Unconditional basic sequences in spaces of large density

Pandelis Dodos, Jordi Lopez Abad, Stevo Todorcevic

To cite this version:

Pandelis Dodos, Jordi Lopez Abad, Stevo Todorcevic. Unconditional basic sequences in spaces of large density. 2008. hal-00278606v2

HAL Id: hal-00278606 https://hal.science/hal-00278606v2

Preprint submitted on 15 May 2008 (v2), last revised 27 May 2008 (v3)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

UNCONDITIONAL BASIC SEQUENCES IN SPACES OF LARGE DENSITY

PANDELIS DODOS, JORDI LOPEZ-ABAD AND STEVO TODORCEVIC

Abstract

We study the problem of the existence of unconditional basic sequences in Banach spaces of high density. We show, in particular, the relative consistency with GCH of the statement that every Banach space of density \aleph_{ω} contains an unconditional basic sequence.

1. Introduction

In this paper we study particular instances of the general unconditional basic sequence problem asking under which conditions a given Banach space must contain an infinite unconditional basic sequence (see [TT, page 27]). We chose to study instances of the problem for Banach spaces of large densities exposing thus its connections with large-cardinal Axioms of Set Theory. The first paper on this line of research is a well-known paper of J. Ketonen Ka which shows that if a density of a given Banach space E is greater or equal to the first ω-Erdős cardinal, then E contains a basic sequence which is equivalent to all of its subsequences, i.e. a sub-symmetric basic sequence (therefore, E must also contain an unconditional basic sequence). Our first result shows that some sort of a large cardinal is necessary for getting subsymmetric basic sequences.

Theorem 1. If $\mathfrak{s m}$ is the minimal cardinal θ with the property that every Banach space of density at least θ contains an infinite sub-symmetric basic sequence, then $\mathfrak{s m}$ lies somewhere in between first ω-Mahlo and first ω-Erdős cardinal.

Our construction falls short of proving the analogous statement about unconditional basic sequences, or more precisely, proving a similar lower bound for the cardinal $\mathfrak{n c}$, the minimal cardinal λ such that every Banach

[^0]space of density at least λ contains an infinite unconditional basic sequence. The largest known lower bound for $\mathfrak{n c}$ is that of S. A. Argyros and A. Tolias (AT) who showed that $\mathfrak{n c}>2^{\aleph_{0}}$. So in particular the following problem is widely open.

Question 1. Is $\exp _{\omega}\left(\aleph_{0}\right)$, any of the finite-tower exponents $\exp _{n}\left(\aleph_{0}\right)$, or any of their ω-successors $\exp _{n}\left(\aleph_{0}\right)^{+\omega}$ an upper bound of $\mathfrak{n c}$? In particular, does $\left(2^{\aleph_{0}}\right)^{+\omega} \geq \mathfrak{n c}$ hold?

Our second result shows that $\exp _{\omega}\left(\aleph_{0}\right)$ is not such a bad candidate for an upper bound of $\mathfrak{n c}$.

Theorem 2. The inequality $\exp _{\omega}\left(\aleph_{0}\right) \geq \mathfrak{n c}$ is a statement that is consistent relative to the consistency of infinitely many strongly compact cardinals.

The consistency proof relies heavily on a Ramsey-theoretic property of $\exp _{\omega}\left(\aleph_{0}\right)$ established in a previous work of S. Shelah [Sh2] (see also Mi]). One can also arrange the joint consistency of GCH and the inequality $\exp _{\omega}\left(\aleph_{0}\right)=\aleph_{\omega} \geq \mathfrak{n c}$. Combining this with a well known result of J. N. Hagler and W. B. Johnson HJ, we get the following information about the famous separable quotient problem.

Corollary 3. It is relatively consistent that every Banach space of density at least \aleph_{ω} has a separable quotient with an unconditional basis.

