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Polytopic observer design for LPV systems based
on minimal convex polytope finding

Floriane Anstett∗ , Gilles Millérioux∗, Gérard Bloch∗

Abstract— Linear Parameter Varying (LPV) systems are mod-
els widely encountered in the engineering field. In this paper,
a systematic method is provided to design a polytopic observer
whose goal is to reconstruct the state of discrete-time LPV sys-
tems. The method incorporates in an original manner a minimal
convex polytope finding and thereby confers efficiency to the
reconstruction technique. The proposed approach is illustrated in
the context of secure communications based on chaotic parameter
modulation.

Index Terms— Linear Parameter Varying (LPV) systems, min-
imal convex polytope, polytopic observers, chaotic systems

I. INTRODUCTION

Linear Parameter Varying (LPV) systems are models
widely encountered in the engineering field. They are
characterized by a dynamics which is linear with respect
to the state vector but, unlike pure linear systems, the
dynamical matrix depends on a time-varying parameter. A
LPV description may result from a system which smoothly
switches between time-invariant models assigned to distinct
operating conditions. LPV models may also result from the
rewriting of the dynamics governing a nonlinear system.
This is typically the case when dealing with chaotic systems
[1]. Even though analyzing or guaranteeing the stability
of LPV systems is not a simple matter in general, some
tractable stability conditions in terms of Linear Matrix
Inequalities have been successfully derived in [2] under the
assumption that a polytopic decomposition of the parameter
dependent dynamical matrix can be carried out. Actually,
such a decomposition is possible whenever the time-varying
parameter is bounded. Indeed, if so, the parameter lies in a
compact set which can always be embedded in a polytope.
However, such a polytope is not unique. And yet, the
conservatism of the LMI conditions, and then the efficiency
of the related control or observer design, highly depend on
the polytopic decomposition. Recently, it has been shown
[1] that the minimal convex polytope guarantees the best
decomposition in terms of conservatism.
There exist different algorithms to find the minimal convex
polytope of a finite set of points, to mention a few, the Graham
scan [3], Quick Hull [4] [5] [6], the random sampling [7]
or the linear programming approach [8]. Those algorithms
have been proposed in some totally distinct contexts but have
never been used for control purpose. The aim of this paper is
to review some of the most relevant and to show that they
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can be incorporated into the design of polytopic observers,
i.e. state reconstructors of LPV systems admitting a polytopic
description.

The paper is organized as follows. In Section II, some
recalls on discrete-time LPV systems, polytopic description
and polytopic observers are carried out. Then, a general
approach for designing a polytopic observer is presented. In
Section III, different algorithms for minimal convex polytope
finding and polytopic decomposition are first reviewed. Then,
it is shown how those algorithms can be systematically
incorporated into the design of a polytopic observer to
improve the state reconstruction efficiency. Finally, in Section
IV, the proposed approach is applied in a chaos-based
secure communication scheme. In this context, a polytopic
observer achieves a joint state and parameter estimation
for recovering the information masked through a chaotic
parameter modulation.

II. LPV POLYTOPIC SYSTEMS AND POLYTOPIC OBSERVERS

Let us first recall some important definitions which shall
be used in the sequel. The convex hull of a set of points
is the minimal convex set containing this set. The minimal
convex polytope of a finite set of points is the convex hull
of this set. The vertices of the minimal convex polytope are
called extreme points. Finding the minimal convex polytope of
a finite set of points consists in determining the set of extreme
points.

A. LPV polytopic form

Consider the discrete-time LPV system:
{

xk+1 = A (ρk)xk
yk = Cxk

(1)

where xk ∈ R
n is the state vector, yk ∈ R

p the output, A ∈
R

n×n the dynamical matrix, C ∈ R
p×n the output matrix,

ρk = [ρ(1)
k . . .ρ( j)

k . . .ρ(L)
k ]T ∈ R

L the time-varying parameter.
We recall the usual assumptions related to LPV systems:

i) ρk is bounded,
ii) A is of class C1 with respect to the entries of ρk,

iii) ρk is on-line accessible.

By virtue of assumption i), ρk evolves in a compact set Ωρ
and thereby can be always included in a convex polytope Dρ .
Hence, ρk can be expressed as

ρk =
N

∑
i=1

ξ (i)
k θi (2)
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where the vector ξk belongs to the convex set S = {µk ∈

R
N ,µk = [µ(1)

k . . .µ(N)
k ]T ,µ(i)

k ≥ 0 ∀i,
N

∑
i=1

µ(i)
k = 1}. The con-

stant vectors θi, . . . ,θN are the N vertices of the convex
polytope Dρ . Hereafter, the notation ξk(ρk) will be used to
reflect the implicit dependence of ξk on ρk expressed by
Eq. (2).
It is shown in [1] that, by virtue of the assumption ii), A (ρk)
can always be decomposed as

