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We consider the martingale problem associated to the Navier-Stokes in dimension 2 or 3. Existence is well known and it has been recently shown that markovian transition semi group associated to these equations can be constructed. We study the Kolmogorov operator associated to these equations. It can be defined formally as a differential operator on an infinite dimensional Hilbert space. It can be also defined in an abstract way as the infinitesimal generator of the transition semi group. We explicit cores for these abstract operators and identify them with the concrete differential operators on these cores. In dimension 2, the core is explicit and we can use a classical argument to prove uniqueness for the martingale problem. In dimension 3, we are only able to exhibit a core which is defined abstractly and does not allow to prove uniqueness for the martingale problem. Instead, we exhibit a core for a modified Kolmogorov operator which enables us to prove uniqueness for the martingale problem up to the time the solutions are regular.

Introduction

We consider the stochastic Navier-Stokes on a bounded domain O of R d , d = 2 or 3, with Dirichlet boundary conditions: the unknowns are the velocity X(t, ξ) and the pressure p(t, ξ) defined for t > 0 and ξ ∈ O:

dX(t, ξ) = [∆X(t, ξ) -(X(t, ξ) • ∇)X(t, ξ)]dt -∇p(t, ξ)dt + f (ξ)dt + √ Q dW,
div X(t, ξ) = 0, (1.1) with Dirichlet boundary conditions X(t, ξ) = 0, t > 0, ξ ∈ ∂O, and supplemented with the initial condition X(0, ξ) = x(ξ), ξ ∈ O.

We have taken the viscosity equal to 1 since it plays no particular role in this work. The understanding of the stochastic Navier-Stokes equations have progressed considerably recently. In dimension two, impressive progresses have been obtained and difficult ergodic properties have been proved (see [START_REF] Bricmont | Exponential mixing for the 2D Navier-Stokes dynamics[END_REF], [START_REF] Mattingly | Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation[END_REF], [START_REF] Flandoli | Ergodicity of the 2D Navier-Stokes equations under random perturbations[END_REF], [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes Equations with Degenerate Stochastic Forcing[END_REF], [START_REF] Hairer | Spectral gaps in Wasserstein distances and the 2D stochastic Navier-Stokes equations[END_REF], [START_REF] S B Kuksin | Randomly forced nonlinear PDEs and statistical hydrodynamics in 2 space dimensions[END_REF], [START_REF] Kuksin | Ergodicity for the radomly forced 2D Navier-Stokes equations[END_REF], [START_REF] Kuksin | A coupling approach to randomly forced nonlinear PDEs[END_REF], [START_REF] Mattingly | Exponential convergence for the stochastically forced Navier-Stokes equations and other partially dissipative dynamics[END_REF], [START_REF] Mattingly | Pardoux Malliavin calculus for the stochastic 2D Navier-Stokes equation[END_REF]). In dimension three, the theory is not so advanced. Uniqueness is still an open problem. However, Markov solutions have been constructed and ergodic properties have been proved recently (see [START_REF] Chueshov | On the random kick-forced 3D Navier-Stokes equations in a thin domain[END_REF], [START_REF] Chueshov | Stochastic 3D Navier-Stokes equations in a thin domain and its α-approximation[END_REF], [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF], [START_REF] Debussche | Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise[END_REF], [START_REF] Flandoli | An introduction to 3D stochastic Fluid Dynamics[END_REF], [START_REF] Flandoli | Markov selections for the 3D stochastic Navier-Stokes equation[END_REF], [START_REF] Odasso | Exponential mixing for the 3D Navier-Stokes equation[END_REF], [START_REF] Romito | Analysis of equilibrium states of Markov solutions to the 3D Navier-Stokes equations driven by additive noise[END_REF], [START_REF] Shirikyan | Qualitative properties of stationary measures for three-dimensional Navier-Stokes equations[END_REF]).

In this article, our aim is to try to improve the understanding of the martingale problems associated to these equations. Let us first set some notations. Let

H = {x ∈ (L 2 (O)) d : div x = 0 in O, x • n = 0 on ∂O},
where n is the outward normal to ∂O, and V = (H 1 0 (O)) d ∩H. The norm and inner product in H will be denoted by | • | and (•, •) respectively. Moreover W is a cylindrical Wiener process on H and the covariance of the noise Q is trace class and non degenerate (see (1.3) and (1.4) below for more precise assumptions).

We also denote by A the Stokes operator in H:

A = P ∆, D(A) = (H 2 (O)) d ∩ V,
where P is the orthogonal projection of (L 2 (O)) 3 With these notations we rewrite the equations as

   dX = (AX + b(X))dt + √ Q dW, X(0) = x.
(1.2)

We assume that Tr (-A) 1+g Q < ∞, for some g > 0 (1.3) and |Q -1/2 x| ≤ c|(-A) r x|, for some r ∈ (1, 3/2).