The analysis given in this paper together with some known results suggest, in particular, that by restricting the class of Banach spaces to, say, reflexive, or more generally weakly compactly generated Banach spaces, one might get different answers about the size of the corresponding cardinal numbers $\mathfrak{n c}_{\text {rfl }}$ and $\mathfrak{n c}_{\text {wcg }}$ respectively. To describe this difference it will be convenient to introduce yet another natural cardinal characteristic $\mathfrak{n c}_{\text {seq }}$, the minimal cardinal θ such that every normalized weakly null sequence ($x_{\alpha}: \alpha<\theta$) in some Banach space E has a subsequence which is unconditional. Clearly $\mathfrak{n c}_{\mathrm{rff}} \leq \mathfrak{n c}_{\mathrm{wcg}}$ while by the Amir-Lindenstrauss Theorem AD] we see that $\mathfrak{n c} \mathrm{w}_{\mathrm{wcg}} \leq \mathfrak{n c}_{\text {seq }}$. The first known lower bound on these cardinal is due to B. Maurey and H. P. Rosenthal MR who showed that $\mathfrak{n c}_{\text {seq }}>\aleph_{0}$, though considerably deeper is the lower bound of W. T. Gowers and B. Maurey [GM] who showed that in fact $\mathfrak{n c}_{\mathrm{rf}}>\aleph_{0}$. The largest known lower bound on these cardinals is given in ALT] who showed that $\mathfrak{n c} \mathfrak{r}_{\mathrm{rf}}>\aleph_{1}$. This suggests the following question.

Question 2. Is \aleph_{ω} or any of the finite successors $\aleph_{n}(n \geq 2)$ an upper bound on any of the three cardinals $\mathfrak{n c}_{\text {seq }}, \mathfrak{n c}_{\text {rff }}$, or $\mathfrak{n c} \mathfrak{c}_{\text {wcg }}$?

That \aleph_{ω} is not such a bad choice for an upper bound of $\mathfrak{n} \mathfrak{c}_{\text {seq }}$ may be seen from our third result.

Theorem 4. The inequality $\aleph_{\omega} \geq \mathfrak{n c}_{\text {seq }}$ is a statement that is consistent relative to the consistency of a single measurable cardinal.

Thus, the consistency proof uses a considerably weaker assumption from that used in Theorem 2. It relies on two Ramsey-theoretic principles, one established by P. Koepke Ko and the other by C. A. Di Prisco and S. Todorcevic DT]. It also gives the joint consistency of the GCH and the cardinal inequality $\aleph_{\omega} \geq \mathfrak{n c}_{\text {seq }}$.

2. Preliminaries

Our Banach space and set theoretic terminology and notation are standard and follow [LT] and Ku respectively. We will consider only real Banach spaces. We notice, however, that all our results are valid for complex Banach spaces too (with the same proofs).

Since in this note we are concerned with the problem of the existence of unconditional basic sequences in Banach spaces of high density, let us introduce the following cardinal invariants related to the version of the unconditional basic sequence problem that we study here.

Definition 5. Let $\mathfrak{n c}$, $\mathfrak{n c} \mathfrak{c}_{\text {wcg }}$, $\mathfrak{n c} \mathfrak{c}_{\text {rf }}$, $\mathfrak{s m}$ and $\mathfrak{n c} \mathfrak{c}_{\text {seq }}$ be defined as follows.
(1) $\mathfrak{n c}$ (respectively $\mathfrak{n} \mathfrak{c}_{\mathrm{wcg}}, \mathfrak{n c}_{\mathrm{rf}}$) is the minimal cardinal λ such that every Banach space (respectively, every weakly compactly generated, every reflexive Banach space) of density λ contains an unconditional basic sequence.
(2) $\mathfrak{s m}$ is the minimal cardinal λ such that every Banach space of density λ contains a sub-symmetric basic sequence.
(3) $\mathfrak{n c}_{\text {seq }}$ is the minimal cardinal λ such that every normalized weakly null sequence $\left(x_{\alpha}: \alpha<\lambda\right)$ in a Banach space E has a subsequence which is unconditional.

For the convenience of the reader, we gather below some basic notions used throughout the paper.
2.1. Ideals. Let X be a non-empty set. An ideal \mathcal{I} on X is a collection of subsets of X satisfying the following conditions.
(i) If $A \in \mathcal{I}$ and $B \subseteq A$, then $B \in \mathcal{I}$.
(ii) If $A, B \in \mathcal{I}$, then $A \cup B \in \mathcal{I}$.

If \mathcal{I} is an ideal on X and κ is a cardinal, then we say that \mathcal{I} is κ-complete if for every $\lambda<\kappa$ and every sequence $\left(A_{\xi}: \xi<\lambda\right)$ in \mathcal{I} we have $\bigcup_{\xi<\lambda} A_{\xi} \in \mathcal{I}$.

A subset A of X is said to be positive with respect to an ideal \mathcal{I} if $A \notin \mathcal{I}$. The set of all positive sets with respect to \mathcal{I} is denoted by \mathcal{I}^{+}. If \mathcal{D} is a subset of \mathcal{I}^{+}and κ is a cardinal, then we say that \mathcal{D} is κ-closed in \mathcal{I}^{+}if for every $\lambda<\kappa$ and every decreasing sequence $\left(D_{\xi}: \xi<\lambda\right)$ in \mathcal{D} we have $\bigcap_{\xi<\kappa} D_{\xi} \in \mathcal{I}^{+}$. We also say that such a set \mathcal{D} is dense in \mathcal{I}^{+}if for every $A \in \mathcal{I}^{+}$there exists $D \in \mathcal{D}$ with $D \subseteq A$.