A (ρk) =
N

∑
i=1

ξ (i)
k (ρk)A(i) (3)

with

A(i) = A0 +
L

∑
j=1

θ ( j)
i AI j (4)

and where A0 is a matrix derived from A by keeping its
constant entries while setting to zero its time-varying entries.
θ ( j)

i represents the component j of the vertex θi of the convex
polytope Dρ . AI j is the matrix whose entries are all zero except
the one corresponding to the position of ρ ( j)

k in A , which
equals to unity.
Note that the vector ξk coincides with the one involved in (2).
The constant matrices A(1), . . . ,A(N) are the N vertices of the
convex polytope DA associated to the polytope decomposition
(3).
In the next section, a state reconstruction technique for LPV
systems like (1) admitting a polytopic description is provided.
The reconstruction is achieved by resorting to a so-called
polytopic observer. The reader can refer to [9][10][11] for
instance to get acquainted with the use of polytopic observers
over distinct contexts.

B. Polytopic observer

A polytopic observer reads
{

x̂k+1 = A (ρk)x̂k +L (ρk)(yk − ŷk)
ŷk = Cx̂k

(5)

where L is a time-varying gain depending on ρk. The state
reconstruction error εk = xk − x̂k, obtained from (1) and (5), is
governed by:

εk+1 =
(

A (ρk)−L (ρk)C
)

εk (6)

The dynamics of the state reconstruction is nonlinear since the
matrices A and L depend on ρk. Thus (6) is in turn a LPV
system. Its global stability around zero can be guaranteed by
a suitable choice of the gain matrix L . Let the gain L admit
the following form:

L (ρk) =
N

∑
i=1

ξ (i)
k (ρk)Li (7)

If the vector ξk of (7) is chosen so as it coincides with the
one involved in (3), then (6) turns into :

εk+1 =
N

∑
i=1

ξ (i)
k (ρk)(A(i) −LiC)εk (8)

Then, global conditions for convergence toward zero are
ensured from Theorem 1.

Theorem 1 ([11]): Global convergence of (8) is achieved
whenever the following set of Linear Matrix Inequalities

[

Pi A(i)T GT
i −CT FT

i
GiA(i) −FiC Gi +GT

i −Pj

]

> 0 (9)

is feasible for all (i, j) ∈ {1, . . . ,N}×{1, . . . ,N}.
The Gi’s, Fi’s and Pi’s are unknown matrices of appropriate
dimensions. The resulting gains are given by:

Li = G−1
i Fi (10)

Actually, it can be shown that (9) ensures the existence of a so-
called polyquadratic Lyapunov function V : R

n → R
+, defined

by V (εk) = εT
k Pkεk, with Pk =

N

∑
i=1

ξ (i)
k Pi, ξk ∈ S, fulfilling

V (εk+1)−V (εk) < 0 (11)

The existence of such a Lyapunov function guarantees the
polyquadratic stability (of the state reconstruction error in our
context) which is sufficient for global convergence.

Remark 1: Alternatively, we could be interested in seeking
for a constant gain L which does not depend on ρk, i.e
L (ρk) = L. In such a case, (6) would turn into

εk+1 =
(

A (ρk)−LC
)

εk (12)

which can be, without any effort, written in a LPV polytopic
form. Hence, we can resort to the following theorem

Theorem 2: Global convergence of (12) is achieved when-
ever the following set of Linear Matrix Inequalities

[

Pi A(i)T GT −CT FT

GA(i) −FC G+GT −Pj

]

> 0 (13)

is feasible for all (i, j) ∈ {1, . . . ,N}×{1, . . . ,N}.
The matrix G, the matrix F and the matrices Pi’s are unknown.
The gain L is given by:

L = G−1F (14)

Actually, (13) still ensures the existence of a polyquadratic
Lyapunov function V fulfilling (11) but the conditions are
more conservative.

A key point is that the polytope Dρ and so DA is not
unique. And yet, the conservatism of the LMI conditions
highly depends on the polytopic decomposition. It turns out
that the conservatism is directly related to the size of the
polytope Dρ which must be minimal [1]. As a result, we must
seek for the vertices θi of this minimal convex polytope which
will be hereafter denoted D∗

ρ . Besides, for good efficiency of
polytopic observers, we must propose a relevant method for
the on-line computation of the ξk involved in the gain L of
(7). Those two issues are discussed in the next section.
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III. POLYTOPIC OBSERVER DESIGN

A. Minimal convex polytope finding

The most relevant algorithms for finding the minimal
convex polytope of a finite set of points, i.e. for finding the
set of extreme points, are first presented here in dimension
two. However, their extension to greater dimension whenever
possible is then sketched. Throughout this section, a finite
set of K points Λ = {θ0 . . .θK−1} is called a list. θ ( j)

i
( j = 1, . . . ,L) stands for the jth component of θi. When
dealing with some angles αi, they will be considered, by
convention, as positive if measured counterclockwise.

