5.2.2, theorem 6.2.2). 

General notations

All rings are commutative with unit. If A is a ring, we denote by A[2] its 2-torsion ideal, defined by A[2] = {a ∈ A, 2a = 0}. If S is a scheme, we denote by S[2] its closed subscheme defined by the 2-torsion ideal sheaf.

If X is an affine scheme over Spec (A) we always denote by A[X] its function ring. If S is a scheme, X is a scheme over S, and T → S is a base change morphism, we denote by X × S T or simply X T the T -scheme obtained by base change. In all the article, we call relative Cartier divisor of X over S an effective Cartier divisor in X which is flat over S.

Finally, the linear dual of an O S -module F is denoted F ∨ := Hom O S (F, O S ).

Notations on group schemes

Let S be a scheme and let G be a group scheme over S. We will use the following standard notation: e G : S → G is the unit section of G/S, Ω 1 G/S is the sheaf of relative differential 1-forms of G/S, and

ω 1 G/S = e * G Ω 1 G/S . Recall that Ω 1 G/S = f * ω 1 G/S
where f : G → S is the structure map, so that Ω 1 G/S is locally free over G if and only if ω 1 G/S is locally free over S. We will write Lie(G/S) (or simply Lie(G)) for the Lie algebra of G/S, and L ie(G/S) (or simply L ie(G)) for the sheaf of sections of Lie(G/S). Note that Lie(G/S) is the vector bundle V(ω 1 G/S ), with the Grothendieck notation. Sometimes we shall also use gothic style letters for Lie algebras, like g, t, psl, so, etc.

By Chevalley group scheme over a scheme S, we mean a deployable reductive group scheme over S, with the terminology of [SGA 3,exposé XXII,définition 1.13]. By [SGA 3,exposé XXIII,corollaire 5.3], such a group is characterized up to isomorphism by its type (as defined in [SGA 3,exposé XXII,définition 2.7]: this is essentially the root datum together with a module included in the weight lattice and containing the root lattice) and is equal to G S , where G is a Chevalley group scheme over the ring of integers.

Roots that are integer multiples of weights

The next lemma comes up at various places in the article. It has as a consequence the fact that the differential of a root can vanish along the Lie algebra of a maximal torus in a simple Chevalley group only in case this group is Sp 2n (including Sp 2 ≃ SL 2 ) -see lemma 2.3.2. This will be crucial throughout the article: lemma 3.1.2, on which relies the proof of theorem 3.3.3, is again a consequence of this lemma, as well as the fact that a simply-connected Lie algebra is equal to its own derived algebra in all cases but sp 2n , see proposition 2.2.4.

Lemma 1.3.1 Let R be a simple reduced root system, Q(R) the root lattice and P (R) the weight lattice. Assume there exists α ∈ R, λ ∈ P (R), l ∈ N such that α = l.λ and l ≥ 2. Then l = 2, and either R is of type A 1 , or R is of type C n and α is a long root.

Proof : Let us assume that R is the root system defined in [B, Planches I 

to IX]. If R is of type A 1 , then the roots are α = ǫ 1 -ǫ 2 and -α. Since ǫ 1 -(ǫ 1 + ǫ 2 )/2 = (ǫ 1 -ǫ 2 )/2 is a weight, α is indeed twice a weight. Now let's assume that R is of rank greater than 1.
The hypothesis of the lemma implies that

∀β ∈ R, β ∨ , α = l β ∨ , λ ∈ lZ. (1) 
Let β be a root. If α and β have the same lentgh, by [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]VI,no 1.3,Proposition 8], β ∨ , α ∈ {-1, 0, 1}. If moreover we know that β ∨ , α = 0, we see that (1) cannot hold. By [START_REF] Bourbaki | Groupes et algèbres de Lie[END_REF]VI,no 1,proposition 15,p. 154], we can assume that α is a simple root. This implies that in the Dynkin diagram of R, all edges containing the vertex corresponding to α must be multiple edges. This excludes all simply-laced root systems, as well as the root system of type F 4 . Moreover, if R is of type B n with n ≥ 3, then α has to equal α n , but since α ∨ n-1 , α n = -1, we have a contradiction. If R is of type C n , then α has to equal α n again. Since α n = 2ǫ n , we have indeed α ∈ l.P (R) with l = 2. Since B 2 = C 2 , the last case to be settled is that of G 2 . But in this case Q(R) = P (R); since R is reduced, it is not possible that a root be a multiple of a weight.

2 On the Lie algebra of Chevalley groups

Lie algebras of quotients and coverings

In this section, our aim is to relate the Lie algebra of a group G and the Lie algebra of a quotient G/H. More precisely, we consider a scheme S, a flat S-group scheme G, and a subgroup scheme H ⊂ G which is flat and of finite presentation over S. It follows from a theorem of Mickael Artin [A, corollary 6.3] that the quotient fppf sheaf K := G/H is representable by an algebraic space over S. In the cases of interest to us, it will always be representable by a scheme. We let π : G → K denote the quotient morphism, and e K := π • e G . Whether or not H is normal, we write Lie(K) for the restriction of the tangent space along e K and L ie(K) for its sheaf of sections.

Proposition 2.1.1 Assume that G, H, K are as above.

(1) There is a canonical exact sequence of quasi-coherent O S -modules:

ω 1 K/S → ω 1 G/S → ω 1 H/S → 0 ,
where ω 1 G/S → ω 1 H/S is the natural map deduced from the inclusion H ⊂ G.

(2) Assume furthermore that G is smooth over S and that there is schematically dominant morphism i : U → S such that H × S U is smooth over U . Then, there is a canonical exact sequence of coherent O S -modules:

0 → L ie(K) ∨ → L ie(G) ∨ → ω 1 H/S → 0 and L ie(G) ∨ → ω 1 H/S is the natural map deduced from the inclusion H ⊂ G.
Typically, in the applications, U will be an open subscheme of S or the spectrum of the local ring of a generic point.

Proof : (1) We have the fundamental exact sequence for differential 1-forms:

π * Ω 1 K/S → Ω 1 G/S → Ω 1 G/K → 0 .
By right-exactness of the tensor product, the sequence remains exact after we pullback via e G . The only thing left to prove is that there is a canonical isomorphism e * G Ω 1 G/K ≃ ω 1 H/S . In order to do so, we use the fact that G → K is an H-torsor, so that we have an isomorphism t : H × S G → G × K G given by t(h, g) = (hg, g). We consider the fiber square:

H × S G t / / G × K G pr 2 / / pr 1 G π G π / / K
Then, if we call f : H × S G → H the projection, we have the sequence of isomorphisms on

H × S G: t * pr * 1 Ω 1 G/K ≃ t * Ω 1 G× K G/G ≃ Ω 1 H× S G/G ≃ f * Ω 1 H/S
(the first and the third isomorphisms come from the invariance of the module of relative differentials by base change, [EGA], IV.16.4.5). Pulling back along e H ×e G , we get the desired result. Moreover, following the identifications, we see that the map ω 1 G/S → ω 1 H/S is the same as the map induced by the inclusion H ⊂ G.

(2) Since G is smooth over S and G → K is faithfully flat, then K is also smooth over S. Hence M = ω 1 K/S and N = ω 1 G/S are locally free O S -modules of finite rank, so that

M ≃ L ie(K) ∨ and N ≃ L ie(G) ∨ .
It remains to check that M → N is injective. This will follow from the diagram

i * i * M / / i * i * N M ? O O / / N O O
if we describe the injective morphisms therein. Since i : U → S is schematically dominant and M is flat, we have an injective morphism M → M ⊗ i * O U and the target module is isomorphic to i * i * M by the projection formula. Besides, the morphism G × S U → G/H × S U is smooth since H × S U is smooth over U , so by the short exact sequence of Ω 1 's for a smooth morphism, the morphism i * M → i * N is injective. By left exactness the morphism i * i * M → i * i * N is injective also.

If H is finite over S, like in the cases we have in mind, we can dualize the exact sequence of proposition 2.1.1 thanks to a Pontryagin duality for certain torsion modules, which we now present. Let A be a commutative ring and let Q be the total quotient ring of A, i.e. the localization with respect to the multiplicative set of nonzerodivisors (in fact we should better consider the module of global sections of the sheaf of total quotient rings on Spec (A), but in this informal discussion it does not matter). We wish to associate to any finitely presented torsion A-module M a dual M † = Hom A (M, Q/A). For general M this does not lead to nice properties such as biduality; for example if A = k[x, y] is a polynomial ring in two variables and M = A/(x, y) it is easy to see that M † = 0. In this example there is a presentation A 2 → A → M → 0 but one can see that there is no presentation A n → A m → M → 0 with n = m. In fact, this is a consequence of our results below. Note that the fact that M is torsion implies n m, thus if we can find a presentation with n = m it is natural to say that M has few relations. By the structure theorem for modules over a principal ideal domain, all finite abelian groups have few relations, and from our point of view, this is the crucial property of finite abelian groups that makes Pontryagin duality work. These considerations explain the following definition.

Definition 2.1.2 Let F be a coherent O S -module; denote by K the sheaf of total quotient rings of O S . We say that F is a torsion module with few relations if F ⊗ K = 0 and F is locally the cokernel of a morphism (O S ) n → (O S ) n for some n 1.