If \mathcal{F} is a filter on X, then the family $\{X \backslash A: A \in \mathcal{F}\}$ is an ideal. Having in mind this correspondence, we will continue to use the above terminology for the filter \mathcal{F}. Notice that if the given filter is actually an ultrafilter \mathcal{U}, then, setting $\mathcal{I}=\mathcal{P}(X) \backslash \mathcal{U}$, we have that $\mathcal{I}^{+}=\mathcal{U}$.
2.2. Cardinals. Let θ be a cardinal.
(a) θ is said to be inaccessible if it is regular and strong limit; that is, $2^{\lambda}<\theta$ for every $\lambda<\theta$.
(b) θ is said to be $0-$ Mahlo if it is inaccessible. In general, for an ordinal α, θ is said to be α-Mahlo if for every $\beta<\alpha$ and every closed and unbounded subset C of θ there is a β-Mahlo cardinal λ in C.
(c) An α-Erdős cardinal, if exists usually denoted by $\kappa(\alpha)$, is the minimal cardinal λ such that $\lambda \rightarrow(\alpha)_{2}^{<\omega}$, i.e., the least cardinal cardinal λ with the property that for every coloring $c:[\lambda]^{<\omega} \rightarrow 2$ there is $H \subseteq \lambda$ of order-type α such that c is constant on $[H]^{n}$ for every $n<\omega$. A cardinal λ that is λ-Erdős, or in other words, it has that partition property $\lambda \rightarrow(\lambda)_{2}^{<\omega}$, is called a Ramsey cardinal.
(d) θ is said to be measurable if there exists a κ-complete normal ultrafilter \mathcal{U} on κ. Looking at the ultrapower of the universe using \mathcal{U} one can observe that the set $\{\lambda<\theta: \lambda$ is inaccessible $\}$ belongs to \mathcal{U}. Similarly, one shows that sets $\{\lambda<\theta: \lambda$ is λ-Mahlo $\}$ and $\{\lambda<\theta: \lambda$ is Ramsey $\}$ belong to \mathcal{U}.
(e) θ is said to be strongly compact if every κ-complete filter can be extended to a κ-complete ultrafilter.
2.3. The Lévy Collapse. Let λ be a regular infinite cardinal and let $\kappa>\lambda$ be an inaccessible cardinal. By $\operatorname{Col}(\lambda,<\kappa)$ we shall denote the set of all partial mappings p satisfying the following.
(i) $\operatorname{dom}(p) \subseteq \lambda \times \kappa$ and range $(p) \subseteq \kappa$.
(ii) $|p|<\lambda$.
(iii) For every $(\alpha, \beta) \in \operatorname{dom}(p)$ with $\beta>0$ we have $p(\alpha, \beta)<\beta$.

We equip the set $\operatorname{Col}(\lambda,<\kappa)$ with the partial order \leq defined by

$$
p \leq q \Leftrightarrow \operatorname{dom}(q) \subseteq \operatorname{dom}(p) \text { and } p \upharpoonright \operatorname{dom}(q)=q
$$

If p and q is a pair in $\operatorname{Col}(\lambda,<\kappa)$, then by $p \| q$ we denote the fact that p and q are compatible (i.e. there exists r in $\operatorname{Col}(\lambda,<\kappa)$ with $r \leq p$ and $r \leq q$), while by $p \perp q$ we denote the fact that p and q are incompatible.

We will need the following well-known properties of the Lévy collapse (see, for instance, Kal). In what follows, G will be a $\operatorname{Col}(\lambda,<\kappa)$-generic filter.
(a) The generic filter G is λ-complete (this is a consequence of the fact that the forcing $\operatorname{Col}(\lambda,<\kappa)$ is λ-closed).
(b) $\operatorname{Col}(\lambda,<\kappa)$ has the κ-cc (this follows from the fact that the cardinal κ is inaccessible).
(c) In $V[G]$, we have $\kappa=\lambda^{+}$.
(d) In $V[G]$, the sets ${ }^{\kappa} 2$ and ${ }^{\kappa} 2 \cap V$ are equipotent.