(1.4)

In dimension d = 3, it is well known that there exists a solution to the martingale problem but weak or strong uniqueness is an open problem (see [START_REF] Flandoli | An introduction to 3D stochastic Fluid Dynamics[END_REF] for a survey). However, it has been proved in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF], [START_REF] Debussche | Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise[END_REF] (see also [START_REF] Flandoli | Markov selections for the 3D stochastic Navier-Stokes equation[END_REF]) that the above assumptions allow to construct a transition semigroup (P t ) t≥0 associated to a Markov family of solutions

((X(t, x) t≥0 , Ω x , F x , P x )
for x ∈ D(A). Moreover for sufficiently regular ϕ defined on D(A), P t ϕ is a solution of the Kolmogorov equation associated to (1.2)

     du dt = Lu, t > 0, x ∈ D(A), u(0, x) = ϕ(x), x ∈ D(A), (1.5) 
where the Kolmogorov operator L is defined by

Lϕ(x) = 1 2 Tr QD 2 ϕ(x) + (Ax + b(x), Dϕ(x))
for sufficiently smooth functions ϕ on D(A).

In all the article, we choose one Markov family ((X(t, x) t≥0 , Ω x , F x , P x ) as the one constructed in [START_REF] Debussche | Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise[END_REF].

The fundamental idea in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF] is to introduce a modified semigroup (S t ) t≥0 defined by

S t ϕ(x) = E(e -K t 0 |AX(s,x)| 2 ds ϕ(X(t, x))). (1.6)
It can be seen that for K large enough, this semigroup has very nice smoothing properties and various estimates can be proved. Note that, thanks to Feynman-Kac formula, this semigroup is formally associated to the following equation

     dv dt = Nv, t > 0, x ∈ D(A), v(0, x) = ϕ(x), x ∈ D(A), (1.7) 
where N is defined

Nϕ(x) = 1 2 Tr QD 2 ϕ(x) + (Ax + b(x), Dϕ(x)) -K|Ax| 2 ϕ(x),
for sufficiently smooth functions ϕ on D(A).

In [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF], [START_REF] Debussche | Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise[END_REF], this semigroup is defined only on the Galerkin approximations of (1.2). Let P m denote the projector associated to the first m eigenvalues of A. We consider the following equation in

P m H    dX m = (AX m + b m (X m ))dt + √ Q m dW X m (0) = P m x, (1.8) 
where b m (x) = P m b(P m x), Q m = P m QP m . This defines, with obvious notations, (P m t ) t≥0 and (S m t ) t≥0 . The following formula holds by a standard argument:

P m t ϕ = S m t ϕ + K t 0 S m t-s |A • | 2 P m s ϕds , ϕ ∈ C b (P m H).
Various estimates are proved on (S m t ) t≥0 and transferred to (P m t ) t≥0 thanks to this identity. A compactness argument allows to construct (P t ) t≥0 . Moreover, a subsequence m k can be constructed such that for any x ∈ D(A), (X m k (•, x)) t≥0 converges in law to (X(•, x)) t≥0 .

Note also that similar arguments as in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF] may be used to prove that for smooth ϕ, (S t ϕ) t≥0 is a strict solution to (1.7).

In dimension 2 this result also holds with exactly the same proofs since all arguments for d = 3 are still valid. Note that it is well known that for d = 2 conditions (1.3)-(1.4) imply that, for x ∈ H, there exists a unique strong solution to (1.2) and the proof of the above facts can be simplified.

In the following, we give some properties of the generator of (P t ) t≥0 and (S t ) t≥0 . For d = 2, we explicit a core, identify the abstract generator with the differential operator L on this core and prove existence and uniqueness for the corresponding martingale problem. (See [START_REF] Röckner | A new approach to Kolmogorov equations in infinite dimensions and applications to the stochastic 2d Navier Sokes equation C[END_REF] for a similar result). Again, this follows from strong uniqueness but we think that it is interesting to have a direct proof of this fact. Moreover, it can be very useful to have a better knowledge of the Kolmogorov generator and we think that this work is a contribution in this direction. In dimension 3, we are not able to prove this. We explain the difficulties encountered. We hope that this article will help the reader to get a better insight into the problem of weak uniqueness for the three dimensional Navier-Stokes equations. Nonetheless, we explicit a core for the generator of the transformed semigroup (S t ) t≥0 , identify it with the differential operator N on this core and prove uniqueness for the stopped martingale problem. In other words, we prove weak uniqueness up to the time solutions are smooth. Again, this could be proved directly thanks to local strong uniqueness.

The generators

The space of continuous functions on D(A) is denoted by C b (D(A)). Its norm is denoted by • 0 . For k ∈ N, C k (D(A)) is the space of C k functions on D(A). We need several other function spaces on D(A).

