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1 Introduction

This paper deals with parallel machine scheduling with precedence constraints and
setup times between the execution of jobs. We consider the optimization of two dif-
ferent criteria: the minimization of the sum of completion times and the minimization
of the maximum lateness. These two criteria have a particular interest in production
scheduling. The sum of completion times is a criterion that maximizes the production
�ow and makes possible the minimization of the work-in-process inventories. In the
minimization of maximum lateness, the due dates can be associated to the delivery
dates of products. This is a goal of due date satisfaction in order to punish as less
as possible the customer who is delivered with the longest delay. These problems are
strongly NP-hard (Graham et al., 1979). The parallel machine scheduling problem has
been widely studied (Cheng and Sin, 1990), specially because it appears as a relax-
ation of more complex problems like the hybrid �ow shop scheduling problem or the
RCPSP (Resource-Constrained Project Scheduling Problem). However, the literature
on parallel machine scheduling with precedence constraints and setup times is quite
limited. The problems that only have either precedence constraints or setup times but
not both, can be solved by list scheduling algorithms. That means, it exists a total
ordering of the jobs (a list) that, when a given allocation rule is applied, reaches the
optimal solution (Schutten, 1994). This rule is the Earliest Completion Time (ECT).
It consists in allocating every job to the machine that allows it to be completed ear-
lier. That reasoning is unfortunately unlikely to work when precedence constraints
and setup times are considered together, as shown in Hurink and Knust (2001), so
we have to modify the way to solve the problem and consider both scheduling and
resource allocation decisions.

In Section 2, we de�ne formally our particular case, the parallel machine scheduling
problem with setup times and precedence constraints between jobs. The methods and
techniques of local and tree search used to solve the problem are described in Sections
3 and 4. Section 5 is dedicated to the computational experiments.

2 Problem de�nition

We consider the following problem, in which a set J of n jobs needs to be processed
on m parallel machines. The precedence relations between the jobs and the setup
times, considered when di�erents jobs are sequenced on the same machine, must be
respected. The preemption is not allowed, that means that each job is continually
processed during pi time units on the same machine. The machine can process no
more than one job at a time. The decision variables of the problem are Si, start time
of job i, and Ci, completion time of job i, where Ci = Si + pi. ri and di denote
the release date and the due date of job i, respectively. We denote by E the set of
precedence constraints between jobs. The relation (i, j) ∈ E, with i and j ∈ J , means
that job i is performed before job j (i ≺ j). So job j can start only after the end of job
i (Sj ≥ Ci). Finally, we de�ne sij as the setup time of job j processed immediately
after job i on the same machine. Thus, for two jobs i and j processed successively on
the same machine, we have either Sj ≥ Ci + sij if i precedes j, or Si ≥ Cj + sji if j
precedes i. The problems are then: P |prec, sij |

∑
Ci and P |prec, sij |Lmax.



3 A hybrid Tree-Local search method

3.1 Limited discrepancy tree search

To solve the problems under consideration, we use a method based on the discrep-
ancies regarding a reference heuristic. Such a method is based on the assumed good
performance of this reference heuristic, thus making an ordered local search around
the solution given by the heuristic. First, it explores the solutions with few discrep-
ancies from the heuristic solution and then it moves away from this solution until it
has covered the whole search space. In this context, the principle of LDS (Limited
Discrepancy Search) (Harvey and Ginsberg, 1995) is to explore �rst the solutions with
discrepancies on the top of the tree, since it assumes that the heuristic makes the most
important mistakes in the high levels where it still has taken very few decisions.

Several methods based on LDS have been proposed in order to increase the e�-
ciency. For instance, ILDS (Korf, 1996), DDS (Walsh, 1997) or DBDFS (Beck and
Perron, 2000), which have been devised to avoid the redundancy, and YIELDS (Karoui
et al., 2007) where learning process notions are integrated.