Finally, let us introduce some pieces of notation (actually, these pieces of notation will be used only in §5). For every $p \in \operatorname{Col}(\lambda,<\kappa)$ and every $\alpha<\kappa$ by $p \upharpoonright \alpha$ we shall denote the restriction of the partial map p to $\operatorname{dom}(p) \cap(\lambda \times \alpha)$. Moreover, for every $p \in \operatorname{Col}(\lambda,<\kappa)$ we let $(\operatorname{dom}(p))_{1}=$ $\{\alpha<\kappa: \exists \xi<\lambda$ with $(\xi, \alpha) \in \operatorname{dom}(p)\}$.

3. A polarized partition relation

The purpose of this section is to analyze the following partition property, a variation of a partition property originally appearing in the problem lists of P. Erdös and A. Hajnal EH1], EH2] (see also [Sh2]).

Definition 6. Let κ be a cardinal and $d \in \omega$ with $d \geq 1$. By $\mathrm{Pl}_{d}(\kappa)$ we shall denote the combinatorial principle asserting that for every coloring $c:\left[[\kappa]^{d}\right]^{<\omega} \rightarrow \omega$ there exists a sequence $\left(\mathbf{x}_{n}\right)$ of infinite disjoint subsets of κ such that for every $m \in \omega$ the restriction $c \upharpoonright \prod_{n=0}^{m}\left[\mathbf{x}_{n}\right]^{d}$ is constant.

Clearly $\mathrm{Pl}_{d}(\kappa)$ implies $\mathrm{Pl}_{d^{\prime}}(\kappa)$ for any cardinal κ and any pair $d, d^{\prime} \in \omega$ with $d \geq d^{\prime} \geq 1$. From known results one can easily deduce that the principle $\mathrm{Pl}_{d}\left(\exp _{d-1}\left(\aleph_{0}\right)^{+n}\right)$ is false for every $n \in \omega$ and every integer $d \geq 1$ (see, for instance, EHMR, CDPM and DT). Thus, the minimal cardinal κ for which $\mathrm{Pl}_{d}(\kappa)$ could possibly be true is $\exp _{d-1}\left(\aleph_{0}\right)^{+\omega}$. Indeed, C. A. Di Prisco and S . Todorcevic DT have established the consistency of $\mathrm{Pl}_{1}\left(\aleph_{\omega}\right)$ relative the consistency of a single measurable cardinal, an assumption that happens to be optimal. On the other hand, S. Shelah Sh2 was able to establish that GCH and principles $\mathrm{Pl}_{d}\left(\aleph_{\omega}\right)(d \geq 1)$ are jointly consistent, relative to the consistency of GCH and the existence of an infinite sequence of strongly compact cardinals.

Our aim in this section is to present a consistency proof of $\mathrm{Pl}_{2}\left(\exp _{\omega}\left(\aleph_{0}\right)\right)$. We shall treat the colorings in Definition 6 using an iteration of the following lemma whose proof (given in $\S 5$), while it relies heavily on an idea of S . Shelah Sh2, it exposes certain features (the ideal \mathcal{I} and the sufficiently complete dense subset \mathcal{D} of its quotient), not explicitly found in Sh2, that are likely to find application beyond the scope of our present paper.

Lemma 7. Suppose that κ is a strongly compact cardinal and that $\lambda<\kappa$ is an infinite regular cardinal. Let G be $a \operatorname{Col}(\lambda,<\kappa)$-generic filter over V. Then, in $V[G]$ there exists an ideal \mathcal{I} on $\left[\left(2^{\kappa}\right)^{+}\right]^{\omega}$ and a subset \mathcal{D} of \mathcal{I}^{+}such that the following are satisfied.
(1) \mathcal{I} is κ-complete.
(2) \mathcal{D} is dense in \mathcal{I}^{+}and is λ-closed in \mathcal{I}^{+}.
(3) For every $\mu<\kappa$, every coloring $c:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow \mu$ and every $A \in \mathcal{I}^{+}$ there exist a color $\xi<\mu$ and an element $D \in \mathcal{D}$ with $D \subseteq A$ and such that for every $\mathbf{x} \in D$ the restriction $c \upharpoonright[\mathbf{x}]^{2}$ is constantly equal to ξ.

It will be convenient to introduce the following sequence $\left(\Theta_{n}\right)$ of cardinals defined recursively by the rule

$$
\Theta_{0}=\aleph_{0} \text { and } \Theta_{n+1}=\left(2^{\left(2^{\Theta_{n}}\right)^{+}}\right)^{++}
$$

Notice that $\left(\Theta_{n}\right)$ is strictly increasing and $\exp _{n}\left(\aleph_{0}\right)<\Theta_{n} \leq \exp _{5 n}\left(\aleph_{0}\right)$ for every $n \in \omega$ with $n \geq 1$. Hence, $\sup \left\{\Theta_{n}: n \in \omega\right\}=\exp _{\omega}\left(\aleph_{0}\right)$. In particular, if GCH holds, then $\Theta_{n}=\aleph_{5 n}$ for every $n \in \omega$.