We have the following easy characterization: Proposition 2.1.3 Let ϕ : E 1 → E 2 be a morphism between locally free O S -modules of the same finite rank and let F = coker(ϕ). Then F is a torsion module with few relations if and only if the sequence 0

→ E 1 → E 2 → F → 0 is exact, i.e. ϕ is injective.
Proof : If ϕ is injective, then locally over an open set where E 1 and E 2 are free, its determinant det(ϕ) ∈ O S is a nonzerodivisor. Therefore ϕ ⊗ Id :

E 1 ⊗ K → E 2 ⊗ K is surjective, hence an isomorphism. It follows that F ⊗ K = coker(ϕ ⊗ Id) = 0. Conversely if F is a torsion module with few relations, then coker(ϕ ⊗ Id) = F ⊗ K = 0 so that ϕ ⊗ Id is an isomorphism. Since E 1
and E 2 are flat we have injections

E 1 ⊗ K / / E 2 ⊗ K E 1 ? O O / / E 2 ? O O
and it follows that ϕ is injective.

Definition 2.1.4 Given a coherent O S -module F we define its Pontryagin dual by

F † = Hom O S (F, K/O S ) .
As the following proposition proves, there is a satisfactory duality if we restrict to torsion modules with few relations.

Proposition 2.1.5 Let F be a torsion O S -module with few relations. Then:

(1) F † is also a torsion O S -module with few relations, and the canonical morphism

F → F † † is an isomorphism. (2) For each exact sequence 0 → E 1 → E 2 → F → 0 where E 1 , E 2 are locally free O S -modules of the same finite rank, we have a canonical dual exact sequence 0 → E ∨ 2 → E ∨ 1 → F † → 0.
Proof : The assertions in point ( 1) are local over S and therefore are easy consequences of point (2). In order to prove point (2) we set G = coker(E ∨ 2 → E ∨ 1 ) and we construct a canonical nondegenerate pairing F × G → K/O S , as follows. Since F is torsion and finitely generated, locally (over an open subset U ⊂ S) there is a nonzerodivisor a ∈ O S such that aE 2 ⊂ E 1 . Given two sections f ∈ E 2 and g ∈ E ∨

1 over U , we let f, g denote the class of 1 a g(af

) ∈ K modulo O S . It is easy to check that this is independent of the choice of a. If f ∈ E 1 or if g ∈ E ∨
2 then f, g = 0 so there results a pairing F × G → K/O S and we will now check that it induces isomorphisms F → G † and G → F † . By symmetry we will consider only σ :

G → F † . If •, g is zero then we claim that g ∈ E ∨
1 extends to a form on E 2 . Indeed, for each f ∈ E 2 we have 1 a g(af ) ∈ O S so that the definition g(f ) := 1 a g(af ) is unambiguous, since a is a nonzerodivisor. It follows that σ is injective. In order to check surjectivity we may assume that S is the spectrum of a local ring, and in this case

E 1 , E 2 are trivial. Any u : F → K/O S factors through 1 a O S /O S ⊂ K/O S and then induces a morphism E 2 → O S /aO S . Since E 2 is trivial this map lifts to u ′ : E 2 → O S . Moreover if x ∈ E 1 then u ′ (x) ∈ aO S , so we can set v(x) = 1 a u ′ (x); then it is easy to check that v is a form g on E 1 that gives rise to u. Hence σ is surjective.
If S is a Dedekind scheme, that is to say a noetherian normal scheme of dimension 1, then all coherent torsion O S -modules are torsion modules with few relations (by the structure theorem for modules of finite type). However in general it is not so, as soon as dim(S) 2, and we saw a counter-example before definition 2.1.2.

We are now able to dualize the sequence of Lie algebras 2.1.1 (2) either if H is smooth or if it is finite.

Proposition 2.1.6 Let G be a smooth S-group scheme and H ⊂ G a subgroup scheme which is flat and of finite presentation over S. Let K = G/H be the quotient.

(1) If H is smooth over S, then we have an exact sequence of locally free Lie algebra O S -modules

0 → L ie(H) → L ie(G) → L ie(K) → 0 and if furthermore K is commutative, we have [L ie(G), L ie(G)] ⊂ L ie(H) .
(2) If H is finite over S and there is a schematically dominant morphism i : U → S such that H × S U is étale over U , then there is a canonical exact sequence of coherent O S -modules:

0 → L ie(G) → L ie(K) → (ω 1 H/S ) † → 0 ,
and if furthermore H is commutative, then

[L ie(K), L ie(K)] ⊂ L ie(G) .
Proof : (1) All the sheaves in the exact sequence 2.1.1 (2) are locally free, so dualization yields the asserted result. It is clear that the resulting sequence is an exact sequence of sheaves of Lie algebras, so

[L ie(G), L ie(G)] ⊂ L ie(H) in case K is commutative.
(2) The exact sequence 2.1.1 (2) and proposition 2.1.3 imply that ω 1 H/S is a torsion module with few relations. We get the dual sequence from proposition 2.1.5. Here (ω 1 H/S ) † is not a Lie algebra, so it is a little more subtle to deduce that [L ie(K), L ie(K)] ⊂ L ie(G). The assertion is local on S so we may assume that H is embedded into an abelian scheme A/S (that is to say a smooth proper group scheme over S with geometrically connected fibers), by a theorem of Raynaud ( [BBM], Theorem 3.1.1). Let π : A → B = A/H be the quotient abelian scheme, and let G ′ = (G × S A)/H where H acts by h(g, a) = (hg, h -1 a). We have two exact sequences of smooth S-schemes:

1 → G → G ′ p → B → 1 and 1 → A → G ′ → K → 1 .
By smoothness we derive exact sequences of sheaves of Lie algebras

0 → L ie(G) → L ie(G ′ ) p → L ie(B) → 0 and 0 → L ie(A) i → L ie(G ′ ) → L ie(K) → 0 .
Combining these exact sequences we have an exact sequence

0 → L ie(G) → L ie(K) → L ie(B)/π(L ie(A)) → 0 where π = p • i. Here, the arrow L ie(K) → L ie(B)/π(L ie(A)) is induced by p which is a morphism of Lie algebras. It follows immediately that [L ie(K), L ie(K)] ⊂ L ie(G).

Lie algebras of Chevalley group schemes

Let G be a split simple Chevalley group scheme over Z, T ⊂ G a split maximal torus over Z, and write as in [SGA 3] T = D Z (M ), where M is a free Z-module. Since G is smooth, Lie(G) is a vector bundle and hence is determined by L ie(G). Since the base is affine, this is in turn determined by the free Z-module L ie(G)(Z) = Lie(G)(Z) together with its Lie bracket.

Proposition 2.2.1 There is a weight decomposition

Lie(G)(Z) = Lie(T )(Z) ⊕ α Lie(G)(Z) α over the integers. Moreover, letting Q(R) (resp. P (R)) denote the root (resp. weight) lattice, we have Q(R) ⊂ M ⊂ P (R).
Proof : Since G is a smooth split reductive group scheme over Z, this essentially follows from [SGA 3], Exposé I, 4.7.3, as explained in [SGA 3], Exposé XIX, no 3. Now let H be a subgroup of the center of G and let i H denote the inclusion of the character group of T /H in that of T . Proposition 2.2.2 Under the natural inclusions

Lie(G)(Z) ⊂ Lie(G)(Q) = Lie(G/H)(Q) ⊃ Lie(G/H)(Z) , we have Lie(G)(Z) i H (α) = Lie(G/H)(Z) α .
Proof : Since H ⊂ T , by proposition 2.1.6, there are injections Lie(G)(Z) ⊂ Lie(G/H)(Z) and Lie(T )(Z) ⊂ Lie(T /H)(Z), both of index |H|. All these maps are compatible with the injection in Lie(G)(Q). Thus for each α, the inclusion Lie(G)(Z) i H (α) ⊂ Lie(G/H)(Z) α must be of index 1, proving the proposition.

Remark 2.2.3 The Lie algebra over Z defined by generators and relations by Serre [Se] is the simply-connected one, that is to say the Lie algebra of the simply-connected corresponding group scheme, because, with his notations, the generators H i are by definition the coroots.

Recall that π : G → G/H denotes the quotient morphism.

Proposition 2.2.4 Assume G is simply-connected.

(1) When G is not Sp 2n , n 1, we have

[Lie(G)(Z), Lie(G)(Z)] = Lie(G)(Z) and [Lie(G/H)(Z), Lie(G/H)(Z)] = dπ(Lie(G)(Z)). (2) When G = Sp 2n , then [Lie(G)(Z), Lie(G)(Z)] has index 2 2n in Lie(G)(Z).
Proof : (1) Let g = Lie(G)(Z) and choose a Cartan Z-subalgebra h ⊂ g. Choose a basis of the roots, and denote by u + , u -⊂ g the direct sum of the positive (resp. negative) root-spaces. By corollary 2.2.1, we have g = h ⊕ u + ⊕ u -. Since G is neither SL 2 (= Sp 2 ) nor Sp 2n , by lemma 1.3.1, no root is an integer multiple of a weight, and so [h, u ± ] = u ± . Moreover, it follows from Serre's presentation of the simple Lie algebras in terms of the Cartan matrix (see remark 2.2.3) that in this case [g, g] ⊃ h. In particular

dπ(Lie(G)(Z)) = dπ([Lie(G)(Z), Lie(G)(Z)]) = [dπ(Lie(G)(Z)), dπ(Lie(G)(Z))] ⊂ [Lie(G/H)(Z), Lie(G/H)(Z)] .
The reverse inclusion follows from proposition 2.1.6.