Graham scan
The Graham scan [3] is based on the principle that two
consecutive faces, made by three consecutive extreme points,
form an angle less than π . The algorithm is divided into two
steps, the sort of the consecutive points and the computation
of the angles between two consecutive faces.
The algorithm starts by picking out a point of the set Λ which
is known to be an extreme point. This point, denoted θ0,
will be a reference for the sort of the other points. One can
choose, for instance, the point of minimal ordinate. If there
exist several points with the same minimal ordinate, one can
choose the one which has the greatest abscissa.
Having selected the reference point, the first step consists in
sorting the other points θi of Λ by increasing angle αi that
the line (θ0θi) forms with the x-axis. The list of such ordered
points is denoted Λt . This step is illustrated on Fig. 1(a),
where Λt = {θ0θ1θ5θ2θ4θ3}. The sort of two points θi and θ j
does not require the explicit computation of the corresponding
angles αi and α j because the following equivalence applies:

αi < α j ⇔ (θ (2)
i −θ (2)

0 )(θ (1)
j −θ (1)

0 )

− (θ (2)
j −θ (2)

0 )(θ (1)
i −θ (1)

0 ) < 0
(15)

where the evaluation of the right hand side involving a
crossproduct requires only fast accurate operations (additions,
multiplications).
The second step consists in testing whether the angle β j be-
tween two consecutive faces, made by three sorted consecutive
points θi, θ j and θl , is less than π . If β j < π , the point θ j is an
extreme point. If β j ≥ π , θ j is not an extreme point and it is
removed from Λt . The algorithm proceeds again with the new
list until all the points have been tested. At the end, Λt contains
only the extreme points. As previously, the test can be made
without computing explicitly the angles, but by exploiting the
equivalence:

β j < π ⇔ (θ (1)
j −θ (1)

i )(θ (2)
l −θ (2)

i )

− (θ (1)
l −θ (1)

i )(θ (2)
j −θ (2)

i ) < 0
(16)

Figure 1(b) illustrates the selection of extreme points. On this
figure, θ1 is an extreme point since β1 < π , but not θ5 since
β5 > π . Thus, θ5 is removed from the list Λt and the test
proceeds again with the new list Λt = {θ0θ1θ2θ4θ3}, until
all the points of Λt have been tested. Finally, the vertices of
the minimal convex polytope of Λ, represented on Fig. 2, are
{θ0θ1θ2θ4θ3}.
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(a) Sort of the points
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(b) Selection of extreme points

Fig. 1. The two steps of the Graham scan
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Fig. 2. Minimal convex polytope

This algorithm has a low complexity σ(K log K), K being
the number of points in Λ, but it cannot be generalized to
dimensions greater than 2.

Quick Hull
Several versions of Quick Hull have been proposed [4][5].
This algorithm is based on the approach “divide and conquer”.
Indeed, the points located inside a triangle formed with three
points of Λ known as extreme points do not belong to the set
of extreme points and can be no longer considered.
The algorithm starts by picking out two points of Λ, θ0 and
θ1, which are known to be extreme points. For instance, the
points of minimal and maximal abscissa, respectively, can be
chosen. The line (θ0θ1) passing through these two reference
points divides the set Λ into two subsets. In every subset, we
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seek for the point which has the greatest euclidean distance
to the line (θ0θ1). These two points, denoted θi and θ j, are
extreme points. The points located inside the triangles θ0θ1θi
and θ0θ1θ j are not vertices of the minimal convex polytope,
and thus are removed from the list Λ. The algorithm proceeds
again with new reference lines passing through two arbitrary
chosen points which are known to be extreme points. This
procedure is repeated until all the possible lines have been
tested.

,�-�.�/

, -&0'/

,�1

,�2
, 0,�3

,�4
, .

Fig. 3. Quick Hull

Figure 3 illustrates this approach. The line (θ0θ1) divides the
set of points into two subsets. θ2 and θ3 have, respectively in
each subset, the greatest euclidean distance to this line and
are extreme points. θ5, located inside the triangle θ0θ1θ2, is
not an extreme point and is discarded. The algorithm proceeds
again with a new reference line, for example (θ0θ2). Finally,
the extreme points are {θ0θ1θ2θ3θ4}.
The algorithm has the same complexity σ(K log K) as the
one of the Graham scan, but it can be extended to dimensions
greater than 2.
In dimension 3, the algorithm has been studied in [6]. The
principle is that the points located inside a tetrahedron
formed with four points of Λ known as extreme points do
not belong to the set of extreme points and are no longer
considered. To start the division, three reference points, θ0,
θ1 and θ2, which are known to be extreme points, are chosen.
These three points form a triangular face which divides the
space. In every subspace, the point θi of greatest euclidean
distance to the initial face is found. The points located inside
the tetrahedron θ0θ1θ2θi are not extreme points and are
discarded. The procedure is repeated until all the points of Λ
are tested. In dimension 3, the algorithm complexity is σ(K2).

