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Estimating the state and the unknown inputs of nonlinear systems using a multiple model approach

This paper addresses both state and unknown input estimationp roblem of nonlinear systems modelled with the help of a particularc lass of multiple models, known as decoupled multiple model. The simultaneous estimation oft he state and the unknown inputs is achievedu singaproportionalintegral observer that is well knownby its robustness properties. The proposed observer allows the use of submodels with different dimensions and this fact offers potential applications in the multiple model framework. The LMI framework is used in order to provide sufficient conditions fore nsuring exponential convergence oftheestimation error and robust H ∞ performances with respectt o perturbations.
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I. INTRODUCTION

The simultaneous estimation of the statea nd the unknown inputs (UI) of a system is a keyproblem in many engineering applications due to the practical and/or economical problems arising when measuring signals of a process. A robust state estimation with respectt o UI plays thereforeafundamental role inn u merouss ystem control and/or supervision strategies. With regard to this last purpose, an UI cangenerallybe employed inorder to modelling an actuatorf ailureand/or an abnormal behaviour of an internal component of the system. Clearly, the stateand the UI estimations canbeemployed for providing fault symptoms of the systems ino rder to make the systemm ore reliablea nd safe.

Classically, a statee stimation of a system subjectt o UI canb e obtained by means of the so called unknown input observer (UIO). The goal of the UIO is top rovide state reconstruction of the system with some robustness with respectt op o ssible UI. Design of UIO has been extensively investigated in the literaturea nd design procedures forr educed-order UIO [START_REF] Hou | Design of observers for linear systems with unknown inputs[END_REF] and full-order UIO [START_REF] Darouach | Full-order observers for linear systems withunknown inputs[END_REF] have been proposed (see [START_REF] Witczak | Modelling and estimation strategies for fault diagnosisi of non-linearsystems[END_REF]f or ac omprehensive study of UI observer problem). Recently, in [START_REF] Hui | Observer design for systems withu n k n o wn inputs[END_REF] a projection operator approach is used tod esign full and reducer-order UIO. Comparison and relation between the proposedobserver and other classic UIO architectures area lsop roposed. Note however thatt he UI estimation is not considered in these works.

In [START_REF] Hou | Input observability and input reconstruction[END_REF] iss hown thatt he UIr econstruction is very close to the system inversion. Hence, derivatives of the measurements must be used in the UIr econstruction problem. Consequently, UI estimation sensibility with respectt o measurements noise is oftenu n avoidable. In [START_REF] Corless | Statea nd input estimation for ac lass of uncertain systems[END_REF] thea symptotic This work is partially supportedb ythe Conseil Régional de Lorraine (France) and by the TASSILI n.07 program under MDU grant 714.

Thea uthors are with Centre de Recherchee n Automatique de Nancy (CRAN), Nancy-Université, CNRS, 2 avenue de la Forêt de Haye F-54516, Vandoeuvre-lès-Nancy {rodolfo.orjuela, benoit.marx, jose.ragot, didier.maquin}@ensem.inpl-nancy.fr system statea nd UI estimation with any desired accuracy is proposed. In this approach the use of time derivative of the measurements is avoided.

The Proportional-Integral Observer( PIO) constitutes an other attractive way to solve the UI problem withouti nvolving the time derivative of the measurements. The PIO is well knownb yits robustness properties [START_REF] Bealea | Robust control system design with a proportionali ntegral observer[END_REF], [START_REF] Weinmann | Uncertain Models and Robust Control[END_REF] and it has been successfully employed ino rder to cope with the statea nd the UI estimations [START_REF] Söffker | Fault detection using Proportional-Integral Observerf or application to elastic mechanical structures[END_REF]- [START_REF] Xiong | Unknownd isturbance inputs estimation based on a state functional observer design[END_REF]. It has been established that, in thec ontext of system supervision, the PIO canb e used as robust residual generator [START_REF] Shafai | Simultaneous disturbance attenuation and fault detection using proportionalintegral observers[END_REF], [START_REF] Van Schrick | Some aspects on the proportionalintegral observer in the fieldo f system supervision[END_REF].