(2) Assume that G stabilises the form 0 I n -I n 0

, where I n stands for the identity matrix.

Then

g = A B C -t A : t B = B, t C = C .
If A is an arbitrary matrix and B is symmetric, then we have the equality

A 0 0 -t A , 0 B 0 0 = 0 AB + B t A 0 0 .
From this it follows that [g, g] ⊂ g is the Z-submodule of elements A B C -t A with B and C having even diagonal elements. Therefore, it is a submodule of index 2 2n .

The differential of the quotient maps

We will now describe the differentials of the quotient maps between Chevalley groups in the neighbourhood of a prime p ∈ Spec(Z). So we consider the base ring R = Z (p) . Let G be simply-connected and let n be the order of the center of G. Assume moreover that the center of G is the group of n-th roots of unity µ n (this is the case if G is not of type D 2l ; for this particular case see subsection 2.4). Write n = p k m with m prime to p, and G i := G/µ p i . We have the successive quotients

G = G 0 → G 1 → G 2 → • • • → G k → G ad
and the corresponding sequence of Lie algebras

Lie(G) = Lie(G 0 ) → Lie(G 1 ) → Lie(G 2 ) → • • • → Lie(G k ) ≃ -→ Lie(G ad ) .
On the generic fibre all these maps are isomorphisms. In order to study what happens on the closed fibre, we set g = Lie(G)(F p ) and g i = Lie(G i )(F p ), and we let z i resp. z denote the center of g i resp. g. We start with a lemma:

Lemma 2.3.1 The center z i is isomorphic to the one-dimensional Lie algebra F p if i < k, and the algebra g k has trivial center.

Proof : Let x ∈ g i be a central element. According to the decomposition of proposition 2.2.1, we can write x = x α + h. The lemma is easily checked directly when g i = sl 2 or g i = sp 2n , so assume we are not in these cases.

According to the following lemma 2.3.2, for any root β we may assume that there exists t ∈ t such that dβ(t) = 0. We then have 0 = [t, x] = dα(t)x α , from which it follows that x β = 0. Thus x = h ∈ t. Now, let again β be an arbitrary root and let 0 = y ∈ (g k ) β . We have 0 = [x, y] = dβ(x).y, therefore dβ(x) = 0.

Since we can reverse the above argument, the center of g i consists of all the elements in t along which all the roots vanish. With the notations of proposition 2.2.1, t ≃ M ∨ ⊗ F p , and therefore

z i ≃ Hom(M/Q(R), F p ). Since M/Q(R) ⊂ P (R)/Q(R) and in our case P (R)/Q(R) is principal, M/Q(R) is also principal and z i can be at most 1-dimensional. Moreover, it is trivial if and only if Q(R) = M , which means that g i is adjoint, or i = k.
Lemma 2.3.2 Assume that g is neither isomorphic to sl 2 nor sp 2n , or that the characteristic of k is not 2. Then there exists a finite extension K of k and t ∈ t ⊗ K such that ∀α ∈ R, dα(t) = 0.

Proof : Let R denote the root system of G and let p denote the characteristic of k; we have by proposition 2.2.1 Q(R) ⊂ M ⊂ P (R). The linear functions on t defined over k are in bijection with M ⊗ k; therefore a root α ∈ Q(R) will yield a vanishing function on t if and only if it is a p-multiple of some element in M . By lemma 1.3.1, this can occur only if p = 2, M = P (R) (thus G is simply-connected) and G is of type A 1 or C r . By assumption we are not in these cases. Taking a finite extension K/k if needed, g is not a union of a finite number of hyperplanes, so the lemma is proved.

Let g ′ := g/z. We can now describe the maps Lie(G i ) → Lie(G i+1 ) on the closed fibre:

Proposition 2.3.3 The Lie algebras g i are described as follows:

(1) for all i with 0 < i < k, we have an isomorphism of Lie algebras g i ≃ g ′ ⊕ F p . In particular, all these Lie algebras are isomorphic.

(2) for i = 0 we have a non-split exact sequence of Lie algebras 0 → F p → g 0 → g ′ → 0.

(3) for i = k we have a non-split exact sequence of Lie algebras 0 → g ′ → g k → F p → 0.

In these terms, the maps g i → g i+1 are described as follows. The map g 0 → g 1 takes F p to zero and maps onto g ′ ⊂ g 1 , and for all i with 0 < i < k, the map g i → g i+1 takes F p to zero and maps g ′ ⊂ g i isomorphically onto g ′ ⊂ g i+1 .

Proof :

Let Z i := ker(G i → G i+1 ). For all i k -1, we have Z i ≃ µ p , and its Lie algebra is included in z i . Because Z i → G i+1 is trivial, the map g i → g i+1 takes z i to 0.
By tensoring the result of proposition 2.1.6 by F p , there is an exact sequence

g i → g i+1 → Z/pZ → 0 ,
from which it follows that g i /z i is mapped isomorphically onto a codimension 1 subalgebra of g i+1,Fp denoted g ′ i+1,Fp . By lemma 2.3.1, no x ∈ g ′ i+1,Fp can be central in g i+1 so that we have, for 0 < i < k,

g i,Fp = g ′ i,Fp ⊕ z i,Fp
as vector spaces. Since g ′ i,Fp is a Lie subalgebra, it is also an equality of Lie algebras. In particular all the Lie algebras g i for 0 < i < k are isomorphic.

For i = 0, we have an exact sequence of Lie algebras 0 → F p → g 0,Fp → g ′ → 0, but this sequence does not split (in fact if it did split, then we would have [g 0,Fp , g 0,Fp ] ⊂ g ′ , contradicting proposition 2.2.4).

For i = k > 0, we have a sequence 0 → g ′ → g k,Fp → F p → 0, which again cannot split because g k,Fp has trivial center, by lemma 2.3.1.

Remark 2.3.4 For 0 < i < k, consider the Lie algebras Lie(G i ), as schemes over Spec(Z (p) ). They have isomorphic underlying vector bundles (namely the trivial vector bundle), and their generic fibres as well as their special fibres are isomorphic as Lie algebras. However, they need not be isomorphic. For example, if

G = SL p k then it is immediate from proposition 2.2.4 that G i = G/µ p i uniquely determines i, because [Lie(G i )(Z), Lie(G i )(Z)] = Lie(G)(Z) and the quotient Lie(G i )(Z)/ Lie(G)(Z)
is a cyclic abelian group of order p i . In fact the only difference between them comes from the definition of the Lie bracket on the total space.

Classical Lie algebras

We now give an explicit description of some of the classical Chevalley Lie algebras, in which the above sequence of Lie algebras will become very transparent.

Let M be a free Z-module of rank n, and let m be an integer dividing n. We define a Z-Lie algebra L(M |m) as follows: let Hom(M, 1 m M ) denote the Z-module of linear maps f :

M ⊗ Q → M ⊗ Q such that f (M ) ⊂ 1 m M .
Any such map induces a map f : M/mM → 1 m M/M . Note that multiplication by m induces a canonical isomorphism 1 m M/M ≃ M/mM so that f may be seen as an endomorphism of the free Z/mZ-module M/mM . Finally, let L(M |m) (resp. S(M |m)) denote the submodule of Hom(M, 1 m M ) of elements f such that f is a homothety (resp. a homothety with vanishing trace). These are obviously Lie subalgebras of End(M ⊗ Q).

Proposition 2.4.1 Let n, m be as above; then Lie(SL n /µ m )(Z) ≃ S(Z n |m).

Proof : Let n, m be integers such that m divides n. Let sl n denote the Lie algebra of SL n , and let sl n,m denote the Lie algebra of the quotient SL n /µ m . Obviously, we have

sl n (Z) ⊂ sl n (Q), sl n,m (Z) ⊂ sl n,m (Q), and sl n (Q) = sl n,m (Q) is the usual Lie algebra over Q of traceless matrices.
The exact sequence of proposition 2.1.1 translates in our case to

0 → sl n,m (Z) ∨ → sl n (Z) ∨ → Z/mZ → 0.
Note that sl n (Z) ∨ ≃ gl n (Z) ∨ /(trace), so that evaluation at I modulo m is well-defined and yields the last arrow. Let f i,j :

sl n (Q) → Q be the linear form M → M i,j . Thus sl n,m (Z) ∨ ⊂ sl n (Z) ∨ is the set of linear forms λ i,j f i,j with m| λ i,i . Since sl n,m (Z) is the dual in sl n (Q) of sl n,m (Z) ∨ , it follows applying f i,j (i = j) (resp. m.f i,i , f i,i -f j,j ) that if M ∈ sl n (Q) belongs to sl n,m (Z), then M i,j ∈ Z (resp. m.M i,i ∈ Z, M i,i -M j,j ∈ Z).
Conversely, matrices satisfying these conditions are certainly in sl n,m (Z). The proposition is therefore proved. Now, assuming that n is even, we describe the four Lie algebras of type D n : spin 2n , so 2n , pso 2n , and a fourth one that we denote by pspin 2n . We need to introduce some notation.

