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Abstract

Consider the observation of n iid realizations of an experiment with d ≥ 2 possible
outcomes, which corresponds to a single observation of a multinomial distribution Md(n, p)
where p is an unknown discrete distribution on {1, . . . , d}. In many applications in Biology,
Medicine, Physics, and Engineering, the construction of a confidence region for p when n
is small is crucial. This challenging concrete problem has a long history. It is well known
that the confidence regions build from asymptotic statistics do not have good coverage for
small n. In the binomial case (d = 2), Clopper and Pearson provided a nice way to construct
non-asymptotic confidence regions. We show how to generalize their approach to any d,
by using the concept of covering collections. We also propose an attractive new alternative
method which provides small confidence regions of controlled coverage. It corresponds to a
special covering collection based on level sets of the multinomial distribution. We compare
the performance of our new method to various other methods, including a method of Wald
based on the Central Limit Theorem, a method based on concentration of measure and
deviation probabilities, and a Bayesian method based on Dirichlet-Jeffrey priors.
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1 Introduction

Consider the observation of n iid realizations Y1, . . . , Yn of an experiment with d ≥ 2 possible
outcomes. In other words, the random variables Y1, . . . , Yn are iid with common discrete distri-
bution p1δ1+· · ·+pdδd on {1, . . . , d}. This corresponds to a single observation X = (X1, . . . ,Xd)
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of the multinomial distribution

Md(n, p) =
∑

0≤k1,...,kn≤n

k1+···+kd=n

pk1
1 · · · pkd

d

n!

k1! · · · kd!
δ(k1,...,kd).

where p = (p1, . . . , pd) and Xk = Card{1 ≤ i ≤ n such that Yi = k} for every 1 ≤ k ≤ d. Here
d is known, X is observed, and p is unknown. The present article deals with the problem of
constructing a confidence region for p from the single observation X of Md(n, p), in the non-
asymptotic situation where n is small. The desired region must have at least a coverage of 1−α
for some prescribed level α ∈ (0, 1). More precisely, let

Λd = {(u1, . . . , ud) ∈ [0, 1]d such that u1 + · · · + ud = 1}

be the simplex of probability distributions on {1, . . . , d}. From the single observation X of
Md(n, p) and for some prescribed level α ∈ (0, 1), we are interested in the construction of a
random region Rα(X) ⊂ Λd depending on X and α such that

• the coverage probability has a prescribed lower bound: P(p ∈ Rα(X)) ≥ 1 − α ;

• the volume of Rα(X) in R
d is as small as possible.

In the literature, various other theoretical properties of confidence regions (e.g. equivariance and
optimality) are considered, see for instance [8, 11]. However, the two properties mentioned above
are the most important in practice. There is a rich literature on this old concrete statistical
problem, and the binomial case (d = 2) is much more understood than the general multinomial
case (d ≥ 2). Most methods proposed in the literature for d > 2 are asymptotic or Bayesian
and do not ensure that the coverage probability is at least 1 − α, for a fixed value of n, see
for instance [28, 27, 4, 15, 22]. The main problem here is that n is small. In particular, the
confidence regions built from the asymptotic approaches based on the Central Limit Theorem
(e.g. Wald methods) have a poor and uncontrolled coverage, even if n is large but finite. For the
same reasons, it is also the case for the bootstrapped versions which only improve asymptotically
the coverage probability (see [30, 22, 15, 17]). On the other hand, the discrete nature of the
multinomial distribution produces a staircase effect which makes difficult the construction of
non-asymptotic regions with coverage equal exactly to 1 − α. For a discussion of such aspects,
we refer for instance to Agresti et al. [3, 2, 1]. In general, a reasonable expectation is to ask for
a coverage of at least 1 − α, without being too conservative. Here the term conservative means
that the coverage is greater than 1 − α.

We can summarize the situation as follows. Practically, there currently exist two kinds
of methods for the construction of confidence region for p. On the first hand, methods that
give confidence regions with small volume but that fail to control the prescribed coverage (e.g.
Bayesian methods with Jeffrey prior, Wald Central Limit methods, Bootstrapped regions), and
on the second hand, methods that control the prescribed coverage but have a too large volume
to be useful (e.g. concentrations based methods, Clopper-Pearson type methods). We propose
a new method which provides confidence regions with a strict control on the coverage while
maintaining a volume comparable to the Wald Central Limit region. Namely, consider the
discrete simplex

Ed =
{

(x1, . . . , xd) ∈ {0, . . . , n}d such that x1 + · · · + xd = n
}

(1)

where lies the observation X ∼ Md(n, p). For all x ∈ Ed and p ∈ Λd, we define

µp(x) = px1
1 · · · pxd

d

n!

x1! · · · xd!
.
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For any prescribed α ∈ (0, 1), our confidence region Rα (X) ⊂ Λd for p, based on level sets of
the multinomial distribution, is defined by

Rα (X) = {p ∈ Λd such that µp(X) ≥ u(p, α)} (2)

where

u(p, α) = sup







u ∈ [0, 1] such that
∑

k∈A(p,u)

µp(k) ≥ 1 − α







and A(p, u) = {x ∈ Ed such that µp(x) ≥ u}. For this region, we have P(p ∈ Rα(X)) ≥ 1 − α,
and computer simulations show that Rα(X) has small volume and coverage close to 1−α. Despite
its apparent complex definition, such a region can be easily computed numerically. Surprisingly,
this method turns out to be an excellent alternative to all the know methods so far.

Outline of the rest of the article

In section 2 we recall various known methods used for the construction of confidence regions
for p in the binomial (d = 2) or general multinomial (d ≥ 2) case, including the well known
Clopper and Pearson region for d = 2. In section 3, we provide an extension of the Clopper
and Pearson method to the general multinomial case (d ≥ 2), by using the general concept of
covering collection. In section 4, we propose a new alternative method (2) for the construction of
confidence region in the general multinomial case, based on a special covering collection involving
level sets of the multinomial distribution. Finally, in section 5, we present a numerical study
where various confidence regions are compared. In particular, we compare in the “trinomial”
case d = 3, the confidence regions produced with the Wald Central Limit method, with the
uniform concentration of measure method, with the Dirichlet-Jeffrey prior method, with the
extended Clopper and Pearson method, and with our new method (2) based on level sets.