Random sampling
Random sampling is reported in [7]. Its principle consists in
projecting the points of the set Λ on a line chosen randomly.
The two points projected on the line with minimal and
maximal abscissas are extreme points. The procedure is
repeated with new random lines until no new extreme point
can be found.
Since some projections on different lines can lead to find
the same pair of extreme points, the projections which do
not lead to a new pair of extreme points are eliminated.
This elimination is based on the following principle. If two
arbitrary lines, which form respectively angles α1 and α2
with the x-axis, lead to the same pair of extreme points, then

every line forming an angle α with the x-axis, α1 < α < α2,
will also lead to the same pair and will not be tested since it
does not bring any more new extreme points.
This approach is illustrated on Fig. 4. In this example, the
projections of the points of Λ on the line D1 show that θ2
and θ3 are extreme points. The projection on D2 delivers the
same pair. Thus, any line which forms an angle α with the
x-axis, α1 < α < α2, will not be tested. On the other hand,
the projection on D3 shows that θ1 and θ4 belong to the set
of extreme points of Λ.
This approach can be extended to dimension L > 2. In this
case, the points of Λ are projected on arbitrary hyperplanes
of dimension L−1.

576
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Fig. 4. Random sampling

Linear programming approach
Finding the minimal convex polytope of a finite set of points
can be viewed as a linear programming problem, whatever
the dimension L is. The following theorem, stated in [8],
gives a necessary and sufficient condition for a point θ j
to be an extreme point of the convex hull of Λ = {θ0 . . .θK−1}.

Theorem 3: The solution of the linear program

min z j

s. t.
K−1

∑
i=0

ziθi = θ j,
K−1

∑
i=0

zi = 1, zi ≥ 0, i = 0, . . . ,K −1

(17)
is positive if and only if θ j is an extreme point of the convex
hull of Λ.
By definition, if θ j is an extreme point of Λ, it is not a
convex combination of the other points of Λ and 1 is the
unique optimal solution of (17). Conversely, if θ j is not an
extreme point of Λ, it is a convex combination of the other
points of Λ and 0 is always the optimal solution of (17). In
this case, the point θ j is removed from the set Λ and the
procedure is repeated until all the points of Λ have been tested.

Now, let us turn back to our special context. It is recalled
that the time-varying parameter ρk of the LPV system can be
written in the polytopic form (2). Actually, the above men-
tioned finding approaches appear to be relevant to determine
the vertices θi of the minimal convex polytope D∗

ρ including
Ωρ . And yet, in order to compute L (ρk) (Eq.7), it is necessary
to determine on-line the vector ξk. It is the purpose of the next
section.
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B. On-line polytopic decomposition

The vertices θi being known, the decomposition problem
can be reformulated as follows.
Find the vector ξk =

[

ξ (1)
k . . .ξ (N)

k

]T
such that:

uk = Zξk, ξ (i)
k ≥ 0, i = 1, . . . ,N (18)

with uk =
[

ρT
k 1

]T
=

[

ρ(1)
k . . .ρ(L)

k 1
]T

and

Z =













θ (1)
1 . . . θ (1)

i . . . θ (1)
N

...
...

...
...

...
θ (L)

1 . . . θ (L)
i . . . θ (L)

N
1 . . . 1 . . . 1













The last row entries of uk and Z correspond to the constraint
N

∑
i=1

ξ (i)
k = 1. Usually, the number N of vertices and the di-

mension L of the polytope are not correlated and most often
N > L + 1, meaning that there are more unknowns (N) than
equations (L + 1). To determine ξk, a brute solution would
consist in computing the pseudo-inverse of Z. However, the
problem lies in that the number of vertices N can be very
large and so Z can be huge.
An alternative to overcome this problem is proposed. Although
the principle is detailed for the dimension L = 2, it can be
extended to greater dimensions. A trivial situation occurs
when ρk is an extreme point. If so, by definition, all the
ξ (i)

k equal zero except the one corresponding to θi that equals
1. Otherwise we can rest on the key idea that every point
ρk located strictly inside the minimal convex polytope D ∗

ρ is
also included inside a triangle formed by three vertices of the
polytope. Those vertices are denoted θp, θq and θr. As a result,
ρk can be merely rewritten as a linear combination of these
three vertices. Let