Let us introduce the set E 1 ⊂ C b (D(A)) of C 3 functions on D(A) such that there exists a constant c satistying

• |(-A) -1 Df (x)| H ≤ c(|Ax| 2 + 1) • |(-A) -1 D 2 f (x)(-A) -1 | L (H) ≤ c(|Ax| 4 + 1) • |(-A) -1/2 D 2 f (x)(-A) -1/2 | L (H) ≤ c(|Ax| 6 + 1) • D 3 f (x) ((-A) -1 •, (-A) -1 •, (-A) -1 •) ≤ c(|Ax| 6 + 1) • D 3 f (x) ((-A) -γ •, (-A) -γ •, (-A) -γ •) ≤ c(|Ax| 8 + 1) • |Df (x)| H ≤ c(|Ax| 4 + 1)
where γ ∈ (1/2, 1] and

E 2 = f ∈ C b (D(A)), sup x,y∈D(A) |f (x) -f (y)| |A(x -y)|(1 + |Ax| 2 + |Ay| 2 < +∞ .
Note that we identify the gradient and the differential of a real valued function. Also, the second differential is identified with a function with values in L (H). The third differential is a trilinear operator on D(A) and the norm

• above is the norm of such operators.

Slightly improving the arguments in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF], it can be proved 1 that P t maps E i into itself and that there exists a constant c > 0 such that

P t f E i ≤ c f E i . (2.1)
Moreover, for f ∈ E 1 , P t f is a strict solution of (1.5) in the sense that it is satisfied for any x ∈ D(A) and t ≥ 0. Again, the result of [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF] has to be slightly improved to get this result. In fact, using an interpolation argument, Proposition 5.9 and the various other estimates in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF], it is easy to deduce that, for any

x ∈ D(A), LP t f (x) is continuous on [0, T ].
For f ∈ E 2 , P t f is still a solution of (1.5) but in the mild sense. We define the Ornstein-Uhlenbeck semigroup associated to the linear equation

R t ϕ(x) = ϕ(e tA x + t 0 e A(t-s) QdW (s), t ≥ 0, ϕ ∈ C b (D(A)).
Then it is shown in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF] that

P t f (x) = R t f (x) + t 0 R t-s (b, DP s f )ds, t ≥ 0, f ∈ E 2 .
(

For any λ > 0 we set

F λ f = ∞ 0 e -λt P t f dt, f ∈ C b (D(A)).
Then since P t f 0 ≤ f 0 , we have

F λ f 0 ≤ 1 λ f 0 .
Moreover, since P t is Feller, we have by dominated convergence

F λ f ∈ C b (D(A)).
It can be easily deduced that

F λ f -F µ f = (µ -λ)F λ F µ f, µ, λ > 0,
and

lim λ→∞ λF λ f (x) = lim λ→∞ ∞ 0 e -τ P τ /λ (x)dτ = f (x), x ∈ D(A).
1 In fact, only Lemma 5.3 has to be improved. In this Lemma, the term L 1 can in fact be estimated in a single step by using Proposition 3.5 of [START_REF] Debussche | Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise[END_REF] instead of Proposition 5.1 of [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF]. [START_REF] Priola | On a class of Markov type semigroups in spaces of uniformly continuous and bounded functions[END_REF]) that there exists a unique maximal dissipative operator L on C b (D(A)) with domain D( L) such that

It follows classically (see for instance

F λ f = (λ -L) -1 f.
We recall the following well known characterization of D( L):

f ∈ D( L) if and only if (i) f ∈ C b (D(A)), (ii) 1 t P t f -f 0 is bounded for t ∈ [0, 1], (iii) 1 t (P t f (x) -f (x)
) has a limit for any x ∈ D(A).

Moreover, we have in this case

Lf (x) = lim t→0 1 t (P t f (x) -f (x)).
Recall also that

(λ -L) -1 f = ∞ 0 e -λt P t f dt, f ∈ C b (D(A)).
By (2.1) we deduce that

(λ -L) -1 f E i ≤ c λ f E i . (2.3) 
Similarly, we may define, for k ≥ 0, E k 3 as the space C 3 functions on D(A) such that there exists a constant c satistying

• |(-A) -1 Df (x)| H ≤ c(|Ax| k + 1) • |(-A) -1 D 2 f (x)(-A) -1 | L (H) ≤ c(|Ax| k + 1) • |(-A) -1/2 D 2 f (x)(-A) -1/2 | L (H) ≤ c(|Ax| k + 1) • D 3 f (x) ((-A) -1 •, (-A) -1 •, (-A) -1 •) ≤ c(|Ax| k + 1) • D 3 f (x) ((-A) -γ •, (-A) -γ •, (-A) -γ •) ≤ c(|Ax| k + 1) • |Df (x)| H ≤ c(|Ax| k + 1)
where γ ∈ (1/2, 1]. By the various estimates given in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF], it is easy to check that, provided K is chosen large enough, S t maps E k 3 into itself and there exists a constant c > 0 such that

S t f E k 3 ≤ c f E k 3 . (2.4)
Moreover, for f ∈ E k 3 , S t f is a strict solution of (1.7) in the sense that it is satisfied for any x ∈ D(A) and t ≥ 0.

