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Numerous theoretical and numerical works have been devoted to the study of the algebraic decrease at large times of the velocity autocorrelation function of simple fluid particles. The derivation of this behaviour, so-called the long-time tail, generally based on linearized hydrodynamic makes no reference to any specific characteristic of the particle interactions. However, in the literature, doubts have been expressed on the possibility that by numerical simulations the long-time tail can be observed in all the fluid phase domain of systems where the particles interact by soft-core and attractive pair potentials. In this work, extensive and accurate molecular dynamics simulations establish that the predicted long-time tail of the velocity autocorrelation function exists in low density fluid of particles interacting by a soft-repulsive potential and near the liquid-gas critical point of a Lennard-Jones system. These results contribute to confirm that the algebraic decay of the velocity autocorrelation function is universal in the fluid systems.

INTRODUCTION

The long time tail of the velocity autocorrelation function (VAF), discovered first by the pioneering work of Alder and Wainwright [1] using molecular dynamic (MD) simulation of elastically colliding hard disks and spheres, came as a complete surprise. This result was in contradiction with the prediction of an exponential decay of the VAF supported by the explicit solutions of almost all known solvable models, such as the linearized Boltzmann equation [START_REF] Chapman | The Mathematical Theory of Non-Uniform Gases[END_REF] and the Fokker-Planck equation [START_REF] Chandrasekhar | [END_REF].

Alder and Wainwright found that the VAF long-time tail was well fitted by the analytic form αt -3/2 . They explained this unexpected behaviour by a simple hydrodynamic model, describing the motion of a hard disk or sphere by that of a circular or spherical particle in a continuum fluid formed by the other disks or spheres. The forward motion of the particle gives rise in the fluid to a vortex of size approximately equal to three particle diameter. This vortex mode predominates at long times leading to the long-time tail αt -3/2 of the VAF.

For fluid systems and without reference to the details of the particle interactions, Ernst et al. [4,5] were able to derive the VAF asymptotic time behaviour by assuming the existence of a local equilibrium and using the linearized Navier-Stokes equation. For a system of hard disks and hard spheres, Dorfman and Cohen [6] derived the long-time tail of the VAF from kinetic theory. They showed that a sequence of correlated binary collisions, ring collisions, is the main process responsible for the vortex formation leading to the VAF slow decay.

Light scattering experiments [7,8] or diffusive wave spectroscopy [9,10] indicate the presence of the long-time tail in the VAF of colloidal particles. These experimental results agree with the theoretical description of the Brownian particle motion [11,12]. Neutron scattering experiments [13,14] also indicate that, in atomic liquids, the VAF decreases algebraically at large times. However, present experimental evidences of the VAF long-time tail are restricted to a few type of liquids (colloids, alkaline liquids and liquid argon) and few thermodynamic states. Furthermore in MD simulations, doubts remain about the possibility of observing the long-time tail in a low density fluid of soft-repulsive particles [15] and in Lennard-Jones (LJ) fluid in thermodynamic states close to the liquid-vapour critical point [16]. According to the simulation results [15] it seems that the nonexponential decrease of the VAF with time is easily observed only for systems at moderate densities, since, in this work, the αt -3/2 tail is not found at low densities. The simulations [16] indicate that, for a LJ system, the VAF decays at long times in agreement with the theoretical exponent -3/2 only at high densities, and that, along an isochore close to the critical density, the VAF decreases with an exponent equal to -3.

Motivated by these apparent disagreements between these simulation results and the theoretical derivation of the VAF asymptotic time behaviour, it is shown in this paper, by means of accurate and extensive MD simulations, that the VAF exhibits the αt -3/2 power law decay for a fluid of soft-repulsive particles at low density and for a LJ fluid close to the critical point, confirming the theoretical claim of a universal power law tail of the VAF in all the thermodynamic states of simple fluids [5], independently on the particle interactions.

We give in Sec. II a theoretical overview, and in Sec. III the MD simulation details.

Sec. IV presents and discusses the simulation results for the VAF. The paper ends by a conclusion.

II. THEORETICAL OVERVIEW

The expression of the velocity autocorrelation function for a three dimensional fluid, at large times, is given by [4] :

v(0) • v(t) = 2k B T ρ N m 1 [(4π(D + ν)t] 3/2 = αt -3/2 (1)
where v is the particle velocity vector at time t, k B the Boltzmann's constant, T the temperature, m the mass of the particles, ρ N the particle density, D the self-diffusion coefficient, and ν the kinematic viscosity of the fluid. The angular brackets indicate an equilibrium ensemble average.

