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Abstract

Numerous theoretical and numerical works have been devoted to the study of the algebraic de-

crease at large times of the velocity autocorrelation function of simple fluid particles. The derivation

of this behaviour, so-called the long-time tail, generally based on linearized hydrodynamic makes

no reference to any specific characteristic of the particle interactions. However, in the literature,

doubts have been expressed on the possibility that by numerical simulations the long-time tail can

be observed in all the fluid phase domain of systems where the particles interact by soft-core and

attractive pair potentials. In this work, extensive and accurate molecular dynamics simulations

establish that the predicted long-time tail of the velocity autocorrelation function exists in low

density fluid of particles interacting by a soft-repulsive potential and near the liquid-gas critical

point of a Lennard-Jones system. These results contribute to confirm that the algebraic decay of

the velocity autocorrelation function is universal in the fluid systems.
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I. INTRODUCTION

The long time tail of the velocity autocorrelation function (VAF), discovered first by the

pioneering work of Alder and Wainwright [1] using molecular dynamic (MD) simulation of

elastically colliding hard disks and spheres, came as a complete surprise. This result was

in contradiction with the prediction of an exponential decay of the VAF supported by the

explicit solutions of almost all known solvable models, such as the linearized Boltzmann

equation [2] and the Fokker-Planck equation [3].

Alder and Wainwright found that the VAF long-time tail was well fitted by the analytic

form αt−3/2. They explained this unexpected behaviour by a simple hydrodynamic model,

describing the motion of a hard disk or sphere by that of a circular or spherical particle in

a continuum fluid formed by the other disks or spheres. The forward motion of the particle

gives rise in the fluid to a vortex of size approximately equal to three particle diameter. This

vortex mode predominates at long times leading to the long-time tail αt−3/2 of the VAF.

For fluid systems and without reference to the details of the particle interactions, Ernst et

al. [4, 5] were able to derive the VAF asymptotic time behaviour by assuming the existence

of a local equilibrium and using the linearized Navier-Stokes equation. For a system of hard

disks and hard spheres, Dorfman and Cohen [6] derived the long-time tail of the VAF from

kinetic theory. They showed that a sequence of correlated binary collisions, ring collisions,

is the main process responsible for the vortex formation leading to the VAF slow decay.

Light scattering experiments [7, 8] or diffusive wave spectroscopy [9, 10] indicate the

presence of the long-time tail in the VAF of colloidal particles. These experimental results

agree with the theoretical description of the Brownian particle motion [11, 12]. Neutron

scattering experiments [13, 14] also indicate that, in atomic liquids, the VAF decreases

algebraically at large times. However, present experimental evidences of the VAF long-time

tail are restricted to a few type of liquids (colloids, alkaline liquids and liquid argon) and

few thermodynamic states.

Furthermore in MD simulations, doubts remain about the possibility of observing the

long-time tail in a low density fluid of soft-repulsive particles [15] and in Lennard-Jones (LJ)

fluid in thermodynamic states close to the liquid-vapour critical point [16]. According to

the simulation results [15] it seems that the nonexponential decrease of the VAF with time

is easily observed only for systems at moderate densities, since, in this work, the αt−3/2 tail
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is not found at low densities. The simulations [16] indicate that, for a LJ system, the VAF

decays at long times in agreement with the theoretical exponent −3/2 only at high densities,

and that, along an isochore close to the critical density, the VAF decreases with an exponent

equal to −3.

Motivated by these apparent disagreements between these simulation results and the

theoretical derivation of the VAF asymptotic time behaviour, it is shown in this paper, by

means of accurate and extensive MD simulations, that the VAF exhibits the αt−3/2 power

law decay for a fluid of soft-repulsive particles at low density and for a LJ fluid close to the

critical point, confirming the theoretical claim of a universal power law tail of the VAF in

all the thermodynamic states of simple fluids [5], independently on the particle interactions.

We give in Sec. II a theoretical overview, and in Sec. III the MD simulation details.

Sec. IV presents and discusses the simulation results for the VAF. The paper ends by a

conclusion.

II. THEORETICAL OVERVIEW

The expression of the velocity autocorrelation function for a three dimensional fluid, at

large times, is given by [4] :

〈v(0) · v(t)〉 =
2kBT

ρNm

1

[(4π(D + ν)t]3/2
= αt−3/2 (1)

where v is the particle velocity vector at time t, kB the Boltzmann’s constant, T the temper-

ature, m the mass of the particles, ρN the particle density, D the self-diffusion coefficient,

and ν the kinematic viscosity of the fluid. The angular brackets indicate an equilibrium

ensemble average.