Corollary 8. Suppose that $\left(\kappa_{n}\right)$ is a strictly increasing sequence of strongly compact cardinals with $\kappa_{0}=\aleph_{0}$. For every $n \in \omega$ set $\lambda_{n}=\left(2^{\left(2^{\kappa n}\right)^{+}}\right)^{+}$. Let

$$
\mathbb{P}=\bigotimes_{n \in \omega} \operatorname{Col}\left(\lambda_{n},<\kappa_{n+1}\right)
$$

be the iteration of the sequence of Lévy collapses. Let G be a \mathbb{P}-generic filter over V. Then, in $V[G]$, for every $n \in \omega$ we have $\kappa_{n}=\Theta_{n}$ and there exist an ideal \mathcal{I}_{n} on $\left[\left(2^{\Theta_{n+1}}\right)^{+}\right]^{\omega}$ and a subset \mathcal{D}_{n} of \mathcal{I}_{n}^{+}such that the following are satisfied.
(P1) \mathcal{I}_{n} is Θ_{n+1}-complete.
(P2) \mathcal{D}_{n} is $\left(<\Theta_{n+1}\right)$-closed in \mathcal{I}_{n}^{+}; that is, \mathcal{D}_{n} is μ-closed in \mathcal{I}_{n}^{+}for every $\mu<\Theta_{n+1}$.
(P3) For every $\mu<\Theta_{n+1}$, every coloring $c:\left[\left(2^{\Theta_{n+1}}\right)^{+}\right]^{2} \rightarrow \mu$ and every $A \in \mathcal{I}_{n}^{+}$there exist a color $\xi<\mu$ and an element $D \in \mathcal{D}_{n}$ with $D \subseteq A$ and such that for every $\mathbf{x} \in D$ the restriction $c \upharpoonright[\mathbf{x}]^{2}$ is constantly equal to ξ.

Moreover, if $G C H$ holds in V, then $G C H$ also holds in $V[G]$.
Proof. Fix $m<\omega$. Notice, first, that the small forcing extension $V\left[G_{m}\right]$, where G_{m} is the restriction of G to the finite iteration

$$
\mathbb{P}_{m}=\bigotimes_{n<m} \operatorname{Col}\left(\lambda_{n},<\kappa_{n+1}\right)
$$

preserves the strong compactness of κ_{m+1}. This fact follows immediately from the elementary-embedding characterization of strong compactness (see [Ka, Theorem 22.17]). Working in $V\left[G_{m}\right]$ and applying Lemma 7, we see that the intermediate forcing extension $V\left[G_{m+1}\right]$ has the ideal \mathcal{I}_{m} whose quotient has properties (P1), (P2) and (P3). Working still in the intermediate forcing extension $V\left[G_{m+1}\right]$, we see that the rest of the forcing

$$
\mathbb{P}^{m+1}=\bigotimes_{m<n<\omega} \operatorname{Col}\left(\lambda_{n},<\kappa_{n+1}\right)
$$

is λ_{m+1}-closed, and so, in particular, it adds no new subsets to the index set on which the ideal \mathcal{I}_{m} lives, preserving, thus, properties (P1), (P2) and (P3) of its quotient.

As indicated above, for our purposes here we shall only need the following result of Shelah.

Corollary 9 (Sh2). Suppose that in our universe V there exists a strictly increasing sequence $\left(\kappa_{n}\right)$ of strongly compact cardinals with $\kappa_{0}=\aleph_{0}$. Then,
there is a forcing extension of V in which the principle $\mathrm{Pl}_{2}\left(\exp _{\omega}\left(\aleph_{0}\right)\right)$ holds. Moreover, if $G C H$ holds in V, then $G C H$ also holds in the extension.

Proof. We shall deduce $\mathrm{Pl}_{2}\left(\exp _{\omega}\left(\aleph_{0}\right)\right)$ from the conclusion of Corollary 8 . Indeed, for every $n \in \omega$ let \mathcal{I}_{n} and \mathcal{D}_{n} be given by Corollary $\&$. We need the following.