Z =







θ (1)
p θ (1)

q θ (1)
r

θ (2)
p θ (2)

q θ (2)
r

1 1 1






, uk =







ρ(1)
k

ρ(2)
k
1






(19)

Then, wk =
[

ξ (p)
k ξ (q)

k ξ (r)
k

]T
is solution of

uk = Zwk (20)

The constraint ξ (p)
k ,ξ (q)

k ,ξ (r)
k ≥ 0 will be actually always

fulfilled since ρk is inside the triangle.
In order to find the vertices θp, θq and θr of a triangle
including ρk, the position of ρk with respect to the oriented
lines (θpθq), (θpθr) and (θqθr), where θp, θq and θr are
extreme points arbitrarily chosen, can be tested by computing:

Q1 = (θ (1)
q −θ (1)

p )(ρ(2)
k −θ (2)

p )− (ρ(1)
k −θ (1)

p )(θ (2)
q −θ (2)

p )
(21)

Q2 = (θ (1)
r −θ (1)

q )(ρ(2)
k −θ (2)

q )− (ρ(1)
k −θ (1)

q )(θ (2)
r −θ (2)

q )
(22)

Q3 = (θ (1)
p −θ (1)

r )(ρ(2)
k −θ (2)

r )− (ρ(1)
k −θ (1)

r )(θ (2)
p −θ (2)

r )
(23)

If Q1 (resp. Q2 and Q3) is less than zero, ρk is on the right
side of (θpθq) (resp. (θqθr) and (θrθp)). If Q1 (resp. Q2 and
Q3) is greater than zero, ρk is on the left side of (θpθq) (resp.
(θqθr) and (θrθp)). If the three quantities Q1, Q2 and Q3 are
of the same sign, ρk is located inside the triangle θpθqθr; if
not, ρk is located outside.
In the example illustrated on Fig. 5, for the extreme points θ1,
θ3, θ5, that is p = 1, q = 3, and r = 5, Q1 > 0, Q2 > 0, Q3 > 0,
meaning that ρk is on the left side of (θ1θ3), (θ3θ5), (θ5θ1),
respectively. ρk is located inside the triangle θ1θ3θ5.
On the contrary, for the extreme points θ3, θ4, θ5, that is p = 3,
q = 4, and r = 5, Q1 > 0 and Q2 > 0, meaning that ρk is on
the left side of (θ3θ4) and (θ4θ5), respectively. However, since
Q3 < 0, meaning that ρk is on the right side of (θ5θ3), ρk is
not included in the triangle θ3θ4θ5.

GIHKJMLN

G NOBP
O�Q

O J

GIH�R�LN
O RO�S

Fig. 5. Localization of ρk in a triangle

As mentioned above, this approach can be extended to a
dimension L greater than 2. In such a case, ρk should be a
linear combination of (L +1) vertices of the minimal convex
polytope when ρk is not an extreme point and a polyhedron
with (L+1) vertices including ρk has to be found.

C. Summary for the polytopic observer design

The design and the use of a polytopic observer involves
two steps: the first one is achieved off-line whereas the
second one is performed on-line at each time instant k.

1) Off-line step
• Constitution of the list Λ of points ρk by simulating

system (1)
• Finding of the vertices θi of the minimal convex

polytope D∗
ρ including ρk with one of the ap-

proaches presented in Section III-A
• Determination of the matrices A(i) by (4)
• Resolution of the LMI (9) and computation of the

gain matrices Li by (10)
2) On-line step

• Computation of ξk by (18) or (20)
• Computation of the gain L by (7)
• Computation of x̂k by (5)

In the next section, an example illustrates the proposed method
in the context of secure communications based on chaotic
parameter modulation.
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IV. APPLICATION TO SECURE COMMUNICATIONS BASED
ON CHAOTIC PARAMETER MODULATION

A. Chaotic parameter modulation

Chaotic behavior is one of the most complex dynamics
a nonlinear system can exhibit. Because the signals
resulting from chaotic systems are broadband, noiselike,
difficult to predict, the idea of using chaotic systems for
information masking has received much attention since the
pioneering work of [12]. Several methods for “hiding” an
information signal into a chaotic signal have been proposed
in the literature. An overview can be found according to
the chronology in [13][14][15][16] including the chaotic
masking, the chaotic switching, the parameter modulation,
the message embedding. These methods are defined either
for continuous-time or discrete-time systems. Here, we focus
on the parameter modulation. For such a scheme, at the
transmitter side, a parameter of a chaotic dynamical system
is modulated by the information to be masked, also called the
plaintext, according to a prescribed rule. For binary messages,
the parameter of the transmitter only takes two distinct values
[17][18][19].