However, most of these works assume thatt he system has a linear behaviour whereas inp ractice many processes have generally a nonlinear dynamic behaviour. Hence the use of a single linear model for modelling the dynamic behaviour of a system in the whole operating space canbe unsuitedbecause the linearity assumption of the system is onlyv alid in the neighbourhood of ano p erating point. On the other hand, the observer design problem for generic nonlinear models is delicatea nd actually this problem is not solved in a general way.

Multiple models area n effective toolt o accurately represent nonlinear dynamic behaviours using a model structure potentiallyu sable for extending, in an elegant way, some results obtained in the linear controlt heory to nonlinear systems. In this modelling strategy thec omplexityo f the system is reducedbya decomposition of the operating range of the system in a finite number of operating zones [START_REF] Murray-Smith | Multiple model approaches to modelling and control[END_REF]. Eacho p erating zone is then characterisedb ya submodel, often a linear model, and the global modeli s obtainedb y interpolating the submodels viaaweighting function.

A multiple model can therefore be viewed as an association of a set of submodels blendedb yan interpolation mechanism. As pointed in [START_REF] Filev | Fuzzy modeling of complex systems[END_REF], different multiple models canb e obtainedu sing different aggregation structures of the submodels. Basically, two main structures canb e distinguished. In the first one, the submodelss hare the same state vector( Takagi-Sugeno multiple model);i n the second one, the submodels are decoupled and their state vectors are different (decoupled multiple model). Of course, the resulting multiple models obtainedb ythea ssociation of the same set of submodels do not givea n equivalent dynamic behaviour.

The Takagi-Sugeno model has been largely considered for analysis, modelling, control and stateestimation of nonlinear systems (see among others [START_REF] Murray-Smith | Multiple model approaches to modelling and control[END_REF], [START_REF] Takagi | Fuzzy identification of systems and its application to modelling and control[END_REF]- [START_REF] Bergstern | Observers for Takagi-Sugeno fuzzy systems[END_REF] and references therein). Structural similarities between this multiple model and others models, for example linear parameter varying models (LPV), have been established in the literature [START_REF] Babuska | Fuzzy modeling for control[END_REF]. Indeed, in this multiple modelt he submodel association is performed in the dynamice quation of the model viaa common state vector. Consequently, the dimension of the submodels must be identical. Hence, the use of this multiple modeli n some blackb o xmodelling problems can lead to a redundant multiple model because the submodel dimensions must be identicali n eacho p erating zonee ven if a low dimension submodel canb e used in a particular zone.

The second multiple model structure canbeexpected tobe more flexible in the modelling stage because theaggregation of submodels is performed in such a way thatt he dimension of the submodels mayb e different. Therefore the dimension of each submodel canb e well adapted to eacho p erating zone (details are given in section 2). Note thati n contrast to the Takagi-Sugeno form, less attention has beenp aid in the literature to the decoupled multiple model. However, feww orks in modelling [START_REF] Venkat | Identification of complex nonlinear processes basedo nfuzzyd ecomposition of the steady state space[END_REF], [START_REF] Thiaw | Implementation of recurrent multi-models for system identification[END_REF], control [START_REF] Gawthrop | Continuous-time local state local model networks[END_REF]- [START_REF] Gregorcica | Control of highlyn o n linear processes using self-tuning control and multiple/local model approaches[END_REF] and statee stimation [START_REF] Uppal | A hybridn euro-fuzzy and decoupling approach applied to the DAMADICS benchmarkp roblem[END_REF], [START_REF] Orjuela | Statee stimation for nonlinear systems using a decoupled multiple model[END_REF] of nonlinear systems have made a successfuli mplementation of thiss tructurea nd shown its relevance.

The main contribution of this paper is thee xtension of the proportional-integral observer design procedure used in the linear theory to the nonlinear systems modelledb y a decoupled multiple model. Exponential convergence is obtained in the disturbance free casea nd in the presence of UI, H ∞ performance is assured.