The derivation of Eq. (1) is made under the general assumption that the approach

of non-equilibrium distribution to local equilibrium distribution evolves at long times ac-

cording to the laws of hydrodynamic [4]. The following arguments, which summarize this

derivation, are taken from [17, 18]. We consider a d-dimensional system of N particles in

equilibrium, containing a tagged particle with an initial velocity v(0) = v0. From this initial

non-equilibrium state, the evolution of the system towards equilibrium is supposed to be

described by means of linearized hydrodynamic equations :

∂P (r, t)

∂t
= D∇2P (r, t), (2)
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∂u⊥(r, t)

∂t
= −ν∇ × (∇× u⊥(r, t)). (3)

where P (r, t) is the probability density for the tagged particle to be at position r at time

t and u⊥(r, t) is the transverse part of the velocity density field. The longitudinal part of

the velocity density field does not appear in the equations because its contribution to the

velocity autocorrelation decays exponentially [18].

From the Fourier transforms of Eqs. (2) and (3), it is shown that :

∼

P (k, t) = e−Dk2t, (4)

∼
u⊥ (k, t) = [v0 −

(v0 · k)k

k2
]e−νk2t. (5)

With the assumption that, at long times, the tagged particle has the same average velocity

as its neighbouring particles, we have :

v(t) =

∫

ddrP (r, t)
1

ρN

u⊥(r, t) =
1

ρN

1

(2π)d

∫

ddk
∼

P (k, t)
∼
u⊥ (−k, t). (6)

The insertion of Eqs. (4) and (5) into Eq. (6) gives :

v(t) =
1

ρN

1

(2π)d

∫

ddk[v0 −
(v0 · k)k

k2
]e−(ν+D)k2t

=
1

ρN

d − 1

d

1

[(4π(D + ν)t]d/2
v0. (7)

where the (d − 1)/d coefficient comes from the fact that only the transverse part of the

velocity field contributes at large times.

Averaging over v0 with respect to the Maxwell-Boltzmann velocity distribution :

〈v(0) · v(t)〉 =
1

ρN

d − 1

d

1

[(4π(D + ν)t]d/2

∫

ddv0

(

m

2πkBT

)d/2

v2
0e

−mv2

0
/2kBT (8)

leads to the expression of the VAF given by Eq. (1) :

〈v(0) · v(t)〉 =
(d − 1) kBT

mρN

1

[(4π(D + ν)t]d/2
. (9)

The derivation of Eq. (1) from kinetic theory, valid for particle systems with short range

repulsive potentials as the hard disk or sphere systems, is more sophisticated [6, 19, 20]. As

it is mentionned above, the vortex mode responsible of the long-time tail of the VAF finds

its origin in the so-called ring-collisions, a sequence of correlated binary collisions where
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the initial momentum of the tagged particle is transferred to the surrounding particles in

a ring-like motion. It can even be found from more complex derivations [19] that the t−3/2

long-time behaviour of the VAF is the first term in an infinite series of general order t−l,

where l = 1/2n − 2 with n integer ≥ 1 and −2 ≤ l ≤ −3/2 .

In the expression of the VAF derived by kinetic theory appears the so-called “bare”

transport coefficients D0 and ν0 [6] corresponding to a “bare” value α0 of the long-time tail

amplitude α. The values of D0 and ν0 are close, but not identical to those of D and ν of

the hydrodynamical approach. The numerical simulations compute a long time tail with

a “bare” amplitude for times between 10 and 50 mean collision times, it is only for longer

times that the hydrodynamic amplitude α is obtained [18].

In summary, the asymptotic behaviour of the VAF has been determined either by means

of hydrodynamical assumptions, independently of the details of the particle interactions, or

by kinetic theory for hard-core particles. The two approaches lead to predict the αt−3/2

long-time tail of the VAF.