2 Various known methods

For the special case of the binomial distribution (d = 2), Newcombe [24] performed a comparison
of several confidence intervals. These are either based on asymptotic expansions of the binomial
distribution [6, 7, 10] or built using the exact distribution of X without assuming that n is
large. Intervals built using asymptotic distributions have poor properties. In particular, Brown
[9] showed that, even for large n, their coverage can be much smaller than the prescribed 1−α.

2.1 Asymptotic regions based on the Central Limit Theorem

The most common frequentist way to construct confidence regions for the parameter p of a
multinomial distribution is probably the Wald Central Limit Method. Let us recall briefly how
works this asymptotic approach based on the maximum likelihood estimator p̂ = 1

nX of p.
By the multivariate Central Limit Theorem, when n is large, the random vector p̂ of R

d is
approximately distributed according to the multivariate Gauss distribution with mean p and
covariance matrix 1

nΣ(p) = 1
n(Diag(p) − p ⊗ p) given for every 1 ≤ i, j ≤ d by

(Σ(p))i,j =
1

n

{

pi(1 − pi) if i = j

−pipj if i 6= j.

Due to the constraint p1 + · · · + pd = 1, for every p ∈ Λd, the matrix Σ(p) is singular with
rank smaller than or equal to d − 1. Also, one can consider the vector Z (respectively q) which
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contains the first (d−1) components of X (respectively p). When {q1, . . . , qd−1}∩{0, 1} = ∅, the
(d−1)× (d−1) variance matrix S(q) of Z obtained by taking the first (d−1) rows and columns
of Σ(p) is a full rank matrix. Therefore, if S(q)−1/2 is the inverse of a matrix square root S(q)
(e.g. via the Cholesky decomposition), then

√
nS(q)−1/2

(

1
nZ − q

)

converges in distribution as
n → ∞ to the Gaussian law N (0, Id−1). If, χ2

d−1,α is the (1 − α) quantile of a χ2 distribution
with d − 1 degrees of freedom, then the set

{

p ∈ Λd such that

∥

∥

∥

∥

√
nS(p)−1/2

(

1

n
Z − q

)
∥

∥

∥

∥

2

≤ χ2
d−1,α

}

(3)

is known as the Wald (1 − α) confidence region of q (or of p since pd = 1 − q1 − · · · − qd−1). Of
course, if a component of q is equal to 0 or 1, then S(q) is a singular matrix and such a Wald
type confidence region does not make any sense.

These Gaussian based confidence regions have poor coverage, even if n is large, due to the
asymptotic nature of the Central Limit Theorem [9]. However, these confidence regions provide
variance correction near the boundary of the simplex Λd.

Other approaches have been proposed. A natural one is to build confidence interval for each
component of p and to deduce a confidence region as a product of these intervals. Proceeding
that way allows to use all the existing methods for the binomial distribution. However, it is
difficult to take into account the constraint that the components of p sum up to 1. Another
difficulty in this approach is the control of the simultaneous coverage of the whole region by
the coverage of each interval. Wang [29] gave a method to compute the confidence coefficient
of five of these intervals. Hou [19] proposed power-divergence simultaneous confidence intervals
that generalize the one proposed by Quesenberry and Hurst [25] and Goodman [16]. Lee &
al. [21] reviewed twelve simultaneous confidence regions, that are not necessarily product of
intervals, based on the likelihood ratio, the score statistic, the Pearson χ2 statistic and various
quadratic approximations to these. Unfortunately, at the practical level, all these approaches
are questionable due to the non-controlled coverage of these regions, even when n is large [24, 9].

Remark 2.1 (Sample size). Suppose that d is well chosen, in the sense that 0 < pi < 1 for
every 1 ≤ i ≤ d. It is quite natural to ask for the law of the random variable ncrit defined by

ncrit = min{n ≥ 1 such that {Y1, . . . , Yn} = {1, . . . , d}}.

The random variable ncrit is the critical sample size for which we observe the whole d modalities,
i.e. for which X belongs to the interior of the discrete simplex (1). This problem is well known in
Probability Theory and Computer Science, and is often referred as the coupon collector problem.
In the elementary case where p1 = · · · = pd = 1

d , the distribution of ncrit can be computed
explicitly, its mean is of order d log(d) and its fluctuation around the mean follows a Gumbel
type distribution. See for instance [14, 23, 18].

2.2 Clopper and Pearson non-asymptotic regions for the binomial

Consider the binomial case d = 2, for which p = (p1, 1 − p1). The well known Clopper and
Pearson interval for p1 relies on the exact distribution of X1 in the binomial case [13, 20, 12]. It
was considered for a long time as outstanding. This interval [L,U ] is given by

{

L = inf
{

θ ∈ [0, 1] such that
∑n

i=x1

(

n
i

)

θi(1 − θ)n−i ≥ 1
2α

}

U = sup
{

θ ∈ [0, 1] such that
∑x1

i=0

(n
i

)

θi(1 − θ)n−i ≥ 1
2α

}

.
(4)

It has been shown that the Clopper and Pearson interval is often conservative. Also, some
continuity corrections have been proposed, and give the so called “mid-p interval”, see for
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instance [5] for a review. This trick reduces the staircase effect but the coverage probability can
be less than 1 − α. The Beta-Binomial correspondence (see lemma 2.2 below) shows that the
left and right limits L and R of the Clopper and Pearson confidence interval (4) are the 1

2α and
(1 − 1

2α) quantiles of the Beta distribution Beta (X1;n − X1 + 1).

Lemma 2.2 (Beta-Binomial correspondence). If X ∼ Binom(n, p1) with p1 ∈ [0, 1] and
0 ≤ k ≤ n and B ∼ Beta(k, n − k + 1) then following identity holds true.