Claim 10. Let $n \in \omega$. Let also $c: \prod_{i=0}^{n}\left[\left(2^{\Theta_{i+1}}\right)^{+}\right]^{2} \rightarrow \omega$ be a coloring and $\left(D_{i}\right)_{i=0}^{n} \in \prod_{i=0}^{n} \mathcal{D}_{i}$. Then, there exist $\left(E_{i}\right)_{i=0}^{n} \in \prod_{i=0}^{n} \mathcal{D}_{i} \upharpoonright D_{i}$ and a color $n_{0} \in \omega$ such that for every $\left(\mathbf{x}_{i}\right)_{i=0}^{n} \in \prod_{i=0}^{n} E_{i}$ the restriction $c \upharpoonright \prod_{i=0}^{n}\left[\mathbf{x}_{i}\right]^{2}$ is constantly equal to n_{0}.

Proof of Claim 10. By induction on n. The case $n=0$ is an immediate consequence of property (P3) in Corollary \& . Now let $n \in \omega$ with $n \geq 1$ and assume that the result has been proved for all $k \in \omega$ with $k<n$. Fix a coloring $c: \prod_{i=0}^{n}\left[\left(2^{\Theta_{i+1}}\right)^{+}\right]^{2} \rightarrow \omega$. Fix also $\left(D_{i}\right)_{i=0}^{n} \in \prod_{i=0}^{n} \mathcal{D}_{i}$ and let

$$
\mathcal{F}=\left\{f: \prod_{i=0}^{n-1}\left[\left(2^{\Theta_{i+1}}\right)^{+}\right]^{2} \rightarrow \omega: f \text { is a coloring }\right\}
$$

Notice that $|\mathcal{F}|=2^{\left(2^{\Theta_{n}}\right)^{+}}$, and so, $|\mathcal{F}|<\Theta_{n+1}$. We define a coloring d : $\left[\left(2^{\Theta_{n+1}}\right)^{+}\right]^{2} \rightarrow \mathcal{F}$ by the rule $d(\{\alpha, \beta\})(\bar{s})=c\left(\bar{s}^{\sim}\{\alpha, \beta\}\right)$ for every $\bar{s} \in$ $\prod_{i=0}^{n-1}\left[\left(2^{\Theta_{i+1}}\right)^{+}\right]^{2}$. By (P3) in Corollary \& , there exist $E_{n} \in \mathcal{D}_{n} \upharpoonright D_{n}$ and $f_{0} \in \mathcal{F}$ such that for every $\mathbf{x} \in E_{n}$ the restriction $d \upharpoonright[\mathbf{x}]^{2}$ is constantly equal to f_{0}. The result now follows by applying our inductive hypothesis to the coloring f_{0}.

By Claim 10 and the fact that every \mathcal{D}_{n} is σ-closed (property (P2) in Corollary 8), the proof of Corollary 9 is completed.

Clearly, in the forcing extension obtained above the combinatorial principle $\mathrm{Pl}_{1}\left(\exp _{\omega}\left(\aleph_{0}\right)\right)$ holds as well. As already indicated above, one can obtain the consistency of $\mathrm{Pl}_{1}\left(\exp _{\omega}\left(\aleph_{0}\right)\right)$ using a considerably weaker large-cardinal assumption from the one used for $\mathrm{Pl}_{2}\left(\exp _{\omega}\left(\aleph_{0}\right)\right)$, an assumption which in fact happens to be optimal. More precisely, we have the following.

Theorem 11 (DT). Assume the existence of a measurable cardinal. Then, there is a forcing extension in which GCH and $\mathrm{Pl}_{1}\left(\aleph_{\omega}\right)$ hold.

It should be clear from the proof of Lemma 7 that we also have its higherdimensional variation.

Lemma 12. Suppose that d is a positive integer, that κ is a strongly compact cardinal and that $\lambda<\kappa$ is an infinite regular cardinal. Let G be a $\operatorname{Col}(\lambda,<\kappa)$-generic filter over V. Then, in $V[G]$ there exists an ideal \mathcal{I} on $\left[\left(\exp _{d}(\kappa)\right)^{+}\right]^{\omega}$ and a subset \mathcal{D} of \mathcal{I}^{+}such that the following are satisfied.
(1) \mathcal{I} is κ-complete.
(2) \mathcal{D} is dense in \mathcal{I}^{+}and is λ-closed in \mathcal{I}^{+}.
(3) For every $\mu<\kappa$, every coloring $c:\left[\left(\exp _{d}(\kappa)\right)^{+}\right]^{d+1} \rightarrow \mu$ and every $A \in \mathcal{I}^{+}$there exist a color $\xi<\mu$ and an element $D \in \mathcal{D}$ with $D \subseteq A$ and such that for every $\mathbf{x} \in D$ the restriction $c \upharpoonright[\mathbf{x}]^{d+1}$ is constantly equal to ξ.