The derivation of Eq. ( 1) is made under the general assumption that the approach of non-equilibrium distribution to local equilibrium distribution evolves at long times according to the laws of hydrodynamic [4]. The following arguments, which summarize this derivation, are taken from [17,[START_REF] Hollander | Long time tails in physics and mathematics[END_REF]. We consider a d-dimensional system of N particles in equilibrium, containing a tagged particle with an initial velocity v(0) = v 0 . From this initial non-equilibrium state, the evolution of the system towards equilibrium is supposed to be described by means of linearized hydrodynamic equations :

∂P (r, t) ∂t = D∇ 2 P (r, t), (2) 
∂u ⊥ (r, t) ∂t = -ν∇ × (∇ × u ⊥ (r, t)). (3) 
where P (r, t) is the probability density for the tagged particle to be at position r at time t and u ⊥ (r, t) is the transverse part of the velocity density field. The longitudinal part of the velocity density field does not appear in the equations because its contribution to the velocity autocorrelation decays exponentially [START_REF] Hollander | Long time tails in physics and mathematics[END_REF].

From the Fourier transforms of Eqs. ( 2) and ( 3), it is shown that :

∼ P (k, t) = e -Dk 2 t , (4) 
∼ u ⊥ (k, t) = [v 0 - (v 0 • k)k k 2 ]e -νk 2 t . (5) 
With the assumption that, at long times, the tagged particle has the same average velocity as its neighbouring particles, we have :

v(t) = d d rP (r, t) 1 ρ N u ⊥ (r, t) = 1 ρ N 1 (2π) d d d k ∼ P (k, t) ∼ u ⊥ (-k, t). (6) 
The insertion of Eqs. ( 4) and ( 5) into Eq. ( 6) gives :

v(t) = 1 ρ N 1 (2π) d d d k[v 0 - (v 0 • k)k k 2 ]e -(ν+D)k 2 t = 1 ρ N d -1 d 1 [(4π(D + ν)t] d/2 v 0 . ( 7 
)
where the (d -1)/d coefficient comes from the fact that only the transverse part of the velocity field contributes at large times.

Averaging over v 0 with respect to the Maxwell-Boltzmann velocity distribution :

v(0) • v(t) = 1 ρ N d -1 d 1 [(4π(D + ν)t] d/2 d d v 0 m 2πk B T d/2 v 2 0 e -mv 2 0 /2k B T (8) 
leads to the expression of the VAF given by Eq. ( 1) :

v(0) • v(t) = (d -1) k B T mρ N 1 [(4π(D + ν)t] d/2 . ( 9 
)
The derivation of Eq. ( 1) from kinetic theory, valid for particle systems with short range repulsive potentials as the hard disk or sphere systems, is more sophisticated [6,[START_REF] Pomeau | [END_REF]20]. As it is mentionned above, the vortex mode responsible of the long-time tail of the VAF finds its origin in the so-called ring-collisions, a sequence of correlated binary collisions where the initial momentum of the tagged particle is transferred to the surrounding particles in a ring-like motion. It can even be found from more complex derivations [START_REF] Pomeau | [END_REF] that the t -3/2 long-time behaviour of the VAF is the first term in an infinite series of general order t -l , where l = 1/2 n -2 with n integer ≥ 1 and -2 ≤ l ≤ -3/2 .

In the expression of the VAF derived by kinetic theory appears the so-called "bare" transport coefficients D 0 and ν 0 [6] corresponding to a "bare" value α 0 of the long-time tail amplitude α. The values of D 0 and ν 0 are close, but not identical to those of D and ν of the hydrodynamical approach. The numerical simulations compute a long time tail with a "bare" amplitude for times between 10 and 50 mean collision times, it is only for longer times that the hydrodynamic amplitude α is obtained [START_REF] Hollander | Long time tails in physics and mathematics[END_REF].

In summary, the asymptotic behaviour of the VAF has been determined either by means of hydrodynamical assumptions, independently of the details of the particle interactions, or by kinetic theory for hard-core particles. The two approaches lead to predict the αt -3/2 long-time tail of the VAF.