P(X ≥ k) = P(B ≤ p1). (5)

Proof. Let U1, . . . , Un be iid uniform random variables on [0, 1] and U(1) ≤ · · · ≤ U(n) be
the reordered sequence. If we define Vp1 =

∑n
i=1 I{Ui≤p1} then Vp1 ∼ Bin(n, p1) and U(k) ∼

Beta(k, n − k + 1) and for every 1 ≤ k ≤ n, Vp1 ≥ k if and only if U(k) ≤ p1.

To our knowledge, the Clopper and Pearson interval has no multinomial counterpart in the
general multinomial case (d > 2). We propose in section 3 an extension of the Clopper and
Pearson method for the general multinomial case, by using the concept of covering collections.

2.3 Non-asymptotic regions based on concentration of measure

In the binomial case (d = 2), we have (X1, 1−X1) ∼ M2(n, (p1, 1− p1)) and X1 ∼ Binom(n, p).
Many textbooks propose confidence intervals for p1 based on the Tchebychev inequality, which
gives for any real r > 0, integer n > 0, and real p1 ∈ [0, 1],

P

(
∣

∣

∣

∣

X1

n
− p1

∣

∣

∣

∣

≤ r

)

≥ 1 − p1(1 − p1)

nr2
≥ 1 − 1

4nr2
. (6)

This gives the (1 − α) confidence interval (for p1)

X1

n
± 1√

4nα
.

An alternative approach is to make use of the Hoeffding inequality which reads

P

(∣

∣

∣

∣

X1

n
− p1

∣

∣

∣

∣

≤ r

)

≥ 1 − 2e−2nr2
(7)

and which gives the (1 − α) confidence interval (for p1)

X1

n
±

√

1

2n
log

(

2

α

)

.

The Tchebychev interval is based on the bound supp1∈[0,1] p1(1 − p1) ≤ 1
4 on Var(X1), whereas

the Hoeffding interval is based on the boundedness of the support. When n is small, these
intervals are rather crude. A possible workaround is to use some sort of refined non-asymptotic
concentration bounds for the binomial distribution, semi-Gaussian when p is near 1/2 and semi-
Poissonian when p is close to 0 or 1 (this corresponds to two type of variance correction).
Alternatively, an “optimal” concentration method consists in some sort of “uniform” bound on
the deviation probability. Namely, let us define for every r > 0, n ≥ 1, and p1 ∈ [0, 1],

C(n, r, p1) = P

(
∣

∣

∣

∣

X1

n
− p1

∣

∣

∣

∣

> r

)

and C(n, r) = sup
p1∈[0,1]

C(n, p1, r)

5



where X1 ∼ Binom(n, p1). If rα is such that α = C(n, rα), the interval

X1

n
± rα

has a coverage of at least (1 − α) uniformly on p1. The extension to the general multinomial
case (i.e. d ≥ 2) is straightforward. Namely, we define for every r > 0, n ≥ 1, and p ∈ Λd,

C(n, r, p) = P

(
∥

∥

∥

∥

X

n
− p

∥

∥

∥

∥

> r

)

and C(n, r) = sup
p∈Λd

C(n, p, r).

where ‖·‖ is a norm on Λd ⊂ R
d (for instance an L1, L2, or L∞ norm), and where X ∼ Md(n, p).

If rα is chosen in such a way that α < C(n, rα), the ball

{

p ∈ Λd such that

∥

∥

∥

∥

X

n
− p

∥

∥

∥

∥

≤ rα

}

has a coverage of at least (1 − α). The confidence regions built by this way are centered on the
maximum likelihood estimator, and their radius is deterministic and depends only on n, d, α,
and ‖ · ‖. It is thus possible to pre-compute the radius.

It is tempting to incorporate a (co)variance correction inside the deviation probability before
the optimization as in the Wald Central Limit method. Namely, for d = 2, this corresponds
to C(n, r) = supp1∈(0,1) C(n, r, p1) where C(n, r, p1) = P(|n−1X1 − p1|(np1(1 − p1))

−1/2 ≥ r).
Unfortunately, when p tends to the boundary of the simplex Λ2, the quantity C(n, r, p1) tends
to 1 and thus C(n, r) is equal to 1 except if X1 = np1. One may then replace (np1(1−p1))

1/2 by
some function σn,p1 with a cutoff in a neighborhood of the boundary of [0, 1]. The corresponding
confidence region for p1 is given by

{p1 ∈ (0, 1) such that |n−1X1 − p1|(σn,p1)
−1 ≤ rα}

where rα is chosen for some prescribed α ∈ (0, 1) in such a way that α < C(n, rα). These
strange regions where not used in our simulation studies, due to the arbitrary choice of the
variance correction σn,p1 and to the induced numerical difficulties.

2.4 Bayesian regions based on Dirichlet-Jeffrey priors

In contrast to the asymptotic method based on the Central Limit Theorem (e.g. Wald method),
both the Clopper and Pearson method and the concentration of measure method produce con-
fidence regions with a coverage of at least 1−α, for arbitrary values of n. These methods must
be compared to popular Bayesian methods. In a Bayesian framework, building a confidence set
for the multinomial parameter by using a Dirichlet prior is a natural choice [26], and the Jeffrey
approach based on the Fisher information matrix is a quite common way to choose the parame-
ter of the Dirichlet prior. Following the Bayesian point of view, the parameter p is random and
L (X|p) = Md(n, p). A straightforward computation of the Fisher information matrix of the
multinomial shows that the Jeffrey prior on p is a Dirichlet distribution on Λd with parameter
(1
2 , . . . , 1

2). The Dirichlet distribution is conjugate to the multinomial distribution in the sense
that the posterior distribution L (p|X) is a Dirichlet law with parameter (1

2 + X1, . . . ,
1
2 + Xd).

One can obtain a confidence region for p with a coverage at least 1 − α by considering a set
of mass 1 − α for the posterior distribution. However, this does not guarantee at all that the
coverage of the confidence region is greater than or equal to 1 − α.

When d = 2, the Dirichlet distribution reduces to the Beta distribution. In this case, there is
a clear link between the quantiles of the Beta distribution and the confidence region, as shown by
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lemma 2.2. This shows also a clear link between the Dirichlet-Jeffrey approach and the Clopper
and Pearson approach when d = 2. Actually, the Beta-Binomial identity (5) is a special case of
a more general Dirichlet-Multinomial identity as shown by the following lemma.