A general chaotic transmitter system reads:
{

xk+1 = f (xk,λk(mk))
yk = h(xk)

(24)

where xk ∈ R
n is the state vector, yk ∈ R is the scalar output

also called the ciphertext, mk ∈ M , a countable set, is called
the plaintext, λk ∈ R

l is the (scalar or vectorial) parameter
modulated by the information mk. f is the nonlinear chaotic
dynamics and h is the output function.
In such a scheme, mk must be constant during the time interval
[ jT,( j + 1)T [ ( j ∈ N) with T sufficiently large. More details
about the choice of T will be provided later on in this section.
The modulation obeys the following simple rule. According
to the current value of the symbol mk in the time interval
[ jT,( j + 1)T [, λk = λ i when mk = mi where λ i belongs to a
set of same cardinality as M .
Here, we focus on a special set of chaotic systems (24) given
by

{

xk+1 = A(xk)xk +ψ(xk)λk
yk = Cxk

(25)

where A ∈ R
n×n is a dynamical matrix depending in a

nonlinear way on xk and ψ a nonlinear function. C ∈ R
1×n

is the output matrix. The description (25) includes a lot of
chaotic systems [1].
A solution to the recovering of mk at the receiver side consists
in estimating both the state vector xk and the parameter λ i.
The simplified block diagram of a parameter modulation
scheme is depicted on Fig. 6. The issue of estimating
both the state vector xk and the parameter λ i is known in
control theory as the joint state and parameter estimation.
It involves the use of adaptive observers. It is also similar
to the problem of adaptive chaos synchronization. This
relevant issue has been widely investigated in the literature
[1][20][21][22][23][24]. Many works usually resort to the
Extended Kalman Filter (EKF) to handle the problem (see

TUWV

XZY\[\Y\]�^�Y`_

a V Tb VBc Td Vb VBc d V
UWV

e=_gfBh�i'jk]�l'lgY\_
Fig. 6. Parameter modulation

for instance [19]). Nevertheless, most adaptive methods hold
whenever the chaotic system verify some special properties
such as nonlinearities with Lipschitz conditions, special
structure such as output injection. In [1], a new adaptive
synchronization scheme, incorporating chaos specificities, has
been suggested within the framework of polytopic observers.
The advantage lies in that we can get rid of the above
mentionned restrictive assumptions. The main results are
recalled below.

Let introduce the extended state vector x̄k:

x̄k =

[

xk
λ i

]

(26)

Equation (25) can be rewritten as:
{

x̄k+1 = Ā(xk)x̄k
yk = C̄x̄k

(27)

with:

Ā(xk) =

[

A(xk) ψ(xk)
0 1

]

, C̄ =
[

C 0
]

(28)

1 and 0 being respectively the identity and the null matrix of
proper dimension.
Assume that when xk lies in a chaotic attractor Ω, there exists
a function ϕ : R

n → R
L defined as ρk = ϕ(xk) such that:

1) ρk is bounded when xk is bounded,
2) A defined as A (ρk) = A (ϕ(xk)) = A(xk) and Φ defined

as Φ(ρk) = Φ(ϕ(xk)) = ψ(xk) are both of class C1 with
respect to ρk,

3) ρk is on-line accessible.
If so, (27) can be rewritten as

{

x̄k+1 = ¯A (ρk)x̄k
yk = C̄x̄k

(29)

with:

¯A (ρk) =

[

A (ρk) Φ(ρk)
0 1

]

=
N

∑
i=1

ξ (i)
k (ρk)Ā(i) (30)

and we enter the assumptions i) to iii) when considering
¯A (ρk). Similarly to (4), the constant matrices Ā(i) are given

by:

Ā(i) = Ā0 +
L

∑
j=1

θ ( j)
i ĀI j (31)

System (29) is of the form (1). Hence, Theorem 1 can be
applied to ensure the global convergence of the state recon-
struction error by replacing A(i) by Ā(i). Moreover, replacing
xk by x̄k and (3) by (30), the observer (5) becomes:
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{

ˆ̄xk+1 = ¯A (ρk) ˆ̄xk +L (ρk)(yk − ŷk)
ŷk = C̄ ˆ̄xk

(32)

The quantity T related to the window length must be large
enough to guarantee the convergence of ˆ̄xk toward x̄k with
good accuracy.