The paper is organized as follows. The decoupled multiple modeli s presented in section 2. Preliminaries and problem statement are presented in section 3. In section 4, the robust H ∞ observer design is investigated and the gains of the observer are obtainedb yLMI optimization. Finally, in section 5, a simulation example illustrates the statea nd UI estimations of a decoupled multiple model.

II. ON THE DECOUPLED MULTIPLE MODEL

The multiple model exploits the idea that complexd y n amic behaviours canbeaccurately represented with the helpof an interpolation of simple submodels. In this modelling framework thea ggregation of these submodels canb e performed using several ways. The decoupled multiple modeli s among them [START_REF] Filev | Fuzzy modeling of complex systems[END_REF]. In this paper, it iss lightly modifiedu sing a state space representation as follows:

ẋi (t) = A i x i (t) + B i u(t) + D i η(t) +V i w(t) , (1a) y i (t) = C i x i (t) , (1b) 
y(t) = L ∑ i=1 µ i (ξ (t))y i (t) + Eη(t) +W w(t) , (1c) 
where x i ∈ R n i and y i ∈ R p are respectively the state vector and the output of the i th submodel; u ∈ R m is the known input, η ∈ R q the unknown input, y ∈ R p the measuredoutput and w ∈ R r the perturbation. The matrices

A i ∈ R n i ×n i , B i ∈ R n i ×m , D i ∈ R n i ×q , V i ∈ R n i ×r , C i ∈ R p×n i , E ∈ R p×q
and W ∈ R p×r are known and appropriatelyd imensioned. The so calledd ecision variable signal ξ (t) is assumed to be known and real-timeavailable (e.g. the inputs, the outputs and exogenouss ignals). Thec ontribution of the submodels are quantifiedbythe weighting functions µ i (ξ (t)) that satisfy the following convex sum constraints:

L ∑ i=1 µ i (ξ (t)) = 1 and 0 ≤ µ i (ξ (t)) ≤ 1 , ∀i = 1...L, ∀t. (2)
It shouldb e mentioned thatt he weighting functions may take intermediaryv alues over the range 0 to1 . This is due top o ssible overlapping of operating zones. Therefore the multiple model has a true nonlinear dynamic behaviour insteado f a piecewise linear behaviour.

As pointed in the introduction, in this multiple model no blend between the parameters of the submodels is performed. Consequently, the dimension (i.e. the number of states) of the submodels canb e different and therefore this multiple model form issuitable for a blackboxmodelling of complex systems withvariable structureand/or variablecomplexity in eacho p erating zone. The model parameters canb e obtained from a set of measured input and output data using appropriate identification methods proposed for instance in [START_REF] Venkat | Identification of complex nonlinear processes basedo nfuzzyd ecomposition of the steady state space[END_REF], [START_REF] Thiaw | Implementation of recurrent multi-models for system identification[END_REF], [START_REF] Orjuela | Nonlinear system identification using uncoupled state multiple-model approach[END_REF].

Besides, in this multiple model, the outputs y i (t) of the submodels are" virtual outputs", i.e. no physicali nterpretation is available. These outputs must bec onsidered as artificial modelling signals onlyu sed in the goalt op rovide a representation of the real system behaviour. Consequently the outputs y i (t) cannot be viewed as accessible signals and therefore they cannot bee mployed for driving ano b server.

Finally, let us remark thati n some particular situations, a discontinuity in the multiple model output appears when a submodelt hati s awayo f thec urrent operating zone is suddenly taken into consideration for building the multiple model output. Of course, this phenomenon does not appear in a systematic way and it depends on the dynamics of the submodels and/or on thec hoice of the decision variable. When the input of the system is employed as decision variable, this undesirable phenomenon can effectivelyb e overcame by using a filteredv alue of the decision variable insteadof its direct value. Usually, a low-pass filter withunit gain is employed. The parameters of this filter are obtained using a priori knowledge of the system [START_REF] Gatzkea | Multiple model approach for CSTR control[END_REF] or by considering them as unknownp arameters in the identification stage [START_REF] Orjuela | Nonlinear system identification using uncoupled state multiple-model approach[END_REF].

