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Abstract. Type-logical grammars which have been automatically ex-
tracted from linguistic corpora provide parsers for these grammars with
a considerable challenge. The size of the lexicon and the combinatory
possibilities of the lexical entries both call for rethinking of the tradi-
tional type-logical parsing strategies. We show how methods from statis-
tical natural language processing can be incorporated into a type-logical
parser, give some preliminary data and sketch some new experiments we
expect to produce better results.

1 Introduction

Parsers for type-logical grammars, such as the one presented in [1] have been used
in teaching and research environments to experiment with carefully designed
grammar fragments.

When we look at the algorithm of [2], which produces a type-logical lexicon
from the syntactic annotation of the Spoken Dutch Corpus, we see that the size
of the final lexicon, even after some reductions we propose, is still prohibitive to
parsing even rather small sentences.

We propose to incorporate ideas from the statistical parsing community into
a type-logical parser and present some preliminary results.

2 Type-Logical Grammar

Type-logical grammar is an elegant formalism, giving precise logical descriptions
of linguistic phenomena [3, 4].

In this section we will first introduce the formalism and then present a basic
parsing algorithm for type-logical grammars.

2.1 Formalism

We will present type-logical grammar in the style of [5]. We’ll start by presenting
it as a simple grammar which simple allows us to combine lexical trees and
gradually add what we need to obtain the full type-logical system we’re interested
in, referring the reader interested in a more detailed account to any of the above-
mentioned articles.
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Fig. 1. Sample lexicon

Tree Grammars In it’s simplest incarnation we just have a lexicon of trees,
where a) every tree is labeled at its root with an atomic formula, b) exactly one
leaf of every tree is labeled with an word, and ¢) every other leaf is labeled with
an atomic formula.

An example of such a lexicon for a Dutch grammar is given in Figure 1. For
the benefit of the reader, we've given an English translation below every word,
though these are not formally a part of the grammar.

A word like ‘Tasman’ has the most basic lexical entry: it is just an np typed
tree. The lexical entry for ‘sailed’ is slightly more complicated it is an s typed
tree, but it still needs to find an np typed tree with ‘Tasman’ as its lexical leaf.
We can combine these two trees to form a tree of ‘Tasman zeiled’ which is a
tree of type s, as shown on the left side of Figure 2 on the next page. We can
continue combining this tree with the other lexical entries to produce the tree
for ‘Tasman zeilde op het echte schip’ which is shown in the same figure on the
right.

Contractions In order to obtain the symmetries required to call our formal
system a logic we need to be able to do more than construct trees, we also need
some inverse operators which destroy or ‘cancel out’ the normal tree constructors.

Figure 3 on the facing page gives two example lexical entries for the Dutch
word ‘wie’ utilizing these inverse operators, which are drawn with a black circle.
Intuitively the left entry says it produces a wh question if it combines with a
sentence, but in addition it is allowed to fulfill the role of an np inside this
sentence.

The actual cancellation of the destructors takes place by means of the con-
tractions given in Figure 4 on the next page. In every case a constructor is
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Fig. 4. Contractions



connected to a destructor at the two points not marked by the arrow and the
constructor and destructor cancel out each other. In the result of the cancellation
the previously distinct vertices x and y will be connected.

whq whq whq

‘who’ ‘who’ ‘who’ ‘sailed’

np

np

‘sailed’ ‘sailed’

Fig. 5. An example derivation of ‘wie zeilde’

As an example, if we combine the lexical entry for ‘wie’ with the lexical entry
for ‘zeilde’, we can combine them into a valid wh question as shown in Figure 5.
On the left we see the result after connecting the s formulas, in the middle the
np formulas have also been connected, producing the configuration which allows
us to contract the linked constructor and destructor. This final tree after the
contraction has been performed is shown on the right.

Structural Conversions In addition to the contractions of Figure 4, a gram-
mar my specify any number of structural conversions; essentially tree rewrites
like, for example, associativity. We refer the reader to [5] for details.