Notation 2.4.2 Let n be an integer and let us consider the following sublattices of Q n :

• N z = Z n .
• N ad is generated by Z n and 1 2 (1, . . . , 1).

• If l is even, N ps is the sublattice of N ad of elements (x i ) with x i divisible by 2.

• N sc is the sublattice of Z n of elements (x i ) with x i divisible by 2.

• We denote by L * ( * ∈ {z, ad, ps, sc}) the lattice of matrices with off-diagonal coefficients in Z and with the diagonal in N * .

Proposition 2.4.3 (1) There is a natural identification of sp 2n (Z) (resp. psp 2n (Z)) with the Lie algebra of matrices of the form

A B C -t A with t B = B, t C = C (n × n)-matrices with coefficients in Z and A ∈ gl n (Z) (resp. A ∈ L(Z n |2)).
(2) Assume n is odd. Then there is a natural identification of so 2n (Z) (resp. pso 2n (Z), spin 2n (Z))

with the Lie algebra of matrices of the form

A B C -t A with t B = -B, t C = -C and A in L z (resp. L ad , L sc ).
(3) Assume n is even. There is a natural identification of so 2n (Z) (resp. pso 2n (Z), spin 2n (Z), pspin 2n (Z)) with the Lie algebra of matrices of the form

A B C -t A with t B = -B, t C = -C and A in L z (resp. L ad , L sc , L ps ).
Proof : This is a direct consequence of proposition 2.2.1. For example, let g(Z) be a Lie algebra of type D n over Z. Proposition 2.2.1 implies that all Lie algebras of type D n will differ only by their Cartan subalgebras. Therefore g(Z) is in fact a set of matrices of the form A B C -t A with t B = -B, t C = -C, and the off-diagonal coefficients of A in Z. Moreover, with the notations of proposition 2.2.1, g(Z) corresponds to a module M between the root lattice and the weight lattice, and the Cartan subalgebra (the subalgebra when A is diagonal and B = C = 0) identifies with the dual lattice of M . Therefore the description of the proposition follows from the description of the root and weight lattices in [B].

Using this description or lemma 2.3.1 we can deduce the dimension of the center of g(F 2 ):

spin 2n (F 2 ) so 2n (F 2 ) pspin 2n (F 2 ) pso 2n (F 2 ) n even 2 1 1 0 n odd 1 1 - 0
For example, we give a description of the center of spin 2n (F 2 ). Let C 1 (resp. B]. From these remarks it follows that the classes of C 1 and C 2 modulo 2.spin(Z) generate over F 2 the 2-dimensional center of spin 2n (F 2 ).

The Chevalley morphism

We start this section by some elementary results on regular elements in Lie algebras of algebraic groups (3.1), to be used in 3.3, then we prove that the Chevalley morphism is unconditionnally schematically dominant (3.2) and finally we prove the the Chevalley morphism is an isomorphism unless G = Sp 2n for some n 1 (3.3). The case G = Sp 2n will be treated later.

Regular elements

Let g be a restricted Lie algebra of dimension d over a field. For each x ∈ g, we denote by

χ(x) = t d + c 1 (x)t d-1 + • • • + c d-1 (x)t + c d (x)
the characteristic polynomial of ad x acting on g.

The rank of g is the least integer l such that c d-l = 0, and we set δ := c d-l . An element x ∈ g is called regular if the nilspace g 0 (ad x) := ker(ad x) d of g relative to ad x has minimal dimension l.

An element x is regular if and only if δ(x) = 0. Note that our definition of regular elements differs from that in [Ve], according to which the singular locus has codimension 3 in g. The Cartan subalgebras of minimal dimension are exactly the centralizers of regular elements. For these facts see [Str], pages 52-53. If, furthermore, g is the Lie algebra of a smooth connected group G, then in fact the Cartan subalgebras are conjugate, and in particular they all have the same dimension. This is proven in [Fa], corollary 4.4. Also, in this case the coefficients of the characteristic polynomial χ are invariant functions for the adjoint action of G on g.

We will use the notation Sing(g) for the closed subscheme of singular elements, defined by the equation δ = 0, and Reg(g) for its complement, the open subscheme of regular elements. We have the corresponding subschemes Sing(t) and Reg(t) in t.

In the relative situation, if g is a Lie algebra of dimension d over a scheme S, then the objects χ, δ, Reg(g), Sing(g) are defined by the same procedure as above. We recall our general convention that a relative Cartier divisor of some S-scheme X is an effective Cartier divisor in X which is flat over S.

Lemma 3.1.1 Let G be a split simple Chevalley group over a scheme S, not isomorphic to Sp 2n , n 1. Let s : Sing(g) → S be the locus of singular elements. Then s * O Sing(g) is a free O S -module, in particular Sing(g) is a relative Cartier divisor of g over S.

Proof : Since the objects involved have formation compatible with base change, it is enough to prove the lemma over S = Spec(Z). We have to prove that the ring Z[g]/(δ) is free as a Z-module. Since δ is homogeneous, this ring is graded. If we can prove that it is flat over Z, then its homogeneous components are flat also, and since they are finitely generated, they are free over Z, and the result follows. So it is enough to prove that Z[g]/(δ) is flat. By the corollary to theorem 22.6 in [Ma], it is enough to prove that the coefficients of δ generate the unit ideal, or in other words, that δ is a nonzero function modulo each prime p. So we may now assume that the base is a field k of characteristic p 0, and we may also assume that k is algebraically closed. Let t be the Lie algebra of a maximal torus T . By lemma 2.3.2, we can choose t ∈ t k such that ∀α ∈ R, dα(t) = 0. Then δ(t) is the product of the scalars dα(t), up to a sign. Hence it is nonzero.

We continue with the split simple Chevalley group G over S. In the sequel, products are understood to be fibred products over S. We now turn our attention to the morphism G/T ×t → g. We use the same construction as in [START_REF] Springer | Conjugacy classes[END_REF]3.17]: note that the normalizer N G (T ) acts on G × t by n.(g, τ ) = (gn -1 , Ad(n).τ ) and this induces an action of W = N G (T )/T on G/T × t. The morphism G/T × t → g induced by the adjoint action is clearly W -invariant.

Lemma 3.1.2 Let G be a split simple Chevalley group over a scheme S, not isomorphic to Sp 2n , n 1. Then the map G/T × t → g is schematically dominant. Its restriction b : G/T × Reg(t) → Reg(g) is a W -torsor and hence induces an isomorphism (G/T × Reg(t))/W → Reg(g).

Proof : Here again, the objects involved have formation compatible with base change, so it is enough to prove the lemma over S = Spec(Z). We will first prove that b is a W -torsor. It is enough to prove that b is surjective, étale, and that W is simply transitive in the fibres. Indeed, if b is étale then the action must also be free and b induces an isomorphism (G/T ×Reg(t))/W → Reg(g).

The map c = ad : G×Reg(t) → Reg(g) is surjective because if x ∈ Reg(g), then its centralizer z(x) is a Cartan subalgebra, and since Cartan subalgebras are conjugate, there exists g ∈ G such that (ad g)(t) = z(x). Thus there is y ∈ t such that (ad g)(y) = x and clearly y is regular. We now prove that c is smooth. Since its source and its target are smooth over S, it is enough to prove that for all s ∈ S, the map c s is smooth. By homogeneity, it is enough to prove that the differential of c s at any point (1, t) with t ∈ Reg(t) is surjective.

Then T 1 G k = g k and the tangent map ψ = dc :

T 1 G k × t k → g k is given by (x, τ ) → [x, t] + τ . Recall that g k = α∈R g α ⊕ t k
, where [τ, x] = dα(τ )x for all x ∈ g α . Again by lemma 2.3.2, we can choose τ ∈ t k such that ∀α ∈ R, dα(τ ) = 0. Thus, we have ψ(g k × {0}) = α∈R g α . Since ψ({0} × t k ) = t k , ψ is a surjective linear map. It follows that b is also surjective and smooth, hence étale, by dimension reasons.

Finally, let (g, x) and (h, y) have the same image in g, for x, y ∈ t. This means that (ad w)(x) = y, where w = h -1 g. Thus (ad w)(z(x)) = z((ad w)(x) = z(y), that is to say (ad w)(t) = t since z(x) = z(y) = t. By [START_REF] Humphreys | Linear algebraic groups[END_REF]13.2,13.3], T is the only maximal torus with Lie algebra t, so it follows that w normalizes T . Hence w defines an element of the Weyl group W . Now we consider the map G/T × t → g. From the preceding discussion it is dominant in the fibres, and since G/T × t is flat over S, the map is itself schematically dominant by [EGA], théorème 11.10.9. This concludes the proof of the lemma.

The Chevalley morphism is always dominant

We now deal with the cases that are not covered by lemma 3.1.1. Notation 3.2.1 Consider the following subalgebras of sl 2 and sp 2n :

• Let b ⊂ sl 2 be the subalgebra of upper-triangular matrices.

• Let L denote the set of long roots of sp 2n ; if α is a root, denote by sp 2n,α the corresponding root space.