III. MOLECULAR DYNAMICS SIMULATIONS

To determine the long-time behaviour of the VAF by MD simulation we have to be sure that there is no influence of the periodic boundary conditions of the simulation cell on the VAF computation [20,21]. To achieve this goal, we choose a maximum correlation time t max smaller than the time needed by a sound wave to cross the entire periodic cell, i.e.

t max ≤ (N/ρ N c 3 s ) 1/3 , (10) 
where c s is the speed of sound in the fluid. It is expected that, at times greater than t max , the VAF becomes strongly influenced by the sound modes [21]. Thus, before to compute the VAF for any system of arbitrary but reasonably large number of particles (N > 500), it is necessary first to estimate the velocity of sound c s at the phase point we want to study from the formula [START_REF] Huang | Statistical Mechanics[END_REF]:

c s = ∂P ∂ρ T + T ρ 2 ∂E ∂T V ∂P ∂T 2 V , ( 11 
)
where P is the pressure, E the total energy and V the volume. Once the value of c s obtained, the maximum correlation time t max is estimated through Eq. (10).

To test the theoretical prediction αt -3/2 of the behaviour of the VAF at long times against the simulation results, we have to make an estimate of α which depends on the diffusion coefficient and kinematic viscosity. We use the Green-Kubo integral formula [START_REF] Hansen | Theory of Simple Liquids[END_REF] to calculate the self-diffusion coefficient :

D = 1 3N N i=1 ∞ 0 v i (0) • v i (t) dt = 3k B T m ∞ 0 dt vaf(t) (12) 
where the average over all the particles is used to reduce the statistical uncertainty on the normalized velocity autocorrelation function vaf(t). The kinematic viscosity ν is obtained through the shear viscosity η given by [START_REF] Hansen | Theory of Simple Liquids[END_REF] :

η = lim tu→∞ η(t u ) = 1 k B T V tu 0 σ xz (t)σ xz (0) dt, (13) 
where σ xz is an off-diagonal element of the stress tensor

σ xz = N i=1 mv ix v iz + 1 2 N j =i x ij F z ij , (14) 
with F z ij the z-component of the force between particles i and j and x ij the x-component of the vector joining particles i and j.

In this paper, we use the reduced quantities: T * = k B T / , ρ * = ρσ 3 , t * = t /mσ 2 , and r * = r/σ, where and σ are the energy and length parameters of the LJ potentials v LJ (r).

The unit of time is thus τ 0 = mσ 2 / .

We have considered two systems : a low density system, at ρ * = 0.2 and T * = 2.07, of 32000 particles interacting via a soft-repulsive potential

v(r) = v LJ (r) + = 4 [( σ r ) 12 -( σ r ) 6 ] + for r ≤ 2 1 6 σ (15) 
= 0 for r > 2

1 6 σ , (16) 
and a LJ system near the liquid-vapour critical point at ρ * = 0.3 and T * = 1.35 of 10976

particles interacting by a LJ potential truncated at a cutoff distance equal to r * =6.5. This value of the cutoff is the same as that used in the work of Meier et al [16] in which a t -3 behaviour of the VAF was reported near the critical point.

The simulations were realized at constant energy using the standard Verlet algorithm with a time step ∆t * = 0.003 for the low density fluid and ∆t * = 0.001 at the critical point to insure the stability of the total energy value to within 0.01%. The simulations were carried out for 100 000 equilibration time steps followed by 10 10 6 time steps during which the VAF or the stress correlation function, were computed over blocks of 2000∆t * to allow an evaluation of the statistical errors.

For the soft-repulsive particle system at ρ * = 0.2 and T * = 2.07, the computed thermodynamic properties are : P * = 0.632, E * total = 3.242 and c s = 2.682σ/τ 0 and, near the LJ critical point at ρ * = 0.3 and T * = 1.35 : P * = 0.153, E * total = -0.15 and c s = 2.09σ/τ 0 . From Eq. ( 10), we find the maximun correlation time t * max equal to 20.2 in the first case and 15.8 near the LJ critical point. The derivatives on P and E in Eq. ( 11) were computed from canonical ensemble MD simulations performed at densities and temperatures close to those of the considred thermodynamiques states.