2.2 Automated Deduction

Automated deduction for type-logical grammar can be divided into three distinct
stages:

1. Find a lexical tree for every word in the sentence.

2. Attach positive to negative formulas.

3. Perform all contractions. The result must be a tree with the input sentence
as its yield.

In a realistic implementation, it makes sense to interleave these three stages,
for example by already performing some of the contractions before all of the
formulas have been attached (see [6] for discussion), but for the sake of simplicity
we will treat the three stages separately.
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Fig. 6. Lexical lookup

Lexical Lookup In the lexical lookup stage, we select one lexical tree for
each word in the input sentence, a situation which is schematically pictured in
Figure 6, where ‘wie’ and ‘op’ each have two possible lexical trees. For every
column of the table in the figure we need to select one tree.

For human-generated lexicons, the lexical ambiguity is typically small; it is
considered desirable to reduce cases of lexical ambiguity to derivational ambi-
guity, ie. instead of having two lexical trees t; and t, for a single word we use a
single lexical tree t3 such that t3 subsumes both ¢; and 2. For example, it might
be argued that the two trees in Figure 3 should be replaced by a single one.

When we use a lexicon which is automatically extracted from a corpus, as
we will see in Section 3.2, and where, for longer sentences, the mean number of
trees assigned to a single word is over 40. Enumerating the possibilities is not a
realistic possibility in this case and we need to find a better solution.

Connecting The second stage consists of connecting positive formulas, those
formulas which are a root node of the tree, to negative formulas, those formulas
which are a leaf of the tree. Figure 7 on the following page pictures the situation
schematically.

Aside from the two whg formulas, which can only be linked in a single way,
we have given every formula occurrence a unique number as its subscript. The
objective of the connecting stage is putting exactly one mark in every row and
every column of the tables on the right of the figure in such a way that the con-
nections they imply produce a graph which can be contracted. In this case, the
gray squares mark the correct solution (at least assuming we have associativity).

In the general case, finding a solution here is known to be NP complete
[7] and for parsing sentences from a corpus, which can be quite long, this is a
another big problem.

Contraction The contractions can typically be checked efficiently, in the case
with only binary constructors we have considered so far we can even apply a
greedy contraction strategy, contracting every redex we encounter. When struc-
tural conversions are added, however, the situation can become more complex
[6].

In the paper, we won’t have many things to say about this stage, but we will
refer the reader to [2] for discussion about a useful set of structural conversions
for our current purposes.
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Fig. 7. Selecting a possible connection

3 Generating a Treebank from the CGN Syntactic
Annotation

In this section we will talk about generating a type-logical treebank from the
syntactic annotation files of the Spoken Dutch Corpus and some methods of
reducing the size of the generated lexicon.

3.1 Syntactic Annotation

The Spoken Dutch Corpus (‘Corpus Gesproken Nederlands’, or CGN) is an
ambitious project which — for its final release — will contain 10 million words of
contemporary spoken Dutch with various forms of linguistic annotation. We will
focus on the 1 million words of the corpus which will receive syntactic annotation,
of which the currently available release 6 contains more than half.

For the CGN syntactic annotation, the annotation tools developed for the
German NEGRA Corpus [8] have been used to produce syntactic annotation
graphs of the form shown in Figure 8 on the next page.

I will briefly note some properties of the annotation. More details on the
annotation format and philosophy can be found in [9]. The annotation graphs are
directed, acyclic graphs, where every vertex is labeled with a part-of-speech tag
(like WW1 for a singular, inflected verb) or a tag for a grammatical constituent
(like SV1 for a verb-initial sentence) and every edge is labeled with a dependency
relation (like hd for head and obj! for a direct object).
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Fig. 8. ‘What is pitiful about it?’, sentence 99 of CGN section fn000177

Some other properties are:

— we can have multiple dependencies; for example VNW14 (wat) is both the
head of the wh phrase and the subject of the verb-initial sentence.

— we can have discontinuous constituents; for example ‘er aan’ is a PP in the
example sentence, even though the ADJ9 (zielig) is positioned between these
two words.

— the graphs are allowed to be disconnected; for example the LET constituent
is an isolated vertex.

3.2 Treebank Generation

In [2] we see how a type-logical treebank can be extracted from the CGN syn-
tactic annotation. A parametric algorithm is given, requiring three functions as
its input:

1. a mapping from vertex labels to formulas,
2. a function identifying a head for every grammatical constituent,
3. a function identifying the modifiers of every grammatical constituent.