For any λ > 0 we set

F λ f = ∞ 0 e -λt S t f dt, f ∈ C b (D(A)).
and prove that there exists a unique maximal dissipative operator N on C b (D(A)) with domain D( N) such that

F λ f = (λ -N ) -1 f, and f ∈ D( N) if and only if (i) f ∈ C b (D(A)), (ii) 1 t S t f -f 0 is bounded for t ∈ [0, 1],
(iii) 1 t (S t f (x) -f (x)) has a limit for any x ∈ D(A).

Finally, by (2.4), we see that

(λ -N ) -1 f E k 3 ≤ c λ f E k 3 .
(2.5)

Construction of cores and identification of the generators

In this section, we analyse the generators defined in the preceeding section.

We start with the following definition.

Definition 3.1 Let K be an operator with domain D(K). A set D ⊂ D(K) is a π-core for K if for any ϕ ∈ D(K), there exists a sequence (ϕ n ) n∈N in D which π-converges2 to ϕ and such that (Kϕ n ) n∈N π-converges to Kϕ.

Let us set G 1 = (λ -L) -1 E 1 for some λ > 0. Clearly for any ϕ ∈ G 1 we have ϕ ∈ D( L) and by (2.3), ϕ ∈ E 1 . Moreover,

P t ϕ(x) -ϕ(x) = t 0 LP s ϕ(x)ds,
since (P t ϕ) t≥0 is a strict solution of the Kolmogorov equation. By (2.1) and the definition of E 1 , for any x ∈ D(A) we have

|LP s ϕ(x)| ≤ c(1 + |Ax| 6 ) P s ϕ E 1 ≤ c(1 + |Ax| 6 ) ϕ E 1 . Moreover, since t → LP t ϕ(x)
is continuous, we have lim

t→0 1 t (P t ϕ(x) -ϕ(x)) = Lϕ(x).
We deduce that Lϕ(x) = Lϕ(x), x ∈ D(A).

Since E 1 is π-dense in C b (D(A)), we deduce that G 1 is a π-core for L. Also E 1 ⊂ E 2 so that G 1 ⊂ G 2 = (λ -L) -1 E 2
and G 2 is also a π-core for L. These results hold both in dimension 2 or 3. The problem is that these cores are abstract and strongly depend on the semigroup (P t ) t≥0 . In dimension 3, this is a real problem since we do not know if the transition semigroup is unique. If we were able to construct a core in terms of the differential operator L, this would certainly imply uniqueness of this transition semigroup.

In dimension 2, we are able to construct such a core. Of course, in this case, uniqueness is well known. However, we think that it is important to have explicit cores. This gives many informations on the transition semigroup (P t ) t≥0 .

Theorem 3.2 Let us set

H = {f ∈ E 1 : Lf ∈ E 1 } then, in dimension d = 2, H ⊂ D( L)
and it is a π-core for L. Moreover, for any f ∈ H , we have Lf = Lf.

The crucial point is to prove the following result.

Proposition 3.3 Let d = 2.
For any f ∈ H we have

P t 1 f -P t 2 f = t 2 t 1 P s Lf ds, 0 ≤ t 1 ≤ t 2 .
Proof. Let f ∈ H . By Itô formula applied to the Galerkin equation (1.8), we have for ǫ > 0

d e -ǫ t 0 |(-A) 1/2 Xm(s,x)| 6 ds f (X m (t, x)) = -ǫ|(-A) 1/2 X m (t, x)| 6 f (X m (t, x)) + L m f m (X(t, x)) e -ǫ t 0 |(-A) 1/2 Xm(s,x)| 6 ds dt +e -ǫ t 0 |(-A) 1/2 Xm(s,x)| 6 ds (Df m (X m (t, x)), Q m dW ) and E e -ǫ t 2 0 |(-A) 1/2 Xm(s,x)| 6 ds f (X m (t 2 , x)) -e -ǫ t 1 0 |(-A) 1/2 Xm(s,x)| 6 ds f (X m (t 1 , x)) = E t 2 t 1 -ǫ|(-A) 1/2 X m (s, x)| 6 f (X m (s, x)) +L m f (X m (s, x)) e -ǫ s 0 |(-A) 1/2 Xm(σ,x)| 6 dσ ds . (3.1) 
We have denoted by L m the Kolmogorov operator associated to (1.8). Since f ∈ H , we have

|Lf m (x)| ≤ c(1 + |Ax| 6 ).
By Proposition 5.4 and Lemma 5.3, the right hand side of (3.1) is uniformly integrable on Ω × [t 1 , t 2 ] with respect to m. Thus, we can take the limit m → ∞ in (3.1) and obtain

E x e -ǫ t 2 0 |(-A) 1/2 X(s,x)| 6 ds f (X(t 2 , x)) -E x e -ǫ t 1 0 |(-A) 1/2 X(s,x)| 6 ds f (X(t 1 , x)) = E x t 2 t 1 -ǫ|(-A) 1/2 X(s, x)| 6 f (X(s, x))
+Lf (X(s, x)) e -ǫ s 0 |(-A) 1/2 X(σ,x)| 6 dσ ds .