This leads to the following multi-dimensional version of Corollary 8 .
Corollary 13. Suppose that $\left(\kappa_{n}\right)$ is a strictly increasing sequence of strongly compact cardinals with $\kappa_{0}=\aleph_{0}$. For every $n \in \omega$ we can choose cardinals $\lambda_{n}, \theta_{n} \in\left[\kappa_{n}, \exp _{\omega}\left(\kappa_{n}\right)\right)$ in such a way that, if we let

$$
\mathbb{P}=\bigotimes_{n \in \omega} \operatorname{Col}\left(\lambda_{n},<\kappa_{n+1}\right)
$$

be the iteration of the sequence of Lévy collapses and if we choose G to be a \mathbb{P}-generic filter over V, then, in $V[G]$, we have

$$
\sup _{n<\omega} \kappa_{n}=\sup _{n<\omega} \lambda_{n}=\sup _{n<\omega} \theta_{n}=\exp _{\omega}\left(\aleph_{0}\right)
$$

and for every $n \in \omega$ there exist an ideal \mathcal{I}_{n} on $\left[\theta_{n+1}\right]^{\omega}$ and a subset \mathcal{D}_{n} of \mathcal{I}_{n}^{+}such that the following are satisfied.
(P1) \mathcal{I}_{n} is κ_{n+1}-complete.
(P2) \mathcal{D}_{n} is $\left(<\lambda_{n}\right)$-closed in \mathcal{I}_{n}^{+}; that is, \mathcal{D}_{n} is μ-closed in \mathcal{I}_{n}^{+}for every $\mu<\lambda_{n}$.
(P3) For every $\mu<\kappa_{n+1}$, every coloring $c:\left[\theta_{n+1}\right]^{n+1} \rightarrow \mu$ and every $A \in \mathcal{I}_{n}^{+}$there exist a color $\xi<\mu$ and an element $D \in \mathcal{D}_{n}$ with $D \subseteq A$ and such that for every $\mathbf{x} \in D$ the restriction $c \upharpoonright[\mathbf{x}]^{n+1}$ is constantly equal to ξ.

It should be also clear that using Corollary 13 instead Corollary 8 in the proof of Corollary 9 we have the following higher dimensional version of this result.

Corollary 14 (Sh2]). Suppose that in our universe V there exists a strictly increasing sequence $\left(\kappa_{n}\right)$ of strongly compact cardinals with $\kappa_{0}=\aleph_{0}$. Then, there is a forcing extension of V in which the principle $\operatorname{Pl}_{d}\left(\exp _{\omega}\left(\aleph_{0}\right)\right)$ holds
for every integer $d \geq 1$. Moreover, if $G C H$ holds in V, then $G C H$ also holds in the extension.

4. Banach space implications

Let us recall that a sequence $\left(x_{n}\right)$ in a Banach space E is said to be C unconditional, where $C \geq 1$, if for every pair F and G of non-empty finite subsets of ω with $F \subseteq G$ and every choice $\left(a_{n}\right)_{n \in G}$ of scalars we have

$$
\left\|\sum_{n \in F} a_{n} x_{n}\right\| \leq C \cdot\left\|\sum_{n \in G} a_{n} x_{n}\right\|
$$

This section is devoted to the proof of the following result.
Theorem 15. Let κ be a cardinal and assume that property $\mathrm{Pl}_{2}(\kappa)$ holds (see Definition (6). Then every Banach space E not containing ℓ_{1} and of density κ contains an 1-unconditional basic sequence.

In particular, if E is any Banach space of density κ, then for every $\varepsilon>0$ the space E contains an $(1+\varepsilon)$-unconditional basic sequence.

Combining Corollary 9 with Theorem 15, we get the following corollaries.
Corollary 16. It is consistent relative the existence of an infinite sequence of strongly compact cardinals that for every $\varepsilon>0$ and every Banach space E of density at least $\exp _{\omega}\left(\aleph_{0}\right)$, the space E contains an $(1+\varepsilon)$-unconditional basic sequence. Moreover, this is compatible with GCH.

Proof. Follows immediately by Corollary 9 and Theorem 15.
Corollary 17. It is consistent relative to the existence of an infinite sequence of strongly compact cardinals that every Banach space of density at least $\exp _{\omega}\left(\aleph_{0}\right)$ has a separable quotient with an unconditional basis. Moreover, this is compatible with $G C H$.