Lemma 2.3 (Dirichlet-Multinomial correspondence). Let p ∈ Λd and k0, k1, . . . , kd such
that k0 = 0 ≤ k1 ≤ · · · ≤ kd−1 ≤ n ≤ kd = n + 1. If

X ∼ Md(n, p) and D ∼ Dirichletd(k1 − k0, k2 − k1, . . . , kd − kd−1)

then the following identity holds true.

P(X1 ≥ k1,X1 + X2 ≥ k2, . . . ,X1 + · · · + Xd−1 ≥ kd−1)

= P(D1 ≤ p1,D1 + D2 ≤ p2, . . . ,D1 + · · · + Dd−1 ≤ pd−1). (8)

Proof. Let I1, . . . , Id be the sequence of adjacent sub-intervals of [0, 1] of respective lengths
p1, . . . , pd, U1, . . . , Un be iid uniform random variables on [0, 1] and U(1) ≤ · · · ≤ U(n) be the
reordered sequence. For any 1 ≤ r ≤ d, let us define

Vp,r =

n
∑

i=1

I{Ui∈Ir} = Card{1 ≤ i ≤ n such that Ui ∈ Ir}.

We have Vp = (Vp,1, . . . , Vp,r) ∼ Md(n, p). Now, for every 0 ≤ k1 ≤ · · · ≤ kd−1 ≤ n,

Vp,1 ≥ k1, . . . , Vp,1 + · · · + Vp,d−1 ≥ kd−1 iff U(k1) ≤ p1, . . . , U(kd−1) ≤ p1 + · · · + pd−1.

But by using the notation U(0) = 0 and U(n+1) = 1, we have

(U(1) − U(0), . . . , U(n+1) − U(n)) ∼ Dirichletn+1(1, . . . , 1).

and therefore, by the stability of Dirichlet laws by sum of blocs, with k0 = 0 and kd = n + 1,

(U(k1) − U(k0), . . . , U(kd) − U(kd−1)) ∼ Dirichletd(k1, k2 − k1, . . . , kd − kd−1).

This nice property allows to easily compute confidence regions that are products of intervals.
Alternatively, a “level set” approach on the posterior distribution gives a confidence region
with smoother boundary. The “density” of the Dirichlet distribution on Λd with parameter
a = (a1, . . . , ad) ∈ R

d
+ is given for every u ∈ Λd by

fa(u) =
1

B(a)
ua1−1

1 · · · uad−1
d where B(a) =

Γ(a1) · · ·Γ(ad)

Γ(a1 + · · · + ad)
.

For every real ℓ > 0, one may consider the level set

A(a, ℓ) = {p ∈ Λd such that fa(p) ≥ ℓ}

and the conditional critical level

uα(X) = sup

{

ℓ > 0 such that P

(

p ∈ A(X +
1

2
, ℓ)

∣

∣

∣

∣

X

)

≥ 1 − α

}

.

One can then defined the 1− α Dirichlet-Jeffrey confidence region as A(X + 1
2 , uα(X)). Condi-

tional on X, this confidence region has a coverage of at least 1−α. However, nothing guarantees
that the unconditional confidence region keeps this property.
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3 Multivariate confidence regions via covering collections

The aim of this section is to introduce the notion of covering collection, which will allows us in
particular to extend the Clopper and Pearson method to the general multinomial case (d ≥ 2).
Covering collections allow to build confidence regions in a general abstract space. Let us consider
a random variable X : (Ω,A) → (E,BE) having a distribution µθ∗ where θ∗ ∈ Θ. For some
α ∈ (0, 1), we would like to construct a confidence region Rα(X) for θ∗ with a coverage of at
least (1 − α), from a single realization of X. In other words,

P (θ∗ ∈ Rα (X)) ≥ 1 − α. (9)

Definition 3.1 (Covering collection). A covering collection of E is a collection of measurable
events (Ak)k∈K ⊂ BE such that

• K is totally ordered and admits a minimal element and a maximal element;

• if k ≤ k′ then Ak ⊂ Ak′ with equality if and only if k = k′;

• Amin(K) = ∅ and Amax(K) = E.

For instance, for E = {0, 1, . . . , n}, the sequence of sets

∅, {σ(0)}, {σ(0), σ(1)}, . . . , {σ(0), σ(1), . . . , σ(n)} = E

is a covering collection of E for any permutation σ of E. For E = R, the collection (At)t∈R

where R = R∪ {−∞,+∞} defined by A−∞ = ∅, At = (−∞, t] for every t ∈ R, and A+∞ = R is
a covering collection of E. Many other choices are possible, like At = [−t,+t] or At = [t,+∞).
We recognize the usual shapes of the confidence regions used in univariate Statistics.

Theorem 3.2 (Confidence region associated with a covering collection). Let (Ak)k∈K
be a covering collection of E, and kX be the smallest k ∈ K such that X ∈ Ak. For every
α ∈ (0, 1), the region Rα(X) defined below satisfies to (9).

Rα (X) = {θ ∈ Θ such that µθ(AkX
) ≥ α} . (10)

Proof. For every θ ∈ Θ, let kα(θ) be the largest k ∈ K such that µθ(Ak) < α. With this
definition of kα(·), we have then

x ∈ Akα(θ) if and only if µθ(Akx
) < α.

Thus we have

P (θ∗ ∈ Rα(X)) = P (µθ∗(AkX
) ≥ α)

= P
(

X /∈ Akα(θ∗)

)

= 1 − µθ∗
(

Akα(θ∗)

)

≥ 1 − α.

These confidence regions highly depend on the chosen covering collection (Ak)k∈K. Each
choice of covering collection gives a particular region Rα(X). One can notice that a small value
of kX gives a small set AkX

and thus leads to a confidence region with a small volume. For
instance, assume that we have two realizations x1 and x2 of X with kx1 < kx2 . For a given
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sequence (Ak)k∈K, we have Akx1
⊂ Akx2

and thus Rα (x1) ⊂ Rα (x2). One could be tempted to
choose the covering collection (Ak)k∈K in such a way that kX is as small as possible. In such a
case, the covering collection (Ak)k∈K would become random and the coverage of the associated
region could be less than the prescribed level 1 − α.