(3.2)
It is easy to prove by dominated convergence that

E x e -ǫ t i 0 |X(s,x)| 6 1 ds f (X(t i , x)) → P t i f (x), E x t 2 t 1 Lf (X(s, x))e -ǫ s 0 |X(σ,x)| 6 1 dσ ds → E x t 2 t 1 P s Lf (x),
when ǫ → 0. Indeed by Lemma 5.3 below, we have

t i 0 |X(s, x)| 6 1 ds < ∞ P-a.s.. Moreover E x t 2 t 1 ǫ|X(s, x)| 6 1 f (X(s, x))e -ǫ s 0 |X(σ,x)| 6 1 dσ ds ≤ f 0 E x e -ǫ t 1 0 |X(σ,x)| 6 1 dσ -e -ǫ t 2 0 |X(σ,x)| 6 1 dσ → 0,
as ǫ → 0. The result follows.

It is now easy to conclude the proof of Theorem 3.2. Indeed, by Proposition 3.3, for f ∈ H we have, since P s Lf 0 ≤ Lf 0 ,

P t f -f 0 ≤ t Lf 0 .
Moreover, since s → P s Lf (x), is continuous for any x ∈ D(A)

1 t (P t f (x) -f (x)) → Lf (x), as t → 0.
It follows that f ∈ D( L) and Lf = Lf . Finally

G 1 ⊂ H
and since G 1 is a π-core we deduce that H is also a π-core.

Remark 3.4 We do not use that P t f is a strict solution of the Kolmogorov equation to prove that H ⊂ D( L) and Lf = Lf . But we do not know if there is a direct proof of the fact that H is a π-core. We have used that G 1 ⊂ H and that G 1 is a π-core. The proof of G 1 ⊂ H requires (2.1) which is almost as strong as the construction of a strict solution.

Remark 3.5 For d = 3, using Lemma 3.1 in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF], it is easy to prove a formula similar to (3.2) with |(-A) We have the following result on the operator N .

Theorem 3.6 Let d = 2 or 3 and k ∈ N, define

H k = {f ∈ E k 3 : Nf ∈ E k 3 }.
Then H k ⊂ D( N) and it is π-core for N . Moreover, for any f ∈ H k we have

Nf = Nf.
The proof follows the same line as above. Indeed, it is easy to use similar arguments as in [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF] and prove that for f ∈ E k 3 , (S t f ) t≥0 is a strict solution to (1.7). Arguing as above, we deduce that (λ -N) -1 E k 3 is a π-core for N . Moreover, applying Itô formula to the Galerkin approximations and letting m → ∞ along the subsequence m k -thanks to Lemma 3.1 of [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF] to get uniform integrability -we prove, for f ∈ H k ,

E x (e -K t 2 0 |AX(s,x)| 2 ds f (X(t 2 , x)) -E x (e -K t 1 0 |AX(s,x)| 2 ds f (X(t 1 , x)) = E x t 2 t 1 -K|AX(s, x)| 2 f (X(s, x)) + Lf (X(s, x)) e -K s 0 |AX(σ,x)| 2 dσ ds .
We rewrite this as

S t 2 f (x) -S t 1 f (x) = t 2 t 1 S s Nf (x),
and deduce as above that f ∈ D( N) and Nf = Nf . Finally, since (λ -N ) -1 E k 3 ⊂ H k , we know that H k is also a π-core.

Uniqueness for the martingale problem

Let us study the following martingale problem.

Definition 4.1 We say that a probability measure P x on C([0, T ]; D((-A) -ǫ )), ǫ > 0 is a solution of the martingale problem associated to (1.2) if

P x (η(t) ∈ D(A)) = 1, t ≥ 0, P x (η(0) = x) = 1
and for any f ∈ H

f (η(t)) - t 0 Lf (η(s))ds,
is a martingale with respect to the natural filtration.

Remark 4.2 In general, it is proved the existence of a solution to a different martingale problem where f is required to be in a smaller class. In particular, it is required that f ∈ C b (D((-A) -ǫ )) for some ǫ > 0. However, in all concrete construction of solutions, it can be shown that a solution of our martingale problem is in fact obtained. We multiply by λe -λt , integrate over [0, ∞) and obtain, since Lϕ = Lϕ,

Ẽx ∞ 0 e -λt f (η(t))dt = ϕ(x) = (λ -L) -1 f (x) = ∞ 0 e -λt P t f (x)dt.