Notations: the following notations will be used all along this paper. P > 0 (P < 0) denotes a positive (negative) definite matrix P; X T denotes the transpose of matrix X, I is the identity matrixof appropriate dimension and diag{A 1 ,...,A n } stands for a block-diagonal matrix with the matrices A i on the maind iagonal. The L 2 -norm of a signal, quantifying its energy is denoted and definedb y e(t) 2 2 =

∞ 0 e T (t)e(t)dt.

Finally, we shall simply write µ i (ξ (t)) = µ i (t).

III. PRELIMINARIES AND PROBLEM FORMULATION

Let us consider the decoupled multiple model (1) in the following compact form:

ẋ(t) = Ãx(t) + Bu(t) + Dη(t) + Ṽ w(t) , (3a) 
y(t) = C(t)x(t) + Eη(t) +W w(t) , (3b) 
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where:

à = diag {A 1 ••• A i ••• A L } , (4) 
B = B 1 T ••• B i T ••• B L T T , (5) 
D = D 1 T ••• D i T ••• D L T T , (6) 
Ṽ = V 1 T •••V i T •••V L T T , (7) 
C(t) = µ 1 (t)C 1 ••• µ i (t)C i ••• µ L (t)C L , (8) 
x(t) = x T 1 (t) •••x T i (t) •••x T L (t) T ∈ R n , n = L ∑ i=1 n i . ( 9 
)
The reader mayh ave noticed thatt he matrix C(t) canb e rewritten as follows:

C(t) = L ∑ i=1 µ i (t) Ci , ( 10 
)
where Ci is ac onstant block matrixg ivenb y :

Ci = 0 ••• C i ••• 0 . ( 11 
)
Our objective is top rovideasimultaneous estimation of the statea nd the UI of the system (3). To this end, the following PIO is employed:

ẋ(t) = Ã x(t) + Bu(t) + D η(t) + K(y(t) -ŷ(t)) , (12a) η(t) = K1 (y(t) -ŷ(t)) , (12b) ŷ 
(t) = C(t) x(t) + E η(t) . (12c) 
The use of an integral action given in the second equation of ( 12) is att he origino f the designation Proportional-Integral Observer. The use of this integral action allows a reconstruction of the UI under the following two assumptions: Assumption 1: The unknown input signal η(t) iss upposed tob eac onstant signal. Assumption 2: The perturbation is bounded energy signal, i.e. w(t) 2 2 < ∞.

Now, let us define the statee stimation error by:

e(t) = x(t) -x(t) , (13) 
and its time-derivative by:

ė(t) = L ∑ i=1 µ i (t)( Ã -K Ci )e(t) + ( D -KE)ε(t) + ( Ṽ -KW )w(t) . ( 14 
)
where ε(t) is the UI estimation error givenb y :

ε(t) = η(t) -η(t) , (15) 
and its time-derivative is givenb y :

ε(t) = η(t) -K1 C(t)e(t) -K1 Eε(t) -K1 W w(t) . (16) 
Note thatt he firstt erm of the right-hand side of thea bove equation vanishes by considering thea ssumption 1:

ε(t) = -K1 C(t)e(t) -K1 Eε(t) -K1 W w(t) . (17) 
Finally, by introducing the following augmentedv ector:

Σ(t) = e T (t) ε T (t) T ∈ R n+q , (18) 
thee quations ( 14) and ( 17) canb e gathered as follows:

Σ(t) = Ãa (t)Σ(t) + (V a -K a W )w(t) , (19) 
where

Ãa (t) = L ∑ i=1 µ i (t)Φ i , (20) 
Φ i = A a -K a C i , (21) 
and

A a = Ã D 00 , K a = K K1 , C i = CT i E T T , V a = Ṽ 0 . (22) 
The robust observer design problem can thus be formulated as finding the matrixg ain K a ∈ R (n+p)×p such thatt he influence of w(t) on Σ(t) is attenuated. Now let us consider the following objective signal:

z(t) = HΣ(t) , ( 23 
)
where H is a prescribed constant matrix and the following H ∞ performance constraints:

lim t→∞ Σ(t) = 0 for w(t) = 0 , (24a) 
z(t) 2 2 ≤ γ 2 w(t) 2 2
for w(t) = 0 and z(0