Notice that the set AkX
can be empty, which means that a confidence region cannot be

built with such a sequence (Ak)k∈K. In contrast, the case where AkX
= E leads to the trivial

region Rα(X) = Θ. In the case where AkX
= {X}, we have µθ(AkX

) = µθ({X}), which is the
likelihood of X at point θ, and the region Rα(X) corresponds to the complement of a level set
of the likelihood.

Remark 3.3 (Discrete case and staircase effect). Let (Ak)k∈K be a covering collection of a
finite set E. Due to staircase effects, the coverage of the confidence regions constructed from this
covering collection cannot take arbitrary values in (0, 1). These staircase effects can be reduced
by using a fully granular collection for which Card(K) = Card(E). The term fully granular
means that the elements of the collection are obtained by adding the points of E one by one. It
is impossible to remove completely the staircase effects when E is discrete, while maintaining a
nominal lower bound on the coverage.

Remark 3.4 (Reverse regions). For the region Rα(X) = {θ ∈ Θ;µθ(AkX
) ≤ 1− α} we have

P(Rα) = P(µθ(AkX
) ≤ 1 − α) = P(X ∈ Ak1−α

) = µθ(Ak1−α
) ≤ 1 − α.

Remark 3.5 (Symmetrization). If R1 and R2 are two confidence regions with a coverage of
at least 1− 1

2α such that R1∪R2 = E then Rc
1 and Rc

2 are disjoint and thus R1∩R2 = (Rc
1∪Rc

2)
c

is a confidence region with a coverage of at least 1 − α.

Consider a covering collection (Ak)0≤k≤κ of E. Now, for any 0 ≤ k ≤ κ, let us define
A′

k = E \ Aκ−k. For any θ ∈ Θ, any X ∼ µθ, and any α ∈ (0, 1), we construct

R 1
2
α =

{

θ ∈ Θ;µθ(AkX
) >

1

2
α

}

and R′
1
2
α

=

{

θ ∈ Θ;µθ(A
′
k′

X
) >

1

2
α

}

where k′
X is built from (A′

k)0≤k≤κ as kX from (Ak)0≤k≤κ and A′
k′

X
= E \ AkX−1. Since

µθ(AkX
) + µθ(A

′
kX

) = 1 + µθ({X}) ≥ 1,

the regions R 1
2
α and R′

1
2
α

have disjoint complements. Therefore, by Remark 3.5, the set

R 1
2
α ∩ R′

1
2
α

is a confidence region with coverage greater than or equal to 1 − α.

3.1 The Clopper and Pearson interval as a special binomial case

Let us show why the Clopper and Pearson confidence interval can be considered as a special
case of the method based on covering collections. Recall that we are in the case where d = 2
and X1 ∼ Binom(n, p1) for some unknown p1 ∈ [0, 1]. Equivalently, we can write

(X1, n − X1) ∼ M2(n, (p1, 1 − p1)).

The unidimensional nature of E = {0, . . . , n} suggests the following two covering collections
(A1

k)k∈E and (A2
k)k∈E defined by A1

0 = ∅ and A2
0 = ∅, and for every 0 ≤ k ≤ n,

A1
k+1 = {0, . . . , k} and A2

k+1 = {n − k, . . . , n}.

9



Here K = E for both the top-to-bottom and bottom-to-top sequences. The bottom-to-top
sequence (A1

k)k∈E leads to the (1 − α) one-sided confidence interval for p1 given by

R1
α (X1) =

{

θ ∈ [0, 1] such that

X1
∑

i=0

(

n

i

)

θi(1 − θ)n−i ≥ α

}

= [0, Uα(X1)] (11)

where

Uα(x) = sup

{

θ ∈ [0, 1] such that

x
∑

i=0

(

n

i

)

θi(1 − θ)n−i ≥ α

}

.

On the other hand, the top-to-bottom covering collection (A2
k)k∈E leads to an (1−α) confidence

interval of p1 given by

R2
α (X1) =







θ ∈ [0, 1] such that

n
∑

i=X1

(

n

i

)

θi(1 − θ)n−i ≥ α







= [Lα(X1); 1], (12)

where

Lα(x) = sup

{

θ ∈ [0, 1] such that

n
∑

i=x

(

n

i

)

θi(1 − θ)n−i ≥ α

}

.

By virtue of Remark 3.5, we can combine these two confidence intervals in order to obtain a
symmetrized (1 − α) confidence interval of p1, which is the two-sided interval

R1
1
2
α

(X1)
⋂

R2
1
2
α

(X1) = [L 1
2
α(X1);U 1

2
α(X1)].

We recognize the Clopper-Pearson interval (4). The discrete nature of E precludes the con-
struction of a confidence interval of p1 with coverage exactly equal to 1 − α. Actually, the
Clopper-Pearson two-sided interval is not exactly symmetric and there is no guaranty that

P(p < L 1
2
α(X1)) = P(p > U 1

2
α(X1)).

3.2 Multinomial extension of the Clopper and Pearson interval

Consider the multinomial case where X ∼ Md(n, p) with p ∈ Λd and d ≥ 2. The set Ed defined
by (1) appears as a discrete simplex, and we have

Card(Ed) =

(

n + d − 1

d − 1

)

=
(n + d − 1)!

(d − 1)!n!
.

For the binomial case d = 2, the two-sided Clopper and Pearson confidence interval appears
naturally. For the multinomial case with d > 2, one can propose a region built by mimicking
the confidence interval of the binomial case. This leads naturally to the notion of equivariance.

The choice of the covering collection (Ak)k∈K is quite arbitrary. However, some additional
constraints can help to reduce this choice. As advocated by Casella [11] for the binomial dis-
tribution, the proposed confidence region Rα (X) should be equivariant, that is not sensitive to
the order chosen to label the d categories of the multinomial distribution.