By inversion of Laplace transform we deduce

Ẽx (f (η(t)) = P t f (x).

Thus the law at a fixed time t is uniquely defined. A standard argument allows to prove that this implies uniqueness for the martingale problem.

For d = 3 the proof of uniqueness still works. The problem is that we cannot prove existence of a solution of the martingale problem. More precisely, we cannot prove Proposition 3.3.

We can prove existence and uniqueness in d = 3 for the the martingale problem where H is replaced by G 1 , but since the definition of G 1 depends on the semigroup, this does not give any real information.

We have the following weaker result on a stopped martingale problem.

Definition 4. [START_REF] Da Prato | Ergodicity for the 3D stochastic Navier-Stokes equations[END_REF] We say that a probability measure P x on C([0, T ]; D(A)) is a solution of the stopped martingale problem associated to (1.2) if

P x (η(0) = 1) = 1,
and for any

f ∈ H k f (η(t ∧ τ * )) - t∧τ * 0 Lf (η(s))ds,
is a martingale with respect to the natural filtration and

η(t) = η(τ * ), t ≥ τ * .
The stopping time τ * is defined by

τ * = lim R→∞ τ R , τ R = inf{t ∈ [0, T ], |Aη(t)| ≥ R}.
Theorem 4.5 For any x ∈ D(A), there exists a unique solution to the stopped martingale problem.

Proof. Existence of a solution for this martingale problem is classical. A possible proof follows the same line as the proofs of Proposition 3.3 and Theorem 3.6, see also Remark 3.5 (see also [START_REF] Flandoli | An introduction to 3D stochastic Fluid Dynamics[END_REF] for more details). In fact, we may choose the Markov family ((X(t, x)) t≥0 , Ω x , F x , P x ) constructed in [START_REF] Debussche | Markov solutions for the 3D stochastic Navier-Stokes equations with state dependent noise[END_REF]. It is easy to see that X(t, x) is continuous up to τ * . We slightly change notation and set X(t, x) = X(t ∧ τ * , x).

Uniqueness follows from a similar argument as in Theorem 4.3. For ǫ > 0, we define (S ǫ (t)) t≥0 similarly as (S t ) t≥0 but we replace e -K t 0 |Aη(s)| 2 ds by e -ǫ t 0 |Aη(s)| 4 ds in (1.6). Proceeding as above, we then define N ǫ , Nǫ , H ǫ k , and prove that H ǫ k is a π-core for Nǫ and N ǫ ϕ = Nǫ ϕ for ϕ ∈ H ǫ k . Let Px be a solution to the martingale problem and f ∈ E k 3 . For λ, ǫ > 0, we set ϕ = (λ -Nǫ ) -1 , then ϕ ∈ H ǫ k .

By Itô formula -note that in Definition 4.4 it is required that the measure is supported by C([0, T ]; D(A)) -we prove that e -ǫ t 0 |Aη(s)| 4 ds ϕ(η(t)) - We multiply by e -λt and integrate over [0, ∞) and obtain, since Nǫ ϕ = N ǫ ϕ,

Ẽx ∞ 0 e -λt-ǫ t 0 |Aη(s)| 4 ds f (η(t))dt = ϕ(x) = (λ -Nǫ ) -1 f (x) = ∞ 0 e -λt S ǫ t f (x)dt.
By dominated convergence, we may let ǫ → 0 and obtain

Ẽx ∞ 0 e -λt 1I t≤τ * f (η(t))dt = ∞ 0 e -λt S 0 t f (x)dt,
where

S 0 t f (x) = lim ǫ→0 S ǫ t f (x) = E x (1I t≤τ * f (X(t, x))
). The conclusion follows.

Technical results

In all this section, we assume that d = 2. Also, for s ∈ R, we set

| • | s = |(-A) s • |. Lemma 5.1 There exists c depending on T, Q, A such that E sup t∈[0,T ] |X(t, x)| 2 + T 0 |X(s, x)| 2 1 ds ≤ c(1 + |x| 2 ), E sup t∈[0,T ] |X(t, x)| 4 + T 0 |X(s, x)| 2 |X(s, x)| 2 1 ds ≤ c(1 + |x| 4 ).
Proof. We first apply Itô's formula to 1 2 |x| 2 (as usual the computation is formal and it should be justified by Galerkin approximations):

1 2 d|X(t, x)| 2 + |X(t, x)| 2 1 dt = (X(t, x), QdW ) + 1 2
Tr Qdt.