• Let h ⊂ sp 2n be the sum t ⊕ α∈L sp 2n,α .

Lemma 3.2.2 Let k be a field. Then the maps

(SL 2 ) k ×b k → (sl 2 ) k and (Sp 2n ) k ×h k → (sp 2n ) k ,
given by restricting the adjoint action, are dominant. Moreover, h is isomorphic, as a Lie algebra, to sl ⊕n 2 .

Combining the two statements of this lemma, it follows that in the proof of theorem 3.2.4 below, we will be able to replace the Lie subaglebra h ≃ sl ⊕n 2 by a sum of the form b ⊕n .

Proof : The result about (sl 2 ) k is an immediate consequence of the fact that, over an algebraically closed field, any matrix is conjugated to an upper-triangular matrix.

To prove that (Sp 2n ) k × h k → (sp 2n ) k is dominant, we argue as in lemma 3.1.2. Since all the short roots are not integer multiples of a weight, we can choose t ∈ t k such that for all short roots α, we have dα(t) = 0. Let S denote the set of short roots of sp 2n . If ψ denotes the differential at (1, t) of the ajoint action, it follows that ψ(sp 2n × {0}) ⊃ α∈S sp 2n,α . Since h k = t k ⊕ α∈L sp 2n,α , it follows that ψ is surjective and the restriction of the action is dominant.

To prove that h ≃ sl ⊕n 2 , one can compute explicitly in the Lie algebra sp 2n . Assume that sp 2n is defined by the matrix 0 I -I 0 , where I denotes the identity matrix of size n. Then a matrix Thus h is isomorphic to sl ⊕n 2 .

Lemma 3.2.3 Let S = Spec(A) be an affine base scheme and g = sl 2 . Then the restriction morphism [a, b, t]. This means that f does not depend on b, and we indeed have an injection

A[b] T → A[t] is injective. Proof : Let f ∈ A[b]. Writing a typical element in b as a b 0 a , we identify f with a polynomial in a, b. Since t 0 0 t -1 a b 0 a t 0 0 t -1 -1 = a t 2 b 0 a , f is T -invariant if and only if f (a, b) = f (a, t 2 b) ∈ A
A[b] T → A[t].
Using the two preceding lemmas, we can now prove the main result of this section:

Theorem 3.2.4 Let S be a scheme and let G be a split simple Chevalley group over S. Then the Chevalley morphism π : t/W → g/G is schematically dominant.

Proof : First, let S = Spec(Z). Let us write h = b in the case of SL 2 , h = sl ⊕n 2 in the case of Sp 2n , and h = t in the other cases. We also write H = T (resp. H = SL ⊕n 2 , H = T ) in the case of SL 2 (resp. Sp 2n , the other cases). The adjoint action restricts to a map ϕ : G × h → g. If G acts on itself by left translation, trivially on h, and by the adjoint action on g, then ϕ is G-equivariant. Moreover, by lemmas 3.1.2 and 3.2.2, the restriction ϕ k of ϕ to any fiber of Spec(Z) is dominant. Since the schemes G × h and g are flat over Z, it follows from [START_REF] Dieudonné | Éléments de Géométrie Algébrique[END_REF]théorème 11.10.9] that ϕ is universally schematically dominant. Now we let S be arbitrary, and prove that π is schematically dominant. The question is local over S so we may assume S = Spec(A) affine. On the function rings, the Chevalley morphism can be decomposed as two successive restriction morphisms

A[g] G → A[h] H → A[t] W . First we concentrate on A[g] G → A[h] H .
We have already proven that the map ϕ * :

A[g] → A[G] ⊗ A A[h] is injective. This map is G-equivariant, so if f ∈ A[g] is G-invariant, we have ϕ * (f ) ∈ (A[G] ⊗ A A[h]) G = A[G] G ⊗ A A[h] = A ⊗ A A[h] = A[h] . Therefore ϕ * (f ) = 1 ⊗ i * (f ) where i : h → g is the inclusion. Since ϕ * : A[g] → A[G] ⊗ A A[h] is injective, it follows that A[g] G → A[h] is injective.
In case G = Sp 2l , we have t = h so the proof of the theorem is complete. In case G = SL 2 , lemma 3.2.3 shows the injectivity of the Chevalley morphism. Finally, let us consider the case of Sp 2n with n > 1. Since by lemma 3.2.2, h ≃ sl ⊕n 2 and H ≃ SL n 2 , and since the theorem is proved for SL 2 , we know that A[h] H → A[t] is injective, and we can once again conclude.

It is interesting to mention an easy consequence of this theorem : if the base scheme is Spec(Z), then the Chevalley morphism is an isomorphism, see the corollary below. This will of course be a particular case of theorems 3.3.3 and 6.2.2, however, while theorem 3.3.3 needs some more work, we get the present result almost for free. This corollary is in fact worthwhile because it shows that if the formation of the adjoint quotient commuted with base change (which is not the case), then we would get the case of a general base scheme S from the case S = Spec(Z) and hence everything would be finished right now. So here is this corollary: Corollary 3.2.5 Assume that S is the spectrum of a factorial ring with characteristic prime to the order of W . Then the Chevalley morphism π : t/W → g/G is an isomorphism.

Proof : Let S = Spec(A) and let K be the fraction field of A. By theorem 3.2.4 it is enough to prove that the restriction morphism res :

A[g] G → A[t] W is surjective. Let P be a W -invariant function on t. From the assumption on the characteristic of K, it follows that K[g] G → K[t] W is an isomorphism, so there is Q ∈ K[g] G such
that res(Q) = P . Since A is factorial, we can write Q = cQ 0 where Q 0 is a primitive polynomial (i.e. the gcd of its coefficients is 1) and c ∈ K is the content of Q. If we write c = r/s with r and s coprime in A, we claim that s is a unit in A. For, otherwise, some prime p ∈ A divides s. Then res(rQ 0 ) = sP = 0 in (A/p)[t] W so res(Q 0 ) = 0 in (A/p)[t] W , since r and s are coprime. By theorem 3.2.4 again, it follows that Q 0 = 0 in (A/p)[g] G , in contradiction with the fact that Q 0 is primitive. Hence Q ∈ A[g] G as was to be proved.

The Chevalley morphism is an isomorphism for G = Sp 2n

Before proving theorem 3.3.3, our main result, we state two lemmas which will ultimately allow us to show that a function vanishes on the locus of singular elements.

The first lemma is a general result about the "indicator function" of the locus of the base where a function has a zero along a fixed divisor : Lemma 3.3.1 Let X → S be a morphism of schemes and let D ⊂ X be a relative effective Cartier divisor with structure morphism p : D → S, such that p * O D is a locally free O S -module.

Let * be the one-point set, and given a global function f on X, let F be the functor on the category of S-schemes defined as follows : for any S-scheme T ,

F (T ) = * if f T has a zero along D T , ∅ otherwise.
Then F is representable by a subscheme S 0 ⊂ S which is open and closed in S.

Proof : We first prove that F is represented by a closed subscheme S 0 ⊂ S. The assertion is local on S so we may assume S affine and p * O D free. Let f i be the finitely many components of f |D on some basis of Γ(D, O D ) as a free Γ(S, O S )-module. Then, f has a zero along D if and only if all the f i vanish. Since D is a relative Cartier divisor, the formation of these objects commutes with base change, so that the above description is functorial. Then obviously F is represented by the closed subscheme of finite presentation S 0 ⊂ S defined by the ideal of Γ(S, O S ) generated by the coefficients f i . It order to prove that S 0 ⊂ S is also open, we will use another description of F . Let L = Spec(Sym(O X (D)) and d : L → A 1 X be the morphism of line bundles over X induced by the canonical morphism of invertible sheaves O X → O X (D). We can view f as a section of the trivial line bundle, i.e. f : X → A 1 X . Then to say that f has a zero along D means that there exists a section ϕ : X → L of L such that the diagram

X ϕ / / f A A A A A A A A L d A 1 X commutes.
Since D is a relative Cartier divisor, such a ϕ is unique if it exists. In other words, F (T ) is the set of sections ϕ :

X T → L T such that f T = d T •ϕ, or again, if we set Z := d -1 (f (X)), then F (T ) is the set of sections ϕ : X T → L T such that ϕ(X T ) is a closed subscheme of Z T .
In the sequel, we will take the freedom to write simply X for the divisor ϕ(X) ⊂ L, and D for the pullback of D via the structure morphism L → X. Since ϕ is determined by its image, we have described F as an open subfunctor of a Hilbert functor of Z/S.

To prove that S 0 ⊂ S is open, it is enough to prove that this is a smooth morphism. Since S 0 ⊂ S is of finite presentation, it is enough to prove that it is formally smooth at all points s ∈ S 0 . To do this, we will show that the deformations of ϕ s are unobstructed. Let k be the residue field of s, let A be a local artinian O S -algebra with residue field k and assume that ϕ s has been lifted to ϕ A . We have to prove that for each nilthickening A ′ → A, i.e. a surjective morphism with kernel M annihilated by the maximal ideal of A ′ , the space of obstructions to lifting ϕ A to A ′ vanishes. By the theory of the Hilbert functor, the obstruction space is Ext

1 Z A (I A , (O Z /I) ⊗ k M ) where I is the ideal sheaf of X in Z; note that (O Z A /I A ) ⊗ k M = (O Z /I) ⊗ k M .
We will compute this group by using an explicit resolution of I. In the sequel, we write X for X A , D for D A , etc.