) = 0 , ( 24b 
)
where γ is the L 2 gain from w(t) to z(t) tobe minimised. The matrix H in ( 23) is used ino rder to take into consideration totallyo r partially thec omponents of thee stimation error Σ(t) givenb y [START_REF] Bergstern | Observers for Takagi-Sugeno fuzzy systems[END_REF]. Notice thatt hec ondition (24a) will be investigatedb yimposing thee xponential convergence of thee stimation error. Thee xponential convergence of the estimation error is a way to ensureaconvergence velocityof theestimation error viaadecay rate and to improve dynamic performances of the observer.

IV. UNKNOWN INPUT OBSERVER DESIGN

Thiss ection deals with the H ∞ estimation problem, based on the decoupled multiple model (3), using the PIO [START_REF] Xiong | Unknownd isturbance inputs estimation based on a state functional observer design[END_REF].

It shouldb e noted that, in the multiple model framework, anu n stable multiple model canb e obtainedv ia the interpolation of a set of stable submodels and a stable multiple model canb e obtainedv iaa n interpolation of a set of unstable submodels. Hence, independent observer designs for each submodel cannot guarantee the global convergence of thee stimation error [START_REF] Babuska | Fuzzy modeling for control[END_REF]. Indeed, the blending between the submodel outputs must be taken into consideration in the observer design.

In thissection, conditions for ensuring theestimation error convergence, under constraints [START_REF] Gregorcica | Control of highlyn o n linear processes using self-tuning control and multiple/local model approaches[END_REF], aree stablished in LMI framework [START_REF] Boyd | Linear Matrix Inequalities inS ystem and Control Theory[END_REF] using a quadratic Lyapunov function. Our main result iss ummarized in the following theorem:

Theorem 1: The PI observer [START_REF] Xiong | Unknownd isturbance inputs estimation based on a state functional observer design[END_REF]f or the decoupled multiple model (3), under constraints [START_REF] Gregorcica | Control of highlyn o n linear processes using self-tuning control and multiple/local model approaches[END_REF], is obtained if there exists a symmetric, positive definite matrix P and a matrix M minimizing γ > 0 under the following LMIs

∆ i + ∆ T i + H T H Γ Γ T -γ I < 0, i = 1...L (25)
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where

∆ i = P(A a + αI) -MC i , Γ = PV a -MW ,
for a prescribed α > 0.

The observer gain is givenbyK a = P -1 M and the L 2 gain from w(t) to z(t) is givenb yγ = γ.

Proof: Let us consider the quadratic Lyapunov function:

V (t) = Σ T (t)PΣ(t), P > 0 P = P T , (26) 
classically, thee xponential convergence of thee stimation error Σ(t) when w(t) = 0 is investigatedb ytaking into consideration the following condition:

V (t) < -2αV (t) , ( 27 
)
where α is the so called decay rate. Here, thea bove condition is replacedb ythe following condition:

V (t) < -2αV (t) -z T (t)z(t) + γ 2 w T (t)w(t) . ( 28 
)
ino rder tog u aranteed robust performances [START_REF] Gregorcica | Control of highlyn o n linear processes using self-tuning control and multiple/local model approaches[END_REF]. Indeed, it canb e noted thatt he integration of condition ( 28) yields:

∞ 0 ( V (t) + 2αV (t))dt < - ∞ 0 z T (t)z(t)dt + γ 2 ∞ 0 w T (t)w(t)dt , (29) 
and by taking into consideration the positivityo f the Lyapunov function, V (∞) > 0 and V (0) = 0, the left-hand side of this inequality is positivea nd implies that:

z(t) 2 2 < γ 2 w(t) 2 2 , (30) 
hence thea ttenuation level between the perturbation w(t) and the objective signal z(t), givenb y(24b), is ensured if thec ondition ( 28) is fulfilled. Consequently, conditions verifying (28) must bee stablished ino rder to satisfy robust performances [START_REF] Gregorcica | Control of highlyn o n linear processes using self-tuning control and multiple/local model approaches[END_REF] and exponential convergence of thee stimation error.