Definition 3.6 (Equivariance). A confidence region Rα(X) is equivariant when

P (σ(θ∗) ∈ Rα (σ(X))) = P (θ∗ ∈ Rα (X)) (13)

for every permutation σ of {1, . . . , d}. In other words, if and only if

σ (Rα (X)) = Rα (σ(X)) .

10



The following lemma gives a criterion of equivariance for covering collections.

Theorem 3.7 (Equivariance criterion for covering collections). The confidence region
Rα(X) constructed from a covering collection (Ak)k∈K is equivariant if and only if Ak is invariant
by permutation of coordinates for every k ∈ K.

Proof. Let σ be a permutation of {1, . . . , d}, i = (i1, . . . , id) ∈ E, and for every θ ∈ Θ,

σ(θ) =
(

θσ(1), . . . , θσ(d)

)

and σ(i) =
(

iσ(1), . . . , iσ(d)

)

.

By invariance of Ak by permutation, we have X ∈ Ak ⇔ X ∈ σ(Ak) and thus kX = kσ(X). If
θ ∈ σ (Rα (X)) then µσ−1(θ)(AkX

) ≥ α. But, for every i ∈ E,

µσ−1θ)({i}) = µθ({σ(i)}).

If Ak is invariant permutations, then for every i ∈ Ak, we have σ(i) ∈ Ak and consequently

µσ−1(θ)(Ak) = µθ(σ(Ak)) = µθ(Ak).

Thus, θ ∈ σ (Rα (X)) if and only if µθ(AkX
) = µθ(Akσ(X)

) ≥ α, that is θ ∈ Rα (σ(X)).

As already noticed, a large set AkX
gives a large confidence region. Since confidence regions

with small volume are desirable, it is interesting, when E is discrete, to consider a covering
collection (Ak)k∈K which grows by adding the points of E one after the other. Unfortunately,
this method of construction is not compatible with equivariance: the Ak cannot be invariant by
permutations of coordinates. A lighter condition could be that there exists a subsequence (Akl

)l
that is invariant by permutation of coordinates. An example of such a sequence for d = 3 is
represented in Figure 1. Equivariance is a strong constraint on the covering collection.

4 New alternative regions based on level sets

In this section, we propose a new method that fully uses the concept of coverage collection. We
chose to consider decreasing coverage collection, to ease its presentation. The corresponding
confidence regions are not exactly build as in Theorem 3.2. Let us consider a random variable
X : (Ω,A) → (E,BE) with law µθ∗ where θ∗ ∈ Θ. For every u ≥ 0 and θ ∈ Θ, let us define

A(θ, u) = {x ∈ E such that µθ(x) ≥ u}.

For every θ ∈ Θ, the collection (A(θ, u))u≥0 is decreasing with A(θ, 0) = E and there exists umax

that can be equal to +∞ such that A(θ, umax) = ∅. Also, (A(θ, umax −u))u∈[0,umax] is a covering
collection of E. Next, define

u(θ, α) = sup {u ∈ [0, umax] such that µθ(A(θ, u)) ≥ 1 − α}

and
K(θ, α) = A(θ, u(θ, α)).

We would like to construct a confidence region for θ∗ form the observation of X ∼ µθ∗ . If

Rα (X) = {θ ∈ Θ such that X ∈ K(θ, α)} (14)

then
P (θ∗ ∈ Rα (X)) = P (X ∈ K(θ∗, α)) = µθ∗(K(θ∗, α)) ≥ 1 − α.

11



This shows that Rα(X) is a confidence region for θ∗ with a coverage of at least 1 − α.
Let us make precise the expression of the confidence region for the general multinomial case

where X ∼ Md(n, p) with p ∈ Λd and d ≥ 2. Here the value of p used for the observed data
X plays the role of θ∗. We have Θ = Λd, E = Ed as described by (1), µθ = Md(n, θ), and
umax = 1. For every α ∈ (0, 1), the confidence region given by the level sets method writes as in
(2) given in the introduction.

Remark 4.1 (Binomial case). In turns out that the confidence interval obtained by the level
sets method for the binomial case (d = 2) does not coincide with the Clopper and Pearson
confidence interval. This is due to the special covering collection that is used in the level sets
method.

4.1 Optimality

Let us focus on the case where E is a finite set. The confidence region constructed above is not
optimal among all the 1 − α conservative sets and thus could be improved by a more detailed
analysis. Let us first notice that by its very construction, for all θ ∈ Θ, K(θ, α) is minimal with
respect to its cardinality that is, there does not exist a set B(θ, α) so that µθ(B(θ, α)) ≥ 1 − α
and card(B(θ, α)) < card(K(θ, α)). However, in some circumstances, it may exist sets L(θ, α)
with the same cardinality as K(θ, α) so that µθ(K(θ, α)) ≥ µθ(L(θ, α)) ≥ 1 − α. The following
theorem gives a condition that allows to build conservative sets but with a coverage closer to 1−α
than the coverage of Rα (X). For all α ∈ [0, 1] and θ ∈ Θ, let us denote γ(θ, α) = 1−µθ (K(θ, α))
and let us notice that γ(θ, α) ≤ α.

Theorem 4.2. For each θ ∈ Θ, assume that it exist two subsets V (θ, α) ⊂ K(θ, α) and
W (θ, α) ⊂ E\K(θ, α) with the same cardinality so that

α − γ(θ, α) ≥ µθ (V (θ, α)) − µθ (W (θ, α)) > 0.

Then, there exists a set Tα (X) 6= Rα (X) so that

1 − α ≤ P (θ∗ ∈ Tα (X)) < P (θ∗ ∈ Rα (X)) .

Proof. Let us consider the set L (θ, α) = K (θ, α) \V (θ, α)
⋃

W (θ, α) and notice that thanks to
the conditions imposed the sets V and W we have for all θ ∈ Θ,

1 − α ≤ µθ (L(θ, α)) < µθ (K(θ, α)) .

Now, set
Tα (X) = {θ ∈ Θ;X ∈ L(θ, α)} .

But,
P (θ∗ ∈ Tα (X)) = P (X ∈ L(θ∗, α))

= P (X ∈ K (θ∗, α) \ V (θ∗, α)
⋃

W (θ∗, α))
= 1 − γ (θ∗, α) − µθ∗ (V (θ∗, α)) + µθ∗ (W (θ∗, α))
≤ 1 − γ (θ∗, α) .