We remark that Z = X + D as a sum of Cartier divisors of L. This is not hard to see and we leave the details to the reader. Now let a D : O L → O L (D) and a X : O L → O L (X) be the canonical morphisms. Consider the sequence

• • • a X -→ O L (-2Z) a D -→ O L (-X -Z) a X -→ O L (-Z) a D -→ O L (-X) a X -→ O L .
Note that this is not even a complex, but we claim that after restricting to Z, we get a resolution of the ideal sheaf I :

• • • a X -→ O L (-2Z)| Z a D -→ O L (-X -Z)| Z a X -→ O L (-Z)| Z a D -→ O L (-X)| Z a X -→ I -→ 0 . Indeed the image of a X : O L (-X)| Z → O L | Z = O Z is I,
and locally X and D have equations t X and t D in O L , and the sequence is the sequence of O L /(t X t D )-modules which is alternatively multiplication by t X and t D . From the fact that t X and t D are nonzerodivisors, the exactness of the sequence follows.

So to compute Ext 1

Z (I, O Z /I ⊗ k M ) we apply Hom Z (•, O Z /I ⊗ k M
) and take the first cohomology group of the resulting complex. In fact Hom Z (I, O Z /I ⊗ k M ) = 0 ; this is the tangent space to the functor F . Therefore Ext 1

Z (I, O Z /I ⊗ k M ) is equal to ker a D : Hom Z (O L (-X)| Z , O Z /I ⊗ k M ) -→ Hom Z (O L (-Z)| Z , O Z /I ⊗ k M ) . Locally O L (-X)| Z ≃ O L (-Z)| Z ≃ O Z , and a D takes a map σ : O Z → O Z /(t X ) ⊗ k M to t D σ. Since D is a Cartier divisor in X, it follows that a D is injective. Consequently Ext 1 Z (I, O Z /I ⊗ k M ) = 0 ,
thus the functor F is unobstructed, so S 0 is formally smooth at s.

The second lemma proves a statement which is used in [SS] (proof of 3.17, point (2)). However we were not able to understand their proof, due to a vicious circle in the use of an argument from [St]:

Lemma 3.3.2 Let k be a field and assume S = Spec(k). Let f, g ∈ k[g] G and assume f |t | g |t . Then f | g.

Proof :

We may assume that k is algebraically closed. First assume that f has no square factors. Let x ∈ g be such that f (x) = 0; it is then enough to show that g(x) = 0. To this end, since x belongs to a Borel subalgebra of g (in fact, the Borel subalgebra are the maximal solvable algebras) and all the Borel subalgebras are conjugated, we may assume that x = τ + η with τ ∈ t and η = α>0 x α ∈ α>0 g α . Let X : G m → T be a one-parameter-subgroup corresponding to a coweight ω ∨ with ω ∨ , α > 0 for all positive roots α. We therefore have Ad(X(t)).x = τ + α>0 t nα x α , with ∀α > 0, n α > 0. Therefore the closure of the G-orbit through x contains τ , and f (x) = f (τ ) = 0. Thus g(x) = g(τ ) = 0.

Thus the lemma is proved in case f is squarefree. Now let f be arbitrary. Write f = f 1 f 2 where f 1 is the product of the prime factors of f , with multiplicity 1. So f 1 is squarefree, and since G is connected and hence has no nontrivial characters, we see that f 1 is G-invariant. We have (f 1 ) |t | g |t so f 1 | g : let us write g = f 1 g 2 . By factoriality of k[g] we have (f 2 ) |t | (g 2 ) |t , so the lemma follows by induction on the degree of f . We can now prove our main result.

Theorem 3.3.3 Let S be a scheme and let G be a split simple Chevalley group over S. Assume that G is not isomorphic to Sp 2n , n 1. Then the Chevalley morphism π : t/W → g/G is an isomorphism.

Proof : By theorem 3.2.4 it is enough to prove that the map on functions is surjective. Let f be a W -invariant function on t and let f 1 be the function on G/T × t defined by f 1 (g, x) = f (x). Since it is W -invariant, it induces a function on (G/T × t)/W which we denote by the letter f 1 again. By lemma 3.1.2 the function h := f 1 • b -1 is a G-invariant relative meromorphic function whose domain of definition contains Reg(g). We may write h = k/δ m for some function k not divisible by δ, and some integer m. Since k is G-invariant on a schematically dense open subset, it is G-invariant. Assume that m 1. Let s ∈ S be a point. Since a generic element of t s is regular, h s is defined as a rational function on t s . By definition of b, we moreover have (h s ) |t = f s . It follows that we have

(k s ) |t = f s .(δ s ) m |t .
Therefore the restriction of δ s divides the restriction of k s . Lemma 3.3.2 implies that δ s divides k s . Since this is true for all s ∈ S, and p : Sing(g) → S is a relative Cartier divisor of g/S with p * O D free over S by lemma 3.1.1, then we can apply lemma 3.3.1 to conclude that δ divides k. This is a contradiction with our assumptions, therefore h is a regular function extending f to a G-invariant function on g.

In the remaining sections, we compute explicitly the ring of invariants in the case where G is one of the groups SO 2n , SO 2n+1 or Sp 2n .

4 The orthogonal group SO 2n

In the case of the group G = SO 2n , the explicit computation will prove that the formation of the adjoint quotient for the Lie algebra does not commute with all base changes. In fact, we will be able to describe exactly when commutation holds. We will see also that over a base field, the quotient is always an affine space.

Definition of SO 2n

4.1.1 The orthogonal group. The free Z-module of rank 2n is denoted by E; we think of it as the trivial vector bundle over Spec(Z). The standard quadratic form of E is defined for

v = (x 1 , y 1 , . . . , x n , y n ) by q(v) = x 1 y 1 + • • • + x n y n .
It is nondegenerate in the sense that {q = 0} ⊂ P(E) is smooth over Z. The polarization of q is

v, v ′ = q(v + v ′ ) -q(v) -q(v ′ ) = x 1 y ′ 1 + x ′ 1 y 1 + • • • + x n y ′ n + x ′ n y n .
The orthogonal group O 2n is the set of transformations P ∈ GL 2n that preserve q, more precisely, the zero locus of the morphism Ψ from GL 2n to the vector space of quadratic forms defined by Ψ(P ) = q • Pq. Thus the Lie algebra o 2n is the subscheme of gl 2n composed of matrices M such that by dΨ Id (M ) = 0 with

dΨ Id (M )(v) = v, M v .
It is not hard to verify that o 2n ⊂ gl 2n is a direct summand of the expected dimension, so that O 2n is a smooth group scheme over Z.

Remark 4.1.2 Let us denote by B the matrix of the polarization of q. Clearly, an orthogonal matrix P preserves the polarization, and it follows that t P BP = B. However, one checks easily that the subgroup X ⊂ GL 2n defined by the equations t P BP = B is not flat over Z because its function ring has 2-torsion. In fact O 2n is the biggest subscheme of X which is flat over Z.

Accordingly Lie(X) ⊂ gl 2n is defined by t M B +BM = 0, and o 2n is the biggest Z-flat subscheme of Lie(X).

4.1.3 Dickson's invariant. Over any field k, it is well-known that O 2n ⊗ k has two connected components. In odd characteristic, the determinant takes the value 1 on one and -1 on the other.

In characteristic 2 the determinant does not help to separate the connected components. Instead one usually uses Dickson's invariant D(P ) defined, for an orthogonal matrix P , to be 0 if and only if P acts trivially on the even part of the center of the Clifford algebra. Equivalently, D(P ) = 0 if and only if P is a product of an even number of reflections (there is just one exception; see [Ta], p. 160). Here is a more modern, base-ring-free way to consider the determinant and Dickson's invariant altogether: Let us introduce the Z-group scheme G = Spec(Z[u, 1 1+2u ]) with unit u = 0 and multiplication u * v = u + v + 2uv. Its fibre at 2 is isomorphic to the additive group while all other fibres are isomorphic to the multiplicative group. When one passes from det to δ, the multiplicativity formula det(P 1 P 2 ) = det(P 1 ) det(P 2 ) gives δ(P 1 P 2 ) = δ(P 1 ) + δ(P 2 ) + 2δ(P 1 )δ(P 2 ). In other words, Lemma 4.1.5 δ defines a morphism of groups O 2n → G.

The schematic image of δ is the subgroup of G given by u(u + 1) = 0, isomorphic to the constant Z-group scheme Z/2Z. Definition 4.1.6 We define SO 2n as the kernel of δ.

The group SO 2n is smooth over Z with connected fibres. The subgroup T of diagonal matrices in SO 2n is a maximal torus, we denote by t its Lie algebra and by λ i its coordinate functions. Its normalizer N is the subgroup of orthogonal monomial matrices. The Weyl group W = N/T is the semi-direct product (Z/2Z) n-1 ⋊ S n where S n is the symmetric group on n letters. It acts on T as follows. The subgroup (Z/2Z) n-1 is generated by the transformations ε i,j which take λ i and λ j to their opposite and leave all other λ k unchanged. The subgroup S n permutes the λ i . The action of W on t has analogous expressions that are immediate to write down.