3.2 Large neighborhood local search based on LDS

CDS (Climbing Discrepancy Search) (Milano and Roli, 2002) is a large neighborhood
search method based on LDS. At each iteration it carries out a k-discrepancy search
around the best current solution. If a better solution is found, then CDS takes its
neighborhood as the new neighborhood to explore. In the case of no better solution
is found, then k is increased by one. CDDS (Climbing Depth-bounded Discrepancy
Search) mixes principles of CDS and of DDS (Hmida et al., 2007). The neighborhood
of the best solution is limited not only by the number of discrepancies but also by the
depth in the tree.

In this work, we propose two variants of CDS and CDDS for the problems at hand.
HD-CDDS (Hybrid Discrepancy CDDS) consists in a search similar to CDDS. But, if
for a de�ned depth level dmax we cannot �nd a best solution, then we authorize
a small number of discrepancies for all levels. This method solves the problem of
incompatibility between the limitation by depth level and the precedence constraints.
The second one, MC-CDS (Mix Counting CDS), is an application of CDS but with a
modi�cation in the way to count the discrepancies. We consider a binary counting for
the discrepancies at the top levels of the tree and a non-binary counting way for the
rest of levels. We de�ne in Section 4 the concept of binary and non-binary discrepancy
counting as well as the other components of the LDS called at each iteration for the
CDS local search method.

4 Branch-and-Bound components for P |prec, sij |
∑

Ci and P |prec, sij |Lmax

A tree structure with both levels of decisions (scheduling and resource allocation) is
de�ned in 4.1. The exploration strategy (branching rules), the heuristics, and the de�-
nition of discrepancy are explained in 4.2. The speci�c methods of node evaluation like
lower bounds, constraint propagation mechanisms and dominance rules are introduced
in 4.3.

4.1 Tree structure

The problem cannot always be e�ciently solved by a list algorithm since it includes
precedence constraints and setup times together (Hurink and Knust, 2001). In our
case we have not only to �nd the best list of jobs but also to specify the best resource
allocation. For practical purposes, we have mixed both levels of decision: one branch
is associated to the choice of the next job to schedule and also to the choice of the
machine. One node represents a list of p jobs and a partial scheduling of these p jobs,
and it entails maximum (n− p)m child nodes. A solution is reached when we have a
node with p = n. We suggest the following proposition in order to reduce the number
of nodes to explore: for every job x having t (direct or undirect) successor jobs, we
consider the assignments on the �rst [min(m, t + 1)]th machines that allows x to be
completed as soon as possible. So, we are going to consider the schedule according
to ECT rule for all jobs, except for the previous jobs. In that case, we consider to



schedule them on more than one machine to prevent that the previous jobs could avoid
the best assignment for its successor jobs.

4.2 Exploration strategy

An initial solution is �rst obtained by the use of simple heuristics. For the job
selection we use SPT (Smallest Processing Time) rule for min

∑
Ci and EDD (Earliest

Due Date) for min Lmax. Once the job set, it is assigned to a machine according to
ECT (Earliest Completion Time) heuristic.

Because of the existence of two types of decisions, we consider here two types of
discrepancies: discrepancy on job selection and discrepancy on resource allocation.
In the case of p-ary tree, we have two di�erent ways to count the discrepancies. In
the �rst mode (binary), we consider that choosing the heuristic decision corresponds
to 0 discrepancy, while any other value corresponds to 1 discrepancy. The other
mode (non-binary) consists in considering that the more far we are from the heuristic
choice the more discrepancies we have to count. We suggest to test both modes for
the heuristic for job selection. For these decisions, the heuristic is likely to make
important errors, since the setup times are not considered and they have a main role
in job scheduling. On the other hand, for the choice of the machine, we use the non-
binary mode since we assume that the allocation heuristic only makes a few errors
(ECT is a high-performance heuristic for this problem).

We propose three di�erent branching rules. The �rst one, called LDS-depth, is a
classical depth-�rst search but where the solutions obtained are limited by the allowed
discrepancies. The other two strategies consider the number of discrepancies in the
order the solutions are reached. The node to explore is the node with the less number
of discrepancies, and with the smallest depth for the strategy called LDS-top, and with
the largest depth for the strategy called LDS-low.