IV. VELOCITY AUTOCORRELATION RESULTS

We give in Fig. 1 the normalized VAF multiplied by t * 3/2 for the studied systems. The maximum correlation times are those fixed previously from the computation of c s . The statistical error on the normalized VAF is estimated to be ±2. 10 -5 which gives a relative error of 10% on the asymptotic part of the VAF. The data clearly indicates the existence of t -3/2 behaviour in both cases.

For the soft particle system, the asymptotic tail appears above t * =10. This explains why, in the similar work of McDonough et al [15], it was not possible to observe the long time tail at a density ρ * =0.25 because it occurs at larger time than the maximum correlation time considered in this work equal to ∼5. Noticing that the system size being equal to 4000 particles, it was not possible to consider correlation times higher than 7 due to the coupling between diffusion and sound modes [21]. Fig. 2 shows a log-log plot of the VAF versus reduced time for the soft-repulsive fluid. A linear fit of the data in the range 11 < t * < 18 gives : log vaf(t) = (-4.05 ± 0.08) -(1.50 ± 0.03) log t * , leading to a value of α f it = 0.0174 ± 0.0015. In order to test the theoretical value of α, we have computed the diffusion coefficient from the integral of the VAF (cf. Eq. ( 12)) up to t * = 11 in agreement with the remark quoted above [START_REF] Hollander | Long time tails in physics and mathematics[END_REF]. The value found was D * = 0.294 ± 0.001. A similar computation was for the kinematic viscosity. Fig. 3 shows the stress correlation function Eq. ( 14) computed up to a correlation time equal to 5, beyond which the stress correlation function is zero within the statistical error. It is important to remark that the statistical error on the vaf(t) due the average on the particles is smaller than that on the stress correlation function by almost two orders of magnitude. In addition, since the integral is truncated at t * = 5, a contribution to η(t) is missing which is due to the long time part of the stress correlation function. This contribution can account to about 15-20% of the η value as it was shown [START_REF] Ould-Kaddour | [END_REF]. In Fig. 3, the plot of the integral η(t u ) over the stress tensor correlation is also included. The plateau gives the value of η and that of the kinematic viscosity equal to ν * = 1.71 ± 0.08 to which we should add a systematic error of ∼0.3. The corresponding calculated value for the amplitude α cal = 0.026 ± 0.006 including the systematic error on ν * . Then, the agreement between the fitted and theoretical values of α is correct. The difference of 20-30% between the α estimates, reported in the literature [15,25], seems probably due to the uncertainty on ν * . 1) leads to a value of α cal = 0.02. The difference between the fitted and calculated values amounts in this case to 13% which stays within the statistical and systematic errors on ν * following the discussion made above. This result confirms the universality of the t -3/2 behaviour at long times of the VAF also in the temperature and density domain close to the liquid-vapour critical point.

V. CONCLUSION

The velocity autocorrelation function has been computed by constant energy MD simulations for a fluid of soft-repulsive particles at low density and for a LJ system near the critical point. By using larger systems, and by correlating over a longer time than those used of the literature [15,16], we show that the velocity autocorrelation function presents the universal asymptotic behaviour αt -3/2 as predicted by the theory. The uncertainty between the computed and fitted values of the amplitute α of the asymptotic part of the VAF is mainly due to the uncertainty in the computation of the kinematic viscosity.

These results remove all the ambiguities related to the existence of the long time tail in almost all domain of the fluid phase. However, close to triple point, the onset of longlived damped oscillations in the VAF due to the backscattering of particle by their next neighbours [START_REF] Hansen | Theory of Simple Liquids[END_REF], precludes the computation of the long time tail. Therefore the observation of the VAF asymptotic behaviour in these thermodynamic states stays a challenge. 
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 21 FIG. 1: Plots of the normalized VAF multiplied by (t/τ 0 ) 3/2 . Dashed-dotted line and black square : system of soft-repulsive particles at ρ * = 0.2 and T * = 2.07, dashed line and black circle : LJ system at ρ * = 0.3 and T * = 1.35.
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 23 FIG.2: Log-log plot of the normalized VAF of the soft-repulsive particle system at ρ * = 0.2 and T * = 2.07 : black circle and error bars. Thick line : linear fit.
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 45 FIG. 4: Log-log plot of the normalized VAF of the LJ system at ρ * = 0.3 and T * = 1.35 : black circle and error bars. Thick line : linear fit.