4.1.7 The Pfaffian. Recall that there is a unique function on so 2n , called the pfaffian and denoted pf, such that det(M ) = (-1) n (pf(M )) 2 . (The sign (-1) n comes from the fact that in our context, the pfaffian is pf ′ (BM ) where pf ′ is the usual pfaffian.) Furthermore the pfaffian is invariant for the adjoint action of SO 2n . Proposition 4.3.2 Let O be the ring Z[X]/(2X) and denote by τ the image of X in O. Then (O, τ ) is universal among rings with a 2-torsion element. Moreover, any monomial function τ (π 1 ) α 1 . . . (π n-1 ) α n-1 on so 2n,O is independent of the choice of the lifts π i and invariant under the adjoint action of SO 2n,O . Finally, for each i ∈ {1, . . . , n} we have τ (π i ) 2 = τ c 2i .

Proof :

The universality statement about (O, τ ) means that for any pair (A, x) where A is a ring and x is a 2-torsion element of A, there is a unique morphism f : O → A such that f (τ ) = x. This is obvious. Since 2τ = 0, it is clear also that τ (π 1 ) α 1 . . . (π n-1 ) α n-1 is independent of the choice of π i . The fact that this monomial is invariant comes from the invariance of the pfaffian characteristic polynomial in characteristic 2. Finally the equalities τ (π i ) 2 = τ c 2i come from the equalities (π i ) 2 = c 2i in characteristic 2. By proposition 4.3.2, for any ring A and any x ∈ A[2], the quantity x(π 1 ) α 1 . . . (π n-1 ) α n-1 is a well-defined invariant function on so 2n,A .

Theorem 4.3.3 Let A be a ring, G = SO 2n,A , g = so 2n,A . The ring of invariants A[g] G is A[c 2 , c 4 , . . . , c 2n-2 , pf ; x(π 1 ) ǫ 1 . . . (π n-1 ) ǫ n-1 ]
where x runs through a set of generators of the 2-torsion ideal A[2] ⊂ A, and ǫ i = 0 or 1, not all 0.

Proof : By theorem 3.3.3 and proposition 4.2.1, we have A

[g] G = A[σ k (X 2 i ) ; X 1 . . . X n ; xσ k (X i )]
where as before the X i are the coordinate functions on the torus. We now use the previous proposition. Since c 2k restricts on the torus to ±σ k (X 2 i ), the pfaffian restricts to X 1 . . . X n , xπ k restricts to xσ k (X i ), and since xπ 2 i = xc 2i , the theorem is proved.

The behaviour of the ring of invariants is therefore controlled by the 2-torsion. More precisely, for a scheme S let S[2] be the closed subscheme defined by the ideal of 2-torsion. If f : S ′ → S is a morphism of schemes, we always have S ′ 

if f * S[2] = S ′ [2]. This holds in particular if 2 is invertible in O S , or if 2 = 0 in O S , or if S ′ → S is flat.
(2) Assume that S is noetherian and connected. Then the quotient is of finite type over S, and is flat over S if and only if S[2] = S or S[2] = ∅.

Proof : First we recall some general facts on the formation of the ring of invariants for the action of an affine S-group scheme G acting on an affine S-scheme X. The formation of X/G = Spec((O X ) G ) commutes with flat base change, and in particular with open immersions. It follows that if (S i ) is an open covering of S then with obvious notation X i /G i is an open set in X/G, and X/G can be obtained by glueing the schemes

X i /G i . Therefore if (S ′ i,j
) is an open covering of S i × S S ′ for all i, the formation of the quotient commutes with the base change S ′ → S if and only if for all i, j the formation of the quotient X i /G i commutes with the base change S ′ i,j → S i . This reduces the proof to the case of a base change of affine schemes S ′ = Spec(A ′ ) → S = Spec (A).

Call B (resp. B ′ ) the ring of invariants over A (resp. A ′ ). Observe that B inherits a graduation from the graduation of the function algebra of so 2n,A , and its only homogeneous elements of degree 1 are those of the form xπ 1 with x ∈ A[2]. We proceed to prove (1) and ( 2).

(1) The base change morphism

B ⊗ A A ′ → B ′ is A ′ [c, pf, xπ ǫ ] → A ′ [c, pf, x ′ π ǫ ] where c = (c 2 , c 4 , . . . , c 2n-2 ) , xπ ǫ = x(π 1 ) ǫ 1 . . . (π n-1 ) ǫ n-1 with x ∈ A[2] and x ′ π ǫ is the same quantity with x ′ ∈ A ′ [2]. This map is clearly injective. If it is surjective, then in particular for any x ′ ∈ A ′ [2] we have x ′ π 1 ∈ A ′ [c, pf, xπ ǫ ]. Thus there is a ′ ∈ A ′ and x ∈ A[2] such that x ′ π 1 = a ′ xπ 1 . Since π 1 is a nonzerodivisor we get x ′ = a ′ x, so A ′ [2] is the image of A[2]. This is exactly the assertion that f * S[2] = S ′ [2].
The converse is easy, as well as the particular cases stated in the lemma. 5 The orthogonal group SO 2n+1

For G = SO 2n+1 , the computation of the quotient is a little more involved since using the natural representation of dimension 2n + 1 brings some trouble, as we explain below. We show which point of view on SO 2n+1 will lead to the definition of the correct invariants. Then, the results are essentially the same as for G = SO 2n .

Definition of SO 2n+1

In this section, E is the free Z-module Z 2n+1 . Its standard quadratic form q is q(v) = x 1 y 1 + • • • + x n y n + z 2 where v = (x 1 , y 1 , . . . , x n , y n , z). It is nondegenerate, and its polarization is

v, v ′ = q(v + v ′ ) -q(v) -q(v ′ ) = x 1 y ′ 1 + x ′ 1 y 1 + • • • + x n y ′ n + x ′ n y n + 2zz ′ .
In contrast with the even dimensional case, in characteristic 2 the polarization has a nonzero radical which is the line generated by the last basis vector of E ⊗ F 2 . Now, let E = Z 2n+2 with canonical basis (e 1 , e ′ 1 , . . . , e n+1 , e ′ n+1 ) and standard quadratic form defined (as in 4.1) by q(v) = x 1 y 1 + • • • + x n+1 y n+1 where v = (x 1 , y 1 , . . . , x n+1 , y n+1 ). We consider the isometric embedding i : E ֒→ E given by i(x 1 , y 1 , . . . , x n , y n , z) = (x 1 , y 1 , . . . , x n , y n , z, z) .

Since i is an isometry, it is harmless to use the same letter for q and for q |E . The orthogonal subspace of E in E is the free rank 1 submodule generated by the vector ε = e n+1e ′ n+1 . Note that the group of transformations of ( E, q) is the group O 2n+2 as defined in 4.1. Then we define SO 2n+1 as a closed subgroup of SO 2n+2 by SO 2n+1 = { P ∈ SO 2n+2 , P (ε) = ε } .

Accordingly, its Lie algebra is

so 2n+1 = { M ∈ so 2n+2 , M (ε) = 0 } .
It is a simple exercise to verify that so 2n+1 ⊂ so 2n+2 is a direct summand of the expected dimension, so that SO 2n+1 is a smooth group scheme over Z.

Remark 5.1.1 Let O(q| E ) be the group of linear transformations of E that preserve q, and SO(q| E ) the kernel of the Dickson invariant. Since a matrix P ∈ SO 2n+1 preserves the line generated by ε, it preserves its orthogonal E. This leads to a morphism SO 2n+1 → SO(q|E). However, because of the existence of a one-dimensional radical in characteristic 2, one can see that the fibre SO(q|E) ⊗ F 2 is nonreduced and its reduced subscheme is the subgroup H of transformations that act as the identity on the radical. Thus SO 2n+1 → SO(q|E) is not an isomorphism. In fact, one may see that this map realizes SO 2n+1 as the dilatation of SO(q|E) with center H. Recall from [BLR], 3.2 that the dilatation is a map π : SO 2n+1 → SO(q|E) which is universal for the properties: SO 2n+1 is Z-flat and its special fibre at 2 is mapped into H. It can be checked that the dilatation is indeed smooth over Z and is the Chevalley orthogonal group. In this formulation, the special orthogonal group is not naturally a group of matrices. This is why we used another presentation.

The subgroup T ⊂ SO 2n+2 of diagonal matrices fixing ε is a maximal torus of SO 2n+1 , we denote by t its Lie algebra and by λ i its coordinate functions. Its normalizer N is the subgroup of orthogonal monomial matrices fixing ε. The Weyl group W = N/T is the semidirect product (Z/2Z) n ⋊ S n . It acts on T as follows. The subgroup (Z/2Z) n-1 is generated by the transformations ε i which take λ i to its opposite and leave all other λ k unchanged. The subgroup S n permutes the λ i .

Explicit computation of the Chevalley morphism

Let M be the universal matrix over so 2n+1 . Using the embedding of so 2n+1 into so 2n+2 , we define invariants by restriction from those of so 2n+2 defined in 4.3. For example, let us view the universal matrix M as a matrix in so 2n+2 . Since M(ε) = 0, the determinant of M vanishes and hence its characteristic polynomial in dimension 2n + 2 is

t 2n+2 + c 2 t 2n + • • • + c 2n t 2 .
We define the characteristic polynomial of M as χ(t) = t 2n+1 + c 2 t 2n-1 + • • • + c 2n t .