Since our algorithm requires every domain to have a head and we are dealing
with a spoken corpus, with often grammatically incomplete utterances, we as-
sign every domain a head by an order of preference. For example, a verb-initial
sentence SV1 has as its head the constituent with edge label hd, typically the
main verb, but if there is no such constituent then either a verbal complement
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Fig. 9. Heads and modifiers

ve or a predicative complement predc or even the subject su can function as the
head, even though these would normally be considered arguments.

Figure 9 shows the previous annotation graph but this time with the head
and modifier information added for every constituent.

The algorithm of [2] splits every vertex which is not a head or a modifier of
the current domain. This will produce the formula corresponding to the vertex
both as a leaf of the current domain and as the root of the daughter domain.

Modifiers are treated slightly differently, they will be cut in such a way their
root is the same as the formula assigned to the root of the current domain and
they have an additional leaf which is assigned this same formula. In other words
a modifier will modify the result formula.

Figure 10 on the facing page gives the result of cutting the example graph
into lexicalized components. Note that (modulo an extra vertex for the modified
svl) reconnecting all formulas produces a graph isomorphic to the original one.

Producing a type-logical lexicon from Figure 10 is just a simple matter of re-
placing the graph connections there with the type-logical connectors of Section 2.
The result is shown in Figure 11.

3.3 A More Compact Lexicon

When we attack the 59.910 sentences and the 514.167 words of CGN release
6 with the algorithm of the previous section, the resulting lexicon is rather
enormous, containing 4.767 distinct lexical trees.

By inspecting the generated lexicon, however, we will notice some room for
improvement. In Figure 11, for example, we assigned the word ‘zielig’ the atomic
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Fig. 12. Reducing lexical ambiguity

category ap. A more typical lexical entry for this word is presented in Figure 12,
which assigns it the type of an n modifier, an entry which was already a possi-
bility for many ap words in the corpus. Note that combining the complex entries
requires only one extra contraction.

Another CGN grammatical category is CONJ for ‘conjunction’. By replacing
the CONJ label by the label of one of the conjoints (which can, at least in
principle, be any other label in the grammar) we remove the need for any lexical
entry to have an explicit entry where it selects for a conj type.

original lexicon

I reduced lexicon

2500 — 100.0
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2000 99.6
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number of lexical 1500 . 99.2
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Table 1. Lexicon size for different cutoff values k&

After applying these and other simplifications, one at a time, the final lexicon
was reduced from 4.767 distinct lexical trees to 1.298 distinct lexical trees. Still
a rather large lexicon, but we have to take into account that the corpus con-
tains many sentences a normative account of Dutch would find ungrammatical.
Therefore, it is useful to see how large the lexicon is when we remove some of this



noise. A useful measure here is to apply a cutoff, ie. to remove those trees which
appear less than k times in the lexicon. The intuition here is that accidents of
the data will occur only a few times in total. Table 1 lists the size of the lexicon
for different cutoff values together with the percentage of the data the remaining
lexical trees account for, both for the original and the reduced lexicon.

To show the potential trouble for the lexical lookup phase, we have also
plotted the mean number of lookups per word against different sentence lengths
in Table 2. In the sense of Figure 6 this will correspond to the average number
of trees in every column. We see that for the unreduced lexicon we will have to
consider over 90 trees per word for even medium length sentences. The reduced
lexicon fares slightly better, but even here we have to consider over 40 trees per
word rather quickly.

original lexicon

B reduced lexicon

125

100

mean number 75

of trees
per word 50 —

25 F£
I
J
J
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0
0 5 10 15 20 25 30 35 40 45 50

sentence length

Table 2. Mean number of lookups per word for sentences of different lengths

4 Statistical Parsing

In the previous sections we given an overview the problem: type-logical gram-
mars which have been automatically extracted from linguistic corpora are too
large to allow brute-force parsing. Statistical methods, which have been applied
successfully in several fields of natural language processing [10], may be able
to suggest some solutions, since the problems we encountered in the previous
sections have their counterparts in statistical natural language processing.

The price for this, of course, is that we will have a quantifiable amount of
error. However, we can raise the bar as high as we like, trading off precision
(or, for the logician, completeness) for speed, and in case we want a complete
theorem prover or a 100% accurate parser for a given type-logical grammar, the
material in the following sections is still useful in the sense that it provides a
best-first search algorithm for finding proofs.



4.1 Supertagging

We have seen in that one of the main obstacles for parsing even moderately long
CGN sentences using the extracted type-logical lexicon is the number of lexical
possibilities.