B. Example

Consider the chaotic modulator given by:


















x(1)
k+1 = cos(φ)x(1)

k − sin(φ)x(2)
k

x(2)
k+1 = sin(φ)x(1)

k − (cos(φ)−0.3γ)x(2)
k +2γ(x(2)

k )2

+4λkγ((x(2)
k )3 +0.005)

yk = x(2)
k

(33)
with φ = 3.03, γ = 2.7 and xk = [x(1)

k x(2)
k ]T . xk evolves in a

chaotic attractor Ω depicted on Fig 7(a). The scalar parameter
λk is modulated by the binary plaintext mk ∈{0,1}. λk is piece-
wise constant. Indeed, during the interval [ jT,( j + 1)T [ with
T = 200, λk = λ 1 when mk = 1 and λk = λ 2 when mk = 0.
Only the state x(2)

k is transmitted.
In the intervals [ jT,( j + 1)T [ ( j ∈ N), the recovering of the
information mk can be achieved by reconstructing the state x(1)

k
and the modulated parameter λ i, as proposed above. To this
end, we must rewrite (33) into the appropriate form (29). We
first point out that (33) is of the form (25) with:

A(xk) =

[

cos(φ) −sin(φ)

sin(φ) −cos(φ)+0.3γ +2γx(2)
k

]

,

ψ(xk) =

[

0
4γ((x(2)

k )3 +0.005)

]

,

C =
[

0 1
]

(34)

Then, let us define the extended state vector x̄k:

x̄k =







x(1)
k

x(2)
k
λ i






(35)

System (33) can thereby be rewritten as (27) with:

Ā(xk) =

[

A(xk) ψ(xk)
0 1

]

, C̄ =
[

0 1 0
]

(36)

We must find out a function ϕ = [ϕ1 ϕ2]
T such that as-

sumptions 1), 2) and 3) are fulfilled. We take ρ (1)
k = ϕ1(xk) =

cos(φ)−0.3γ +2γx(2)
k and ρ(2)

k = ϕ2(xk) = 4γ((x(2)
k )3 +0.005).

It is clear that since xk evolves in the chaotic attractor Ω,
it is bounded and thus, ρk is also bounded (assumption 1)).
With such a choice, one has A(xk) = A (ϕ(xk)) = A (ρk) and
ψ(xk) = Φ(ϕ(xk)) = Φ(ρk) and ¯A (ρk) reads:

¯A (ρk) =

[

A (ρk) Φ(ρk)
0 1

]

=





cos(φ) −sin(φ) 0
sin(φ) ρ(1)

k ρ(2)
k

0 0 1





(37)
A and Φ are of class C1 with respect to ρk (assumption
2)). Finally, since x(2)

k is transmitted, ρk is actually on-line
accessible (assumption 3)). As a result, system (33) can be

rewritten in the polytopic form (29)-(30)-(31).
Now, we can design the polytopic observer (32) as summarized
in Section III-C which involves an off-line step and an on-line
step.

1. Off-line step
1.1 Constitution of the list Λ of points ρk
The points ρk have been obtained by simulated system (33)
from an initial condition inside the chaotic attractor Ω,
over 600 iterations. This number of iterations is considered
sufficiently large for describing the nonlinearity ρk with good
accuracy.

1.2 Finding of the vertices of the minimal convex polytope D ∗
ρ

When xk evolves in the chaotic attractor Ω (Fig. 7(a)), ρk
evolves in the compact set Ωρ , the image of Ω by the function
ϕ (Fig. 7(b)). The Quick Hull algorithm is applied in order

mon�p q

rts uMvw

n�p xmMn�p�y

n�p x�z

rIs|{}vw

(a) Chaotic attractor Ω

~

~�� �

~�M� � �

��� �M��

��������

����
� �

(b) Minimal convex polytope D∗
ρ in-

cluding Ωρ

Fig. 7. Chaotic attractor and minimal polytope

to find the minimal convex polytope D∗
ρ including Ωρ , also

depicted on Fig. 7(b). The finding has been achieved with the
software Matlab (function convhull) and gives N = 269
vertices.

1.3 Determination of the matrices Ā(i)

The matrices Ā(i) are computed according to (31) with L = 2
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and:

¯A0 =





cos(φ) −sin(φ) 0
sin(φ) 0 0

0 0 1



 , ĀI1 =





0 0 0
0 1 0
0 0 0



 ,

ĀI2 =





0 0 0
0 0 1
0 0 0





(38)
1.4 Computation of the gain matrices Li
The software LMISol, available for free at
http://www.dt.fee.unicamp.br/∼mauricio/lmisol10.html,
solves the LMI (9) with the matrices Ā(i). It turns out that the
LMI are feasible. Thus the gains can be computed by (10).
It is worth emphasizing that with the minimal triangle and
rectangle including ρk as polytopes, the LMI are no longer
feasible stressing the importance of seeking for the minimal
polytope to obtain the less conservative LMI conditions.

2. On-line step
2.1 Computation of ξk
The vector ξk is computed at each time step by solving (20).

2.2 Computation of the gain L

The polytopic gain L is given by (7) with Li and ξk computed
previously.