We deduce, thanks to a classical martingale inequality,

E 1 2 sup t∈[0,T ] |X(t, x)| 2 + T 0 |X(s, x)| 2 1 ds ≤ E sup t∈[0,T ] t 0 (X(s, x), QdW (s)) + 1 2 (|x| 2 + Tr Q T ) ≤ 2E T 0 | QX(s, x)| 2 ds 1/2 + 1 2 (|x| 2 + Tr Q T ) ≤ 1 2 E T 0 |X(s, x)| 2 ds + C + 1 2 |x| 2 ,
where C depends on T, Q, A. It follows that

E sup t∈[0,T ] |X(t, x)| 2 + T 0 |X(s, x)| 2 1 ds ≤ C + |x| 2 .
(5.1)

We now apply Itô's formula to

1 4 |x| 4 , 1 4 d|X(t, x)| 4 + |X(t, x)| 2 |X(t, x)| 2 1 dt = |X(t, x)| 2 (X(t, x), QdW ) + 1 2 Tr Q|X(t, x)| 2 + | QX(t, x)| 2 dt ≤ |X(t, x)| 2 (X(t, x), QdW ) + c|X(t, x)| 2 dt.
We deduce

E 1 4 sup t∈[0,T ] |X(t, x)| 2 + T 0 |X(s, x)| 2 |X(s, x)| 2 1 ds ≤ E sup t∈[0,T ] t 0 |X(s, x)| 2 (X(s, x), QdW (s)) +cE T 0 |X(s, x)| 2 ds + 1 4 |x| 4 ≤ 2E T 0 |X(s, x)| 4 | QX(s, x)| 2 ds 1/2 + c(1 + |x| 4 ) ≤ 2E sup t∈[0,T ] |X(s, x)| 2 T 0 | QX(s, x)| 2 ds 1/2 + c(1 + |x| 4 ) ≤ 1 8 E sup t∈[0,T ] |X(t, x)| 4 + cE T 0 | QX(s, x)| 2 ds + c(1 + |x| 4 ).
Since √ Q is a bounded operator, using (5.1) we deduce

E sup t∈[0,T ] |X(t, x))| 4 + T 0 |X(s, x)| 2 |X(s, x)| 2 1 ds ≤ (1 + |x| 4 ).
Lemma 5.2 There exists c depending on T, Q, A such that

E sup t∈[0,T ] e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| 2 1 +E T 0 e -c s 0 |X(σ,x)| 2 |X(σ,x)| 2 1 dσ |X(s, x)| 2 2 ds ≤ c(1 + |x| 2 1 ).
Proof. We apply Itô's formula to

e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| 2 1 ,
and obtain

1 2 d e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| 2 1 + e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| 2 2 dt = e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds -c|X(t, x)| 2 |X(t, x)| 4 1 + (b(X(t, x)), AX(t, x)) dt +(Ax, QdW ) - 1 2 Tr [AQ]dt. We have (b(x), Ax) ≤ |b(x)| |Ax| ≤ c|x| L 4 |∇x| L 4 |Ax| ≤ c|x| 1/2 |x| 1 |x| 3/2 2 ≤ 1 2 |x| 2 2 + c|x| 2 |x| 4 1 . We deduce that if c ≥ c, 1 2 d e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| 2 1 + 1 2 e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| 2 2 dt ≤ e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds (AX(t, x), QdW ) + cdt and E sup t∈[0,T ] e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| 2 1 +E T 0 e -c s 0 |X(σ,x)| 2 |X(σ,x)| 2 1 dσ |AX(s, x)| 2 ds ≤ 2E T 0 e -2c s 0 |X(σ,x)| 2 |X(σ,x)| 2 1 dσ | QX(s, x)| 2 ds 1/2 +cT + |x| 2 1 .
Since Tr (QA) < ∞, we know that QA is a bounded operator and Then, by the factorization method (see [START_REF] Da Prato | Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications[END_REF]),

E T 0 e -2c s 0 |X(σ,x)| 2 |X(σ,x)| 2 1 dσ | QX(s, x)| 2 ds 1/2 ≤ cE T 0 |X(s, x)| 2 1 ds 1 
E sup t∈[0,T ] |Z(t)| h 2+ǫ ≤ C, (5.2) 
for any ǫ < g, and we have

dY dt = AY + b(Y + Z).
We take the scalar product with A 2 Y : We have )ds (we choose 3 -s/2 < 2 + g and set ǫ = 1 -s/2).

|(-A)
The conclusion follows from Lemma 5.3 and by the boundedness of x → -ǫx 6 + cx 4 .

  onto H and by b the operator b(x, y) = -P ((x • ∇)y), b(x) = b(x, x), x, y ∈ V.