A similar problem was encountered when a large-scale Tree Adjoining Gram-
mar was developed, in which context the idea of supertagging was first introduced
[11]. The basic idea is that strategies from part-of-speech tagging, where given
a sequence of words we want to assign each of these words a part-of-speech tag,
can be used to assign more complex structures as well, ie. given a sequence of
word-POS pairs we want to assign a lexical tree to each of these pairs. Modern
supertagging implementations get around 92% of lexical assignments correct [12,
13].

To get an indication of the potential usefulness of supertagging for parsing
corpus-induced type-logical grammars, we performed two pilot experiments: the
first one using unigram models, in a sense the simplest possible way of supertag-
ging, the second a maximum entropy tagger. For our experiments we used every
fifth CGN sentence (for a total of 11.981 sentence) as test data and all other sen-
tences (47.928 in total) to train our models. All experiments used the reduced
lexicon without cutoffs.

Unigram Models A unigram simply assigns each word in the grammar the
tree it is most often associated with in the training data. For words which don’t
occur enough times in the training to make a reliable estimate (less than 5 times
for our experiment) the tree most often associated to its POS tag was used. In
the exceedingly rare case that the POS tag occurred less than 5 times in the
training data, the most frequent lexical tree was used: a simple np lexical tree.

As can be seen from the data in dark gray on Table 3, the total result from
this method is 63.44% correct lexical assignments and the results are especially
bad for the VZ (preposition) category and the WW (verb) category.

Maximum Entropy Modeling It is clear we need to have at least a bit more
contextual information improve the results for verbs and prepositions. A suc-
cessful method for dealing with many different types of contextual information
and deciding on the basis of the training data which are the most relevant to
obtaining the correct solution is maximum entropy modeling. This method has
also been applied for supertagging in [13].

For our second experiment, we used Adwait Ratnaparki’s [14] POS tagger
and trained it on producing supertags instead. Training it one the same data
as the first experiment produced the results in light gray on Table 3: a total of
77.37% of correctly assigned supertags and a notable improvement in the correct
assignments to VZ and WW categories.

Note that these results are still not quite state-of-the-art performance for
supertagging but we expect better results when using a dedicated supertagger
instead of a POS tagger.
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Table 3. Combined Unigram and Maximum Entropy Model Results

Features An important part of the success of a maximum entropy model are
the types of features that are available to it. In this context, a feature is just a
piece of contextual information, typically something like ‘the previous POS tag
is DET (a determiner)’.

Useful features in a logical context could take into account the subformulas
of surrounding words or the ratio of positive versus negative occurrences of
atomic formulas. This will increase the number of features rather dramatically
but methods exists of identifying the ‘best’ features automatically [15].

4.2 Connections

I will briefly touch upon the second complexity problem. As noted before, even
after we have found the correct lexical entries, finding the correct connections
is still an NP complete problem. But if we look back at Figure 7 on page 6 we
see that the problem there was to make exactly one selection for every row and
exactly one selection for every column in the tables.

Graph theorists will recognize this problem as the perfect bipartite matching
problem. A result from graph theory is that if we have a weighted graph, ie. if
we put a number in every field of the table, we can generate the k best perfect
matchings in O(kn?) time (where n is the number of vertices in the graph).

This means that if we put some sensible weights in the tables and if we
select an appropriate value of k then we have a polynomial approximation of the
original problem. The simplest measure to use here is just to note the distance
between the words the atomic formulas are part of. This will produce the k best
solutions under the processing theory proposed in [16] and [17].

A corpus-based solution is to look, for every atomic positive atomic formu-
la, to which negative atomic formula it is connected in the training data and
record the distance (the distance in this case being the number of intervening



negative formulas of the same type) and then using these distances to give all
negative formulas up to a certain distance a weight, being the number of times
a connection of this distance was encountered in the training data.

More sophisticated training schemes are possible, of course, and experiments
need to be done to find out how well this strategy performs.

5 Conclusions

We have seen how the Spoken Dutch Corpus can be used for type-logical gram-
mar extraction. The size of these grammars, however, is rather prohibitive for
practical parsing. We have given some preliminary data suggesting that methods
from statistical natural language processing can be useful in overcoming these
problems and sketched some new experiments from which we expect better re-
sults.
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