III. MOLECULAR DYNAMICS SIMULATIONS

To determine the long-time behaviour of the VAF by MD simulation we have to be sure

that there is no influence of the periodic boundary conditions of the simulation cell on the

VAF computation [20, 21]. To achieve this goal, we choose a maximum correlation time

tmax smaller than the time needed by a sound wave to cross the entire periodic cell, i.e.

tmax ≤ (N/ρNc3
s)

1/3, (10)

where cs is the speed of sound in the fluid. It is expected that, at times greater than tmax,

the VAF becomes strongly influenced by the sound modes [21]. Thus, before to compute

the VAF for any system of arbitrary but reasonably large number of particles (N > 500), it

is necessary first to estimate the velocity of sound cs at the phase point we want to study

from the formula [22]:

cs =

√

(

∂P

∂ρ

)

T

+
T

ρ2
(

∂E
∂T

)

V

(

∂P

∂T

)2

V

, (11)

where P is the pressure, E the total energy and V the volume. Once the value of cs obtained,

the maximum correlation time tmax is estimated through Eq. (10).
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To test the theoretical prediction αt−3/2 of the behaviour of the VAF at long times against

the simulation results, we have to make an estimate of α which depends on the diffusion

coefficient and kinematic viscosity. We use the Green-Kubo integral formula [23] to calculate

the self-diffusion coefficient :

D =
1

3N

N
∑

i=1

∫ ∞

0

〈vi(0) · vi(t)〉dt =
3kBT

m

∫ ∞

0

dt vaf(t) (12)

where the average over all the particles is used to reduce the statistical uncertainty on the

normalized velocity autocorrelation function vaf(t). The kinematic viscosity ν is obtained

through the shear viscosity η given by [23] :

η = lim
tu→∞

η(tu) =
1

kBTV

∫ tu

0

〈σxz(t)σxz(0)〉dt, (13)

where σxz is an off-diagonal element of the stress tensor

σxz =
N

∑

i=1

(

mvixviz +
1

2

N
∑

j 6=i

xijF
z
ij

)

, (14)

with F z
ij the z-component of the force between particles i and j and xij the x-component of

the vector joining particles i and j.

In this paper, we use the reduced quantities: T ∗ = kBT/ε, ρ∗ = ρσ3, t∗ = t
√

ε/mσ2, and

r∗ = r/σ, where ε and σ are the energy and length parameters of the LJ potentials vLJ(r).

The unit of time is thus τ0 =
√

mσ2/ε.

We have considered two systems : a low density system, at ρ∗ = 0.2 and T ∗ = 2.07, of

32000 particles interacting via a soft-repulsive potential

v(r) = vLJ(r) + ε = 4ε[(
σ

r
)12 − (

σ

r
)6] + ε for r ≤ 2

1

6 σ (15)

= 0 for r > 2
1

6 σ , (16)

and a LJ system near the liquid-vapour critical point at ρ∗ = 0.3 and T ∗ = 1.35 of 10976

particles interacting by a LJ potential truncated at a cutoff distance equal to r∗ =6.5. This

value of the cutoff is the same as that used in the work of Meier et al [16] in which a t−3

behaviour of the VAF was reported near the critical point.

The simulations were realized at constant energy using the standard Verlet algorithm

with a time step ∆t∗ = 0.003 for the low density fluid and ∆t∗ = 0.001 at the critical

point to insure the stability of the total energy value to within 0.01%. The simulations were
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carried out for 100 000 equilibration time steps followed by 10 106 time steps during which

the VAF or the stress correlation function, were computed over blocks of 2000∆t∗ to allow

an evaluation of the statistical errors.

For the soft-repulsive particle system at ρ∗ = 0.2 and T ∗ = 2.07, the computed thermo-

dynamic properties are : P ∗ = 0.632, E∗
total = 3.242 and cs = 2.682σ/τ0 and, near the LJ

critical point at ρ∗ = 0.3 and T ∗ = 1.35 : P ∗ = 0.153, E∗
total = −0.15 and cs = 2.09σ/τ0.

From Eq. (10), we find the maximun correlation time t∗max equal to 20.2 in the first case

and 15.8 near the LJ critical point. The derivatives on P and E in Eq. (11) were computed

from canonical ensemble MD simulations performed at densities and temperatures close to

those of the considred thermodynamiques states.

IV. VELOCITY AUTOCORRELATION RESULTS

We give in Fig. 1 the normalized VAF multiplied by t∗3/2 for the studied systems. The

maximum correlation times are those fixed previously from the computation of cs. The

statistical error on the normalized VAF is estimated to be ±2. 10−5 which gives a relative

error of 10% on the asymptotic part of the VAF. The data clearly indicates the existence of

t−3/2 behaviour in both cases.

For the soft particle system, the asymptotic tail appears above t∗ =10. This explains why,

in the similar work of McDonough et al [15], it was not possible to observe the long time

tail at a density ρ∗ =0.25 because it occurs at larger time than the maximum correlation

time considered in this work equal to ∼5. Noticing that the system size being equal to 4000

particles, it was not possible to consider correlation times higher than 7 due to the coupling

between diffusion and sound modes [21].