Theorem 4 . 3

 43 Let d = 2, then for any x ∈ D(A), there exists a unique solution to the martingale problem. Proof. By a similar proof as for Proposition 3.3, we know that there exists a solution to the martingale problem Uniqueness follows from a classical argument. Let f ∈ E 1 and, for λ > 0 set ϕ = (λ -L) -1 f. Then ϕ ∈ G 1 ⊂ H and ϕ(η(t)) -ϕ(x) -t 0 Lϕ(η(s))ds is a martingale. Thus, for any solution Px of the martingale problem, Ẽx ϕ(η(t)) -ϕ(x) -t 0 Lϕ(η(s))ds = ϕ(x).

t 0 - 0 N 0 N

 000 ǫ|Aη(s)| 4 ϕ(η(s)) + Lϕ(η(s)) e -ǫ s 0 |Aη(σ)| 4 dσ ds = e -ǫ t 0 |Aη(s)| 4 ds ϕ(η(t)) -t ǫ ϕ(η(s))e -ǫ s 0 |Aη(σ)| 4 dσ dsis also a martingale. We have used :e -ǫ t 0 |Aη(s)| 4 ds = 0, t ≥ τ * .Thus:Ẽx e -ǫ t 0 |Aη(s)| 4 ds ϕ(η(t)) -t ǫ ϕ(η(s))e -ǫ s 0 |Aη(σ)| 4 dσ ds = ϕ(x).

/ 2 ≤ 1 ≤Proposition 5 . 4

 2154 (|x| + 1), by Lemma 5.1. The result follows. Lemma 5.3 For any k ∈ N, there exists c depending on k, T, Q, A such thatE sup t∈[0,T ] e -c t 0 |X(s,x)| 2 |X(s,x)| 2 1 ds |X(t, x)| k c(1 + |x| k 1 ).The proof of this Lemma follows the same argument as above. It is left to the reader. For any k ∈ N, ǫ > 0, there exists C(ǫ, k, T, Q, A) such that for any m ∈ N,x ∈ D(A), t ∈ [0, T ], E e -ǫ t 0 |(-A) 1/2 Xm(s,x)| 6 ds |AX m (t, x)| k ≤ C(ǫ, k, T, Q, A)(1 + |Ax| k ).Proof. Let us set Z(t) = t 0 e (t-s)A QdW (s), Y (t) = X(t, x) -z(t).

2 +

 2 |Y | 2 3 = (b(Y + Z), A 2 Y ) = ((-A) 1/2 b(Y + Z), A 3/2 Y ).

  1/2 b(Y + Z)| = |∇b(Y + Z)| ≤ c |Y + Z| 2 W 1,4 + |Y + Z| L p |Y + Z| W 2,q , where 1 p + 1 q = 1 2 . By Gagliardo-Nirenberg inequality |Y + Z| 2 W 1,4 ≤ c|Y + Z| 1 |Y + Z| 2 . Z| L p |Y + Z| W 2,q ≤ c|Y + Z| s/2 |Y + Z| 3-s/2 . Therefore ((-A) 1/2 b(Y + Z), ((-A) 3/2 Y ) ≤ c|Y + Z| 1 |Y + Z| 2 |Y | 3 ≤ c|Y + Z| s/2 |Y + Z| 3-s/2 |Y | 3 Z| s/2 |Y | 3-s/2 |Y | 3 + c|Y + Z| 2 s/2 |Z|2 3-s/2 . Since |Y + Z| s/2 |Y | 3-s/2 |Y | 3 ≤ |Y + Z| s/2 |Y |

	We then write by Hölder and Poincaré inequalities
			e -ǫ t 0 |Y +Z| 6 1 ds |Y (t)| k 2 ≤ c k e -ǫ t 0 |Y +Z| 6 1 ds+c k	t 0 |Y +Z| 2 1 ds
			× |x| k 2 +	t 0 (|Y + Z| 4 1 + |Z| 4 2+g + |Y + Z|	16/s 1
	Setting 1 p = 1 2 -s 2 we have by Sobolev's embedding
	|Y + ≤ 1 4 |Y | 2 3 + c|Y + Z| 2 1 |Z| 2 2 + c|Y + Z| 2 1 |Y | 2 2
	+c|Y + s/4 1	|Y |	2-s/4 3
		≤ c|Y + Z|	8/s s/2 |Y | 2 1 + 1 4 |Y | 2 3 ,
	we finally get		
	d dt	|Y | 2 2 ≤ c|Y + Z| 2 1 |Y | 2 2
	+c |Y + Z| 2 1 |Z| 2 2 + |Y + Z| 2 s/2 |Z| 2 3-s/2 + |Y + Z|	8/s s/2 |Y | 2 1
	and				
	|Y (t)| 2 2 ≤ e c t 0 |Y +Z| 2 1 ds	
	|x| 2 2 + c	0	t	(|Y + Z| 2 1 |Z| 2 2 + |Y + Z| 2 s/2 |Z| 2 3-s/2 + |Y + Z|	8/s 1 |Y | 2 1/2 )ds .

Recall that the π-convergence -also called b.p. convergence -is defined by : (f n ) n∈N π-converges to f iff f n (x) → f (x) for any x ∈ D(A) and sup n∈N f n 0 < ∞.