On the other hand, we have already seen that for all θ ∈ Θ,

1 − α ≤ µθ (L(θ, α)) .

This last inequality holds true when θ = θ∗ and thus

1 − α ≤ µθ∗ (L(θ∗, α)) = P (θ∗ ∈ Tα (X)) .
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This theorem can be used to build less conservative confidence sets than Rα(X). A convenient
way to proceed is to take V (θ, α) = {y} where y is such that

µθ(y) = min
z∈K(θ,α)

µθ(z)

and to iteratively try several sets W k as follows. Set W 0(θ, α) = ∅, and at iteration k ≥ 1, set
W k(θ, α) = {wk} and Lk(θ, α) = K (θ, α) \ V (θ, α)

⋃

W k (θ, α) where

wk = arg max
z∈Lk−1(θ,α)

µθ(z).

This process is iterated until the set Lk(θ, α) is such that µθ

(

Lk(θ, α)
)

− (1−α) is non-negative
and minimum.

Since for θ ∈ Θ there may exist x 6= y with µθ(x) = µθ(y), there also may exist several
sets (Li(θ, α))i which have the same mass µθ(L

i(θ, α)) = 1 − δ(θ, α). Several confidence sets
with the same coverage can thus be derived using these sets. A simple way to choose between
these concurrent confidence sets is to adopt the one that optimizes a criterion such as having a
minimum volume (for the Lebesgue measure).

5 Simulation study

We compared our method based on level sets to existing methods for the binomial distribution.
For each method described in the previous section, we calculated the 95% (i.e. α = 0.05)
confidence intervals of p for each observed value x of a Binom (10, p) and Binom (20, p) . The
obtained intervals are respectively given in Tables 1 and 2.

These tables show that the intervals given by the Tchebychev inequality, by the Hoeffding
inequality, and by the uniform concentration bound are too wide to be useful when n is small.
On the contrary, the intervals given by the Bayesian method with Jeffrey prior are narrow.
The length of the intervals given by the uniform concentration, the Wald Central Limit and
the proposed level-sets method is in-between. The main advantage of the Clopper and Pearson
interval is that it is only based on the sample distribution of X. However, it is sometimes not
used in practice because it is usually larger than asymptotic based intervals. As shown in [9] for
the binomial distribution, there are “lucky” values of p and n for which the interval obtained
with the Wald Central Limit method has a coverage close to its nominal value. The same author
has shown that for “unlucky” n and p, both the Bayesian interval and the Wald interval have
coverage that can be much smaller than the prescribed coverage (0.95). Figure 2 shows that
the coverage of our level-sets method is, as expected, always greater than or equal to 0.95.
When n increases, the set of p for which the actual coverage is close to 1 − α increases. On the
whole, these simulations show that our level-sets method gives the narrowest interval among the
methods that have controlled coverage. On the other hand, our interval is wider than the Wald
Central Limit and Bayesian intervals, two intervals for which the coverage is not controlled.

Recall that our objective is the construction of confidence regions for any d ≥ 2. In order
to evaluate the performances of various available methods, we built the confidence regions in
the case where n = 10 and d = 3. The methods that we used are Wald Central Limit, uniform
concentration, Bayesian Jeffrey, extended Clopper-Pearson, and our level-sets. Since Tchebychev
and Hoeffding regions lead to rough intervals for the binomial case d = 2 and are outperformed
by the uniform concentration method, we decided to ignore them for d > 2. Figures 3 and 4
respectively show the confidence sets obtained for the observations x = (3, 2, 5) and x = (0, 2, 8).
In the case x = (0, 2, 8) which lies in the boundary of of E3, the Wald and uniform methods
proposed solutions outside Θ (these strange solutions where discarded). We can see that the

13



Clopper-Pearson method with the set Ak described by Figure 1 gives confidence sets that are
not useful in practice because they are too large. The uniform method is very convenient to
work with. With the sample volume and the desired confidence level, it is easy to build an ‖ ·‖2-
ball centered on p̂ with a constant radius. Unfortunately, this advantage is balanced by a large
area. On the whole, the Wald Central Limit method and our level-sets method give comparable
regions. Table 3 gives the area of the obtained 95% confidence regions. When x belongs to the
boundary of E3, the Bayesian Jeffrey region has a smaller area than the one obtained with the
Wald and level-sets methods. However, it has a larger area when x lies in the interior of E.

The area of a confidence region is certainly an important property from a practical point of
view, but having a small area is only useful if the actual coverage is close to the prescribed one
(1−α). Thus, we computed the coverage of the regions given by each of the previous methods for
n = 10. The results are shown in Figure 5. As expected, the uniform method is too conservative.
For the Wald region, the same phenomena as the one observed for the binomial case occurs for
the trinomial case: the actual coverage can be quite far from the nominal confidence level but
there exist “lucky” values of p for which the coverage is close to the nominal value. The Jeffrey
prior distribution puts some mass near the boundaries of Θ and n = 10 is probably not large
enough to counterbalance this prior. This probably explains why the Jeffrey method has a low
coverage when p is close to the center of Λ3. We have to mention that in the present simulation
study, we computed the Jeffrey confidence region by using a Monte-Carlo approach, which is
computer intensive. Our level-sets method gives regions with coverage very close to the nominal
level, while being always greater than or equal to the nominal level by construction. Surprisingly,
we did not observed for d = 3 the same amplitude of the staircase effect as we did for d = 2.
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x1 Tchebychev Hoeffding Uniform Level Clopper Wald Jeffrey