2.3 Computation of ˆ̄xk
The extended state vector reconstruction is performed by
(32).

������

�� �

��� �����

(a) Binary information mk

�

��� �����

��� ��� � ���

���

�� 

(b) Dashed line: λk , solid line: λ̂k

Fig. 8. Binary information and modulated parameter
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(a) x(1)

k − x̂(1)
k

¦M§�¨ §�©

§�¨ §�©
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(b) x(2)

k − x̂(2)
k

Fig. 9. State reconstruction errors

Figure 8(a) represents the binary information mk. Figure 8(b)
represents the modulated parameter λk (dashed line) and the
reconstructed parameter λ̂k (solid line). On Fig. 9(a) and
9(b) are depicted the reconstruction errors of x(1)

k and x(2)
k ,

respectively. As it turns out, T is sufficiently large to cope
with the transients.

V. CONCLUSION

A systematic method to design a polytopic observer, that is
an observer for LPV systems admitting a polytopic descrip-
tion, has been provided. The conservatism of the conditions
ensuring a global state reconstruction can be reduced when
the corresponding LMIs involve the vertices of the minimal
polytope including the time-varying parameter. Based on this
central consideration, we have proposed an enhancement of the
polytopic observer design by incorporating a minimal convex
polytope finding step. A lot of chaotic maps may admit a
strictly equivalent LPV polytopic description by means of a
suitable change of variable. As an illustration, a chaos-based
secure communication scheme has been investigated. It has
been shown that the retrieving of an information masked by
a chaotic parameter modulation can be achieved by resorting
to a polytopic observer obeying the proposed design. Finally,
let us mention that the approach would also apply in some
more general contexts, in particular state feedback control or
merely stability analysis.
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Mathématiques Elie Cartan de Nancy” (IECN) for helpful



9

discussions on computational geometry.

REFERENCES

[1] G. Millérioux, F. Anstett, and G. Bloch, “Considering the attractor
structure of chaotic maps for observer-based synchronization problems,”
Mathematics and Computers in Simulation, vol. 68, no. 1, pp. 67–85,
2005.

[2] J. Daafouz and J. Bernussou, “Parameter dependent Lyapunov functions
for discrete time systems with time varying parametric uncertainties,”
Systems and Control Letters, vol. 43, no. 45, pp. 355–359, 2001.

[3] R. L. Graham, “An efficient algorithm for determinig the convex hull
of a finite planar set,” Information Processing Letters, vol. 2, no. 1, pp.
132–133, 1973.

[4] W. F. Eddy, “A new convex hull algorithm for planar sets,” ACM
Transactions on Mathematical Software, vol. 3, no. 4, pp. 398–403,
December 1977.

[5] F. P. Preparata and M. I. Shamos, Computational geometry. Springer-
Verlag, October 1985.

[6] D. C. S. Allison and M. T. Noga, “Computing the three-dimensional
convex hull,” Computer Physics Communications, vol. 103, no. 1, pp.
74–82, 1997.

[7] S. Chatterjee and S. Chatterjee, “A note of finding extreme points in
multivariate space,” Computational Statistics and Data Analysis, vol. 10,
no. 1, pp. 87–92, 1990.

[8] P. M. Pardalos, Y. Li, and W. W. Hager, “Linear programming ap-
proaches to the convex hull problem in R

n,” Computers Math. Applic.,
vol. 29, no. 7, pp. 23–29, 1995.

[9] G. Millérioux and J. Daafouz, “Polytopic observer for global synchro-
nization of systems with output measurable nonlinearities,” International
Journal of Bifurcation and Chaos, vol. 13, no. 3, pp. 703–712, March
2003.

[10] G. Millérioux, L. Rosier, G. Bloch, and J. Daafouz, “Bounded state
reconstruction error for LPV systems with estimated parameters,” IEEE
Trans. on Automatic Control, vol. 49, no. 8, pp. 1385–1389, August
2004.

[11] G. Millérioux and J. Daafouz, Chaos in Automatic Control, ser. Control
Engineering Series. CRC Press, 2006, ch. Polytopic observers for
synchronization of chaotic maps, pp. 323–344.

[12] T. L. Carroll and L. M. Pecora, “Synchronizing chaotic circuits,” IEEE
Trans. Circuits and Systems, vol. 38, no. 4, pp. 453–456, April 1991.

[13] M. J. Ogorzalek, “Taming chaos - part I: synchronization,” IEEE Trans.
Circuits. Syst. I: Fundamental Theo. Appl, vol. 40, no. 10, pp. 693–699,
1993.

[14] M. Hasler, “Synchronization of chaotic systems and transmission of
information,” International Journal of Bifurcation and Chaos, vol. 8,
no. 4, pp. 647–659, April 1998.

[15] T. Yang, “A survey of chaotic secure communication systems,” Int. J.
of Computational Cognition, vol. 2, no. 2, pp. 81–130, 2004, (available
at http://www.YangSky.com/yangijcc.htm).

[16] G. Millérioux, A. Hernandez, and J. Amigó, “Conventional cryptography
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