Note that this is not the characteristic polynomial associated to an actual action on the natural representation of dimension 2n + 1. Using again the embedding in so 2n+2 , we see that in characteristic 2 we have again a polynomial π(t) defined uniquely by the identity χ F 2 (t) = t(π F 2 (t)) 2 . By abuse, we call it again pfaffian characteristic polynomial. We may define lifts of its coefficients by the same process as in definition 4.3.1 and we obtain a polynomial π(t) = t n + π 1 t n-1 + • • • + π n-1 t + π n where π i ∈ Z[so 2n ]. As in subsection 4.3, for any ring A the elements π 1 , . . . , π n-1 , π n are algebraically independent over A. In the same way as in subsection 4.3, we prove: Proposition 5.2.1 Let (O, τ ) be the ring defined in proposition 4.3.2. Then any monomial function τ (π 1 ) α 1 . . . (π n ) αn on so 2n+1,O is independent of the choice of the lifts π i and invariant under the adjoint action of SO 2n+1,O . Also, for each i ∈ {1, . . . , n} we have τ (π i ) 2 = τ c 2i .

So for any ring A and any x ∈ A[2], the quantity x(π 1 ) α 1 . . . (π n ) αn is a well-defined invariant function on so 2n+1,A . Exactly the same proof as the proof of 4. Finally, all the statements of corollary 4.3.4 hold also word for word for G = SO 2n+1 .

  C 2 ) be the matrix of the form A B C -t A with B = C = 0 and A = I n (the identity matrix, resp. with only one non-vanishing coefficient in the top-left corner, equal to 2). Note that C 1 , C 2 ∈ spin 2n (Z) (but C 1 , C 2 are not divisible by 2 in spin 2n (Z)). For any matrix B in spin(Z) ⊂ so(Z), we obviously have [C 1 , B] = 0 and 2|[C 2 ,

  to sp 2n if and only if D = -t A and B and C are symmetric matrices. Choosing the torus t = d 0 0 -d in sl 2n , and ǫ i the coordinate forms on t, it is well-known and easy to check that the long roots are ±2ǫ i . It follows that h = d δ ǫ -d : d, δ, ǫ diagonal .

  There is a unique element δ ∈ Z[O 2n ] such that det = 1 + 2δ.Proof : Since for any P ∈ O 2n , we have det(P ) ∈ {-1, 1}, the function det -1 vanishes on the fibre O 2n ⊗ F 2 . Since O 2n ⊗ F 2 is reduced, 2 divides det -1, yielding the existence of δ. It is unique because O 2n is flat over Z, and in particular has no 2-torsion.

  [2] ⊂ f * S[2]. We have: Corollary 4.3.4 (1) The formation of the quotient in the previous theorem commutes with a base change f : S ′ → S if and only

  (2) If A is noetherian, A[2] is finitely generated and then B is of finite type over A. Now let I := A[2]. If I = 0 then B is a polynomial ring, and this is also the case if I = A because then c 2 , c 4 , . . . , c 2n-2 are polynomials in pf(M), π 1 , . . . , π n-1 . It remains to prove that if B is flat over A then I = 0 or I = A. In this case the 2-torsion ideal of B is IB, as we see from tensoring by B the exact sequence 0 → A/I ×2 → A → A/2 → 0 . So for any y ∈ I, we have yπ 1 ∈ B[2] = IB hence we may write yπ 1= i 1 b 1 + • • • + i r b r with i k ∈ I and b k ∈ B.Let x k π 1 be the degree 1 component of b k , then by taking the components of degree 1 and using the fact that π 1 is a nonzerodivisor, we find y= i 1 x 1 + • • • + i r x r ∈ I 2 .Thus I = I 2 , and if the spectrum of A is connected, this implies I = 0 or I = A.

  3.3 gives:Theorem 5.2.2 Let A be a ring and G = SO 2n+1,A . Then the ring of functions of g/G isA[c 2 , c 4 , . . . , c 2n ; x(π 1 ) ǫ 1 . . . (π n ) ǫn ]where x runs through a set of generators of the 2-torsion ideal A[2] ⊂ A, and ǫ i = 0 or 1, not all 0.
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Invariants of the Weyl group

We denote by t the n-dimensional affine space with coordinate functions X i , and by W the group generated by the permutations of the coordinates and the reflections ε i,j which map X i and X j to their opposite and leave the other coordinates invariant. We denote by σ k the complete elementary symmetric functions in n variables.

Proposition 4.2.1 Let A be a ring, then A[t] W is generated by X 1 • • • X n , σ k (X 2 i ), and xσ k (X i ), where k < n and x runs through the 2-torsion ideal of A.

Proof : Let F be a function in X 1 , . . . , X n which is invariant under the Weyl group. Let us say that a monomial is good if the exponents of its variables X i all have the same parity (this is either a monomial in the X

We say that it is bad otherwise. We can write uniquely F as the sum of its good part and its bad part:

The group W respects this decomposition, hence F being W -invariant, its good and bad parts also are. In particular they are S n -invariant, so that

Letting the ε i,j act, we see that all coefficients of G 2 must be 2-torsion. The proposition is therefore proved.

Computation of the Chevalley morphism

In this subsection we will describe explicitly the invariants of so 2n under SO 2n that correspond to the Weyl group invariants under theorem 3.3.3, see theorem 4.3.3 below. The Lie algebra so 2n has a universal matrix M whose most important attributes are its characteristic polynomial χ and its pfaffian pf = pf(M). In fact M and χ are the restrictions of the universal matrix of gl 2n and its characteristic polynomial. From the equality t MB + BM = 0 (see 4.1.2) it follows that χ is an even polynomial, that is to say

The functions c 2i are invariants of the adjoint action; note that

There are some more invariants coming from characteristic 2. Indeed, in this case the polar form is alternating, so homotheties are antisymmetric and we can define the pfaffian characteristic polynomial by

We have χ F 2 (t) = (π F 2 (t)) 2 . Now let us consider one particular lift of π F 2 to Z:

where π n := pf(M) and the other coefficients π i (1 i n -1) are the lifts of the corresponding coefficients of π F 2 via σ.

We note that for any ring A, the (images of the) elements π 1 , . . . , π n-1 , π n are algebraically independent over A, because they restrict on a maximal torus to the functions σ i (X j ), the symmetric functions in the coordinates, which are themselves algebraically independent over A. We defined the functions π i by arbitrary lifting, but we can make them somehow universal:

6 The symplectic group Sp 2n

The computation of the adjoint quotient and of the Chevalley morphism π : t/W → g/G for Sp 2n requires the preliminary computation of the corresponding quantity for the group SL 2 . We also found it interesting to deal with the case of P SL 2 .

6.1 Preliminary cases: SL 2 and P SL 2

We denote by a b c -a the universal matrix of sl 2 ; therefore A[a] is the ring of functions on t over A. The same proof as that of proposition 4.2.1 yields:

We set det(a, b, c) = -a 2bc. This fact and the next proposition show that we don't have t/W ≃ g/G:

Proposition 6.1.2 Let A be a ring, then

Proof : The action of the diagonal matrix u 0 0 u -1 on the coordinate functions reads:

Any invariant polynomial can therefore be written as a polynomial in a and bc.

On the other hand the action of the unipotent element 1 t 0 1 reads:

Assume we have a homogeneous invariant of odd degree 2d + 1. Since it is a polynomial in a and bc, it can be written as af (a 2 , bc), with f homogeneous of degree d. We consider the identity af (a 2 , bc)

and specialise to a = 0. We get tcf

Thus there are no invariants of odd degree and the image of the restriction morphism is included in A[a 2 ]. Since det is an invariant, this image is exactly A[a 2 ], which implies the proposition.

We pass to P SL 2 . By proposition 2.4.1 and its proof, the coordinate ring of psl 2 over A is A[α, b, c], where α = 2a. Fact 6.1.3 Let A be a ring, then

On the other hand, 4 det = -α 2 -4bc is certainly an invariant in the coordinate ring, as well as xα, if x ∈ A is a 2-torsion element, since by (3) α is mapped to α + 2tc under the action of the unipotent element 1 t 0 1 . Thus the proposition is proved.

Explicit computation of the Chevalley morphism

We denote by t the n-dimensional affine space with coordinate functions X i , and W the group generated by the permutations of the coordinates and the reflections ε i which map X i to its opposite and leave the other coordinates invariant. Recall that σ k denotes the complete elementary symmetric functions in n variables. The same proof as for proposition 4.2.1 yields:

where k < n and x runs through the 2-torsion ideal of A.

We denote by E the natural representation of G = Sp 2n , of dimension 2n. By definition, we therefore have a morphism G → GL(E), which also induces a morphism g → gl(E). Let M be the universal matrix over gl(E), and let χ be its characteristic polynomial:

Theorem 6.2.2 Let A be a ring and G = Sp 2n,A . Then the morphism π : t/W → g/G is an isomorphism if and only if A has no 2-torsion. Moreover, the ring of functions of g/G is