0 [0, 0.707] [0, 0.429] [0, 0.308] [0, 0.29] [0, 0.308] [−,−] [0, 0.217]
1 [0, 0.807] [0, 0.529] [0, 0.408] [0.006, 0.446] [0.002, 0.445] [0, 0.285] [0.011, 0.381]
2 [0, 0.907] [0, 0.629] [0, 0.508] [0.037, 0.553] [0.025, 0.556] [0, 0.447] [0.044, 0.503]
3 [0, 1] [0, 0.729] [0, 0.608] [0.088, 0.619] [0.066, 0.652] [0.015, 0.584] [0.093, 0.606]
4 [0, 1] [0, 0.829] [0.092, 0.708] [0.151, 0.709] [0.121, 0.737] [0.096, 0.703] [0.153, 0.696]
5 [0, 1] [0.07, 0.929] [0.192, 0.808] [0.223, 0.777] [0.187, 0.812] [0.19, 0.809] [0.18, 0.688]

Table 1: This table shows the 95% (α = 0.05) confidence intervals for p obtained with differ-
ent methods when X1 ∼ Binom(10, p) is observed. The intervals obtained with concentration
inequalities are wide. On the whole the Bayesian intervals obtained with Jeffrey prior are the
narrowest while the intervals obtained with the Wald and level-sets methods are close. When
x1 = 0, the Wald interval cannot be computed.

x1 Tchebychev Hoeffding Uniform Level Clopper Wald Jeffrey

0 [0, 0.5] [0, 0.303] [0, 0.218] [0, 0.166] [0, 0.168] [−,−] [0, 0.117]
1 [0, 0.55] [0, 0.353] [0, 0.268] [0.003, 0.244] [0.001, 0.248] [0, 0.145] [0.005, 0.211]
2 [0, 0.6] [0, 0.403] [0, 0.318] [0.019, 0.319] [0.012, 0.316] [0, 0.231] [0.021, 0.284]
3 [0, 0.65] [0, 0.453] [0, 0.368] [0.043, 0.372] [0.032, 0.378] [0, 0.306] [0.044, 0.349]
4 [0, 0.7] [0, 0.503] [0, 0.418] [0.072, 0.423] [0.057, 0.436] [0.024, 0.375] [0.072, 0.408]
5 [0, 0.75] [0, 0.553] [0.032, 0.468] [0.105, 0.474] [0.086, 0.491] [0.06, 0.439] [0.102, 0.464]
6 [0, 0.5] [0, 0.603] [0.082, 0.518] [0.14, 0.525] [0.119, 0.542] [0.099, 0.5] [0.136, 0.517]
7 [0, 0.5] [0, 0.653] [0.132, 0.568] [0.167, 0.576] [0.154, 0.592] [0.14, 0.559] [0.172, 0.568]
8 [0, 0.55] [0, 0.703] [0.182, 0.618] [0.209, 0.627] [0.191, 0.639] [0.185, 0.614] [0.211, 0.616]
9 [0, 0.6] [0, 0.753] [0.232, 0.668] [0.245, 0.68] [0.23, 0.684] [0.231, 0.668] [0.251, 0.662]
10 [0, 0.65] [0, 0.803] [0.282, 0.718] [0.293, 0.707] [0.272, 0.728] [0.28, 0.719] [0.293, 0.707]

Table 2: This table shows the 95% (α = 0.05) confidence intervals for p obtained with the
different methods when X1 ∼ Binom (20, p) is observed. As for n = 10, the intervals given by
concentration inequalities are rough and the Bayesian intervals obtained with the Jeffrey prior
are the narrowest. The level-sets intervals are narrower than the Wald intervals for medium x1.
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Figure 1: This figure represents the construction of Ak. Set A0 = ∅ and A1 = {(n, 0, 0)}. The
point in A1 is at the beginning of the starting arrow represented in dotted line. Each time the
arrow meets a point in the simplex, this point is added to Ak to give Ak+1. The set obtained
with the three first arrows is invariant by permutation of coordinates.
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Figure 2: The left hand side curve represents for 0 ≤ p ≤ 1
2 the coverage of our level-sets method

obtained with n = 10. The right hand side curve represents for 1
2 < p ≤ 1 the coverage obtained

with n = 20. Since the coverage for p is equal to one for 1−p, these two curves can be completed
by symmetry with respect to the vertical line p = 1

2 . All the coverages are greater than or equal
to the prescribed level 0.95 (α = 0.05). The staircase effect is quite clear here.
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Clopper-Pearson Jeffrey Level Wald Uniform

x = (3, 2, 5) 0.479 0.369 0.340 0.339 0.557
x = (0, 2, 8) 0.682 0.132 0.203 0.197 0.265

Table 3: When d = 3, the area of Λ3 is
√

3/2 ≃ 1.22. This table gives the area of the 95%
confidence region (α = 0.05) for the different methods. When x belongs to the boundary of E3

the Bayesian method with Jeffrey prior gives the region with the smallest area. The Wald and
the Level-set methods give regions with smaller volumes than the other methods when x is in
the interior of E3.

Wald

Wald1 Wald3

Wald2

Jeffrey

Jeff1 Jeff3

Jeff2

Clopper−Pearson

CP1 CP3

CP2

Level

Niv1 Niv3

Niv2

Uniform

Unif1 Unif3

Unif2

Figure 3: In barycentric coordinates, the 95% (α = 0.05) confidence regions obtained for p for
the observation x = (3, 2, 5) of M3(10, p). The Level-set and the Wald methods give regions
with smaller volume than the others. The Uniform concentration method and the extended
Clopper-Pearson method give large regions.
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Figure 4: This figure represents in barycentric coordinates the 95% confidence regions (α = 0.05)
for p obtained for the observation x = (0, 2, 8) of the trinomial M3(10, p). Here the observation
belongs to the boundary of E3. The Bayesian method with Jeffrey prior gives the smallest
region probably because it puts mass near the boundary of the parameter space. Unfortunately,
the coverage probability of this method is not well controlled. The level-set and Wald methods
give comparable regions. The Uniform concentration method and the extended Clopper-Pearson
method give large regions.
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Figure 5: This figure represents in barycentric coordinates the actual coverage of each method.
When the color is clear, the actual coverage is close to the prescribed coverage 0.95. As expected,
the uniform-concentration method is very conservative. The Wald and the Bayesian methods
fail to guarantee the prescribed coverage: there exist values of p for which the actual coverage is
definitely too far from 0.95. The Level-set method is the only method that guarantees an actual
coverage close to 0.95 for most of the points of the parameter space Λ3.
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