4.3 Node evaluation

A node evaluation di�ers depending on the studied criterion. For min
∑

Ci, it
consists in computing a lower bound. We selected the bound suggested in Nessah
et al. (2005), it is based on the resolution of a one-machine relaxation of the problem.

For min Lmax, the evaluation consists in triggering a satis�ability test based on
constraint propagation involving energetic reasoning (Lopez and Esquirol, 1996). The
energy is produced by the resources and it is consumed by the jobs. We apply it to
verify whether the best solution reached from the current node will be at least as good
as the best current solution. We determine the minimum energy consumed by the
jobs (Econsumed) over a time interval ∆ = [t1, t2] and we compare it with the available
energy (Eproduced = m(t2 − t1)); if Econsumed > Eproduced we can cut the branch. In
our problem we also have to consider the energy consumed by the setup times. For an
interval ∆ where there is a set F of k jobs that consume, we can easily show that the
minimum quantity of setups which occurs is k −m. So, we have to take the shortest
k−m setup times of the set {sij}, i, j ∈ F into account and the energy consumed in an

interval ∆ is Econsumed =
∑

i
max(0, min(pi, t2−t1, ri+pi−t1, t2−d′i+pi))+

∑k−m

i
s[ij]

where s[ij] are the setup times of the set {sij}, i, j ∈ F sorted in non-decreasing order
and d′i = Zbest + di.

We also propose some dominance rules to solve the problems. They consist in try-
ing to �nd whether there exists a dominant node, visited earlier or later, that allows
us to prune the current node. The �rst one is a global dominance rule based on active
schedules and max �ow computation (Leus and Herroelen, 2003). The other two rules
have been designed for being compatible with the allowed discrepancies. They are
also based on active schedules. For a given schedule, the dominance rules search for a
combination of jobs such that one job starts earlier (S′

i < Si), and for the other jobs
the start time cannot be delayed, (S′

j ≤ Sj ,∀j 6= i). This combination of jobs has to
be accepted for the number of authorized discrepancies.

5 Computational experiments

In the literature we have not found instances for this particular problem, so we propose
to test the methods on a set of randomly generated instances. We �rst compare the



di�erent proposed variants of the LDS method to determine the best one for being
included inside the CDS scheme.

In the comparaison between the two di�erent ways to count the discrepancies, bi-
nary and non-binary, we can say that the binary mode has shown a higher performance
than the non-binary one. Out of a set of 60 instances, binary mode has found the best
solution over 90 � of the instances, independently of the branching rule. For the three
branch rules comparison we �nd that LDS-top (83.33 �) is the most e�cient, since it
reaches the best solutions more times and also with the shortest average search time.

For the evaluation of the lower bound and of the energetic reasoning we �nd that
both allow the reduction of the search time and when the search cannot be �nished we
�nd better solutions when we use them (55 � for lb(

∑
Ci) and 87 � for the energetic

reasoning) than we do not (45 � and 68 �, respectively). The best combinations for
the node evaluation are the lower bound (for min

∑
Ci) and the energetic reasoning

(for min Lmax) mixed with the local dominance rule (90 � and 93 �, respectively).
Finally, we compare the four variants of the hybrid tree local search methods

(CDS, CDDS, HD-CDDS, MC-CDS) implemented with LDS-top, local dominance
rule and binary counting (except for MC-CDS wich supposes a mix counting). HD-
CDDS reaches the best solution for more instances (70 �) than the other methods and
it also presents the smallest mean deviation from the best known solution (about 3 �).

6 Conclusion

In this paper we have studied limited discrepancy-based search methods and we have
also proposed local search methods based on them. We have suggested an energetic
reasoning scheme integrating setup times and we have proposed new global and local
dominance rules that consider the discrepancies.

These methods could be used to solve more complex problems involving setup
times, like the hybrid �ow shop or the RCPSP.
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