Fig. 2 shows a log-log plot of the VAF versus reduced time for the soft-repulsive fluid. A

linear fit of the data in the range 11 < t∗ < 18 gives : log vaf(t) = (−4.05 ± 0.08) − (1.50 ±

0.03) log t∗, leading to a value of αfit = 0.0174 ± 0.0015. In order to test the theoretical

value of α, we have computed the diffusion coefficient from the integral of the VAF (cf. Eq.

(12)) up to t∗ = 11 in agreement with the remark quoted above [18]. The value found was

D∗ = 0.294±0.001. A similar computation was for the kinematic viscosity. Fig. 3 shows the

stress correlation function Eq. (14) computed up to a correlation time equal to 5, beyond

which the stress correlation function is zero within the statistical error. It is important to
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remark that the statistical error on the vaf(t) due the average on the particles is smaller

than that on the stress correlation function by almost two orders of magnitude. In addition,

since the integral is truncated at t∗ = 5, a contribution to η(t) is missing which is due to the

long time part of the stress correlation function. This contribution can account to about

15-20% of the η value as it was shown [24]. In Fig. 3, the plot of the integral η(tu) over the

stress tensor correlation is also included. The plateau gives the value of η and that of the

kinematic viscosity equal to ν∗ = 1.71 ± 0.08 to which we should add a systematic error of

∼0.3. The corresponding calculated value for the amplitude αcal = 0.026 ± 0.006 including

the systematic error on ν∗. Then, the agreement between the fitted and theoretical values

of α is correct. The difference of 20-30% between the α estimates, reported in the literature

[15, 25], seems probably due to the uncertainty on ν∗.

Fig. 4 gives a log-log plot of the VAF versus reduced time for the LJ fluid near critical

point. A linear fit of the data in the range 9 < t∗ < 15 gives : log vaf(t) = (−3.66 ±

0.05) − (1.53 ± 0.02) log t∗, leading to a value of αfit = 0.0258 ± 0.0015. Similarly to the

previous system, the computation of the diffusion coefficient and kinematic viscosity gives

the values: D∗ = 0.620± 0.007 and ν∗ = 1.20± 0.06. The stress tensor correlation function

versus reduced time is given in Fig. 5 together with its integral. Thus incorporating these

values of D∗ and ν∗ into Eq. (1) leads to a value of αcal = 0.02. The difference between the

fitted and calculated values amounts in this case to 13% which stays within the statistical

and systematic errors on ν∗ following the discussion made above. This result confirms the

universality of the t−3/2 behaviour at long times of the VAF also in the temperature and

density domain close to the liquid-vapour critical point.

V. CONCLUSION

The velocity autocorrelation function has been computed by constant energy MD sim-

ulations for a fluid of soft-repulsive particles at low density and for a LJ system near the

critical point. By using larger systems, and by correlating over a longer time than those used

of the literature [15, 16], we show that the velocity autocorrelation function presents the

universal asymptotic behaviour αt−3/2 as predicted by the theory. The uncertainty between

the computed and fitted values of the amplitute α of the asymptotic part of the VAF is

mainly due to the uncertainty in the computation of the kinematic viscosity.
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These results remove all the ambiguities related to the existence of the long time tail

in almost all domain of the fluid phase. However, close to triple point, the onset of long-

lived damped oscillations in the VAF due to the backscattering of particle by their next

neighbours [23], precludes the computation of the long time tail. Therefore the observation

of the VAF asymptotic behaviour in these thermodynamic states stays a challenge.
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FIG. 1: Plots of the normalized VAF multiplied by (t/τ0)
3/2. Dashed-dotted line and black square

: system of soft-repulsive particles at ρ∗ = 0.2 and T ∗ = 2.07, dashed line and black circle : LJ

system at ρ∗ = 0.3 and T ∗ = 1.35.
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FIG. 2: Log-log plot of the normalized VAF of the soft-repulsive particle system at ρ∗ = 0.2 and

T ∗ = 2.07 : black circle and error bars. Thick line : linear fit.
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FIG. 3: Stress tensor correlation function versus time for soft-repulsive particle system at ρ∗ = 0.2

and T ∗ = 2.07 : dot and solid line. Inset integral η(t).
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FIG. 4: Log-log plot of the normalized VAF of the LJ system at ρ∗ = 0.3 and T ∗ = 1.35 : black

circle and error bars. Thick line : linear fit.
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FIG. 5: Stress tensor correlation function versus time for LJ system at ρ∗ = 0.3 and T ∗ = 1.35 :

dot and solid line. Inset integral η(t).
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