The time-derivative of( 26) along the trajectories of( 18) is givenb y :

V (t) = ΣT (t)PΣ(t) + Σ T (t)P Σ(t) , (31) 
that becomes by using [START_REF] Babuska | Fuzzy modeling for control[END_REF]:

V (t) = Σ T (t) ÃT a (t)P + P Ãa (t) Σ(t) + w T (t)(V a -K a W ) T PΣ(t) (32) + Σ T (t)P(V a -K a W )w(t) .
Thea bovee quation canb e rewritten in the following compact form as:

V (t) = ψ(t) T Ω(t)ψ(t) , (33) 
where

Ω(t) = ÃT a (t)P + P Ãa (t) P(V a -K a W ) (V a -K a W ) T P 0 , (34) 
ψ(t) = Σ T (t) w T (t) T . (35) 
Now, substituting ( 26) and ( 33) into (28) yields:

ψ T (t) Ω(t) + H T H + 2αP 0 0 -γ 2 I ψ(t) < 0 , (36) 
which is a quadratic form in ψ(t). Therefore the negativityof theaboveexpression is guaranteedbyensuring the negativity of thee xpression inside the brackets. Hence, by using (34) and the definition [START_REF] Venkat | Identification of complex nonlinear processes basedo nfuzzyd ecomposition of the steady state space[END_REF] of Ãa (t), the negativityo f( 36) iss atisfied by:

L ∑ i=1 µ i (t) Φ T i P + PΦ i + H T H + 2αPP (V a -K a W ) (V a -K a W ) T P -γ 2 I < 0 , (37) 
which is alsog u aranteed according to thec onvex sum properties of the weighting functions (2) by:

Φ T i P + PΦ i + H T H + 2αPP (V a -K a W ) (V a -K a W ) T P -γ 2 I < 0 , (38) 
for i = 1...L. Finally, let us notice thatt his inequality is not a LMI in P, K a , α and γ. However, it becomes a LMI by choosing a prescribed α and setting M = PK a and γ = γ 2 . Hence standard convexo p timization algorithms canb e used to find matrices P and M minimising γ, for a prescribed α.

On the other hand, the negativityof condition (38) implies the negativityo f the block (1,1), consequently:

P(A a + αI -K a C i ) + (A a + αI -K a C i ) T P < 0 , (39) 
for i = 1...L, which means that exponential convergence of thee stimation error is guaranteed in the free perturbation case because the matrix Ãa (t) in ( 19) is Hurwitz for any blend between the submodel outputs [START_REF] Orjuela | Statee stimation for nonlinear systems using a decoupled multiple model[END_REF]. Hence, thec ondition (24a) iss atisfiedu n d er w(t) = 0 and this completes the proof.

V. SIMULATION EXAMPLE Consider the following two submodels of a decoupled multiple model: Here, the objective signal z(t) tob ea ttenuated is the state estimation error of the submodels, thus H = [I (5×5) 0 (5×2) ] in [START_REF] Gatzkea | Multiple model approach for CSTR control[END_REF]. The disturbance and the UI of the system are respectivelyg ivenb y :

w(t) = 0.4 sin(40t) 0.35 sin(60t) , η(t) = η 1 (t) η 2 (t) ,
where η 1 (t) is a piecewisec onstant signal for which the assumption 1 is well checked, and η 2 (t) is voluntarily taken as a rampb etween t = 600 and t = 1000, so thea ssumption 1 is not fulfilled in this range (see figures 2 and 3). The weighting functions are obtained from normalised Gaussian functions:

µ i (ξ (t)) = ω i (ξ (t))/ L ∑ j=1 ω j (ξ (t)) , (40) 
ω i (ξ (t)) = exp -(ξ (t) -c i ) 2 /σ 2 , (41) 
with the standardd eviation σ = 0.5 and thec e ntres c 1 = 0.25 and c 2 = 0.75. Here, the decision variable ξ (t) is the filtered input signal u(t) of the system:

ξ (t) = -0.1ξ (t) + 0.1u(t) , (42) 
and the input signal u(t) is a piecewisec onstant signal with variablea mplitudes in the range of variation [0, 1]. Note that the weighting functions are not null or equalt oo n e (see figure 1 (bottom)). Consequently the multiple model output is obtainedb ytaking into consideration thec ontribution of both submodels all the time. On the other hand, thee igenvalues of the submodels are givenb y: λ 1 = -0.19 -0.80 ± 0.78i and λ 2 = -0.3 -0.25 , thus the dynamics of the submodels are different and the dynamic behaviour of the multiple model canbee xpected to be nonlinear( figure 1 

(top)).

A solution to conditions of theorem 1 canb e found by using, for example, YA LMIP interface [START_REF] Löfberg | YA LMIP : A toolbox for modeling and optimization in MATLAB[END_REF] coupled to Se-DuMi solver [START_REF] Sturm | Using SeDuMi 1.02, A Matlab toolbox for optimization over symmetricc ones[END_REF]. Choosing a decay rate α = 0.1, conditions of theorem 1 are fulfilled with: As onecan see in this example, theassumption 1 is needed for theoretical proofs but our approach remains effective in practical cases where thea ssumption 1 is not satisfied, of course the UI must bealow frequency signal (constant or slowlyv arying-time signal). The UIr econstruction canb e improvedb yreplacing the use of onlyo n e observer by a bank of dedicatedobservers. Hence eachobserver is designed using the same procedure but by changing the prescribed !"#' 

K a = 2 

VI. CONCLUSION AND FUTURE WORKS

In the present paper an extension of proportional-integral observer is presented for estimating the state variables and the unknown inputs of nonlinear systems modelledb ya decoupled multiple model. Thanks to the structure of the proposed modelt he number of the states, i.e. the dimension, of each submodel mayb e different and consequently some flexibility in a blackboxmodelling stagecanbe is provided. Systematic procedure, basedo nthe LMIf r amework, has been established inorder todesign an UI observer which ensures thee xponential convergence and robust performances of thee stimation error. Thee ffectiveness of the proposed approach is illustratedv iaasimulation example.

The suggestedobserver canbe used, as an extension of the classic generalizedobserver scheme, in the detection and the isolation of sensor and actuatorf ailures of complex systems. Improvements to the proposedo b server, ino rder to take into consideration a more general class of unknown inputs, provides promising prospects in the future. Inp articular, the use of severali ntegral actions by using a Multi-Integral Observer architecturec a nb ea n effective way ino rder to apply the proposedp rocedure to non constant unknown inputs.
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 1 Fig. 1. Multiple model outputs (top) and weighting functions (bottom)
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 234 Fig. 2. Statee stimation errors of submodel 1
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 5 Fig. 5. η 2 (t) and its estimate

  in figures 2 and 3 and the provided UI estimation in figures 4 and 5. Let us notice thati n the simulation the initial conditions of the multiple model are not null and the initial conditions of the observer are null. It canbe seen from these figures thatt he statee stimation errorr emains globally bounded and close to zero. Iti s punctually affected when the value of the UI changes abruptly, for examplea t t = 33, obviously thea ssumption 1 is not respected. On the other hand, the proposedobserver yields an excellent UI estimation even if thea ssumption 1 is nott ruly respected (see figures 4 and 5). Note however thati nb o th case thee stimation error has a good transient response.
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3.80 3.18 2.94 0.95 -0.64 -1.29 0.81 1.64 3.34 1.07 T with a minimal attenuation level givenb yγ = 1.29. The statee stimation errors obtainedb ythe proposedo b server are plotted