Proof. A well-known consequence of a result due to J. N. Hagler and W. B. Johnson HJ asserts that if E is a Banach space such that E^{*} has an unconditional basic sequence, then E has a separable quotient with an unconditional basis (see also ADK, Proposition 16]). Noticing that the density of the dual E^{*} of a Banach space E is at least as big as the density of E, the result follows by Corollary 16.

For the proof of Theorem 15 we need the following lemma, which is essentially a multi-dimensional version of Odell's Schreier unconditionality Theorem O2.

Lemma 18. Let E be a Banach space, $m \in \omega$ with $m \geq 1$ and $\varepsilon>0$. For every $i \in\{0, \ldots, m\}$ let $\left(x_{n}^{i}\right)$ be a normalized weakly null sequence in the space E. Then, there exists an infinite subset L of ω such that for every $\left\{n_{0}<\cdots<n_{m}\right\} \subseteq L$ the sequence $\left(x_{n_{i}}^{i}\right)_{i=0}^{m}$ is $(1+\varepsilon)$-unconditional.

Proof. The first step towards the proof of the lemma is included in the following claim. It shows that, by passing to an infinite subset of ω, we may assume that for every $\left\{n_{0}<\cdots<n_{m}\right\} \in[\mathbb{N}]^{m+1}$ the finite sequence $\left(x_{n_{i}}^{i}\right)_{i=0}^{m}$ is a particularly well behaved Schauder basic sequence.

Claim 19. For every $\varepsilon>0$ there exists an infinite subset M of ω such that for every $\left\{n_{0}<\cdots<n_{m}\right\} \subseteq M$ the sequence $\left(x_{n_{i}}^{i}\right)_{i=0}^{m}$ is an $(1+\varepsilon)$-Schauder basic sequence.

Proof of Claim 19. We define a coloring $\mathcal{B}:[\mathbb{N}]^{m+1} \rightarrow 2$ as follows. Let $s=\left\{n_{0}<\cdots<n_{m}\right\} \in[\mathbb{N}]^{m+1}$ arbitrary. If $\left(x_{n_{i}}^{i}\right)_{i=0}^{m}$ is an $(1+\varepsilon)$-Schauder basic sequence, then we set $\mathcal{B}(s)=0$; otherwise we set $\mathcal{B}(s)=1$. By Ramsey's Theorem, there exist an infinite subset M of ω and $c \in\{0,1\}$ such that $\mathcal{B} \upharpoonright[M]^{m+1}$ is constantly equal to c. Using Mazur's classical procedure for selecting Schauder basic sequences (see, for instance, [TT, Lemma 1.a.6]), we find $t=\left\{k_{0}<\cdots<k_{m}\right\} \in[M]^{m+1}$ such that the sequence $\left(x_{k_{i}}^{i}\right)_{i=0}^{m}$ is basic with basis constant $(1+\varepsilon)$. Therefore, $\mathcal{B}(t)=0$, and by homogeneity, $\mathcal{B} \upharpoonright[M]^{m+1}=0$. The claim is proved.

Applying Claim 19 for $\varepsilon=1$, we get an infinite subset M of ω as described above. Observe that for every $\left\{n_{0}<\cdots<n_{m}\right\} \in[M]^{m+1}$ and every choice $\left(a_{i}\right)_{i=0}^{m}$ of scalars we have

$$
\begin{equation*}
\left\|\sum_{i=0}^{m} a_{i} x_{n_{i}}^{i}\right\| \geq \frac{1}{4} \max \left\{\left|a_{i}\right|: i=0, \ldots, m\right\} \tag{1}
\end{equation*}
$$

The desired subset L of ω will be an infinite subset of M obtained after another application of Ramsey's Theorem. Specifically, consider the coloring $\mathcal{U}:[M]^{m+1} \rightarrow 2$ defined as follows. Let $s=\left\{n_{0}<\cdots<n_{m}\right\} \in[M]^{m+1}$ and assume that the sequence $\left(x_{n_{i}}^{i}\right)_{i=0}^{m}$ is $(1+\varepsilon)$-unconditional. In such a case, we set $\mathcal{U}(s)=0$; otherwise we set $\mathcal{U}(s)=1$. Let L be an infinite subset of M be such \mathcal{U} is constant on $[L]^{m+1}$. It is enough to find some $s \in[L]^{m+1}$ such that $\mathcal{U}(s)=0$.

To this end, fix $\delta>0$ such that $(1+\delta) \cdot(1-\delta)^{-1} \leq(1+\varepsilon)$. Notice that there exists a finite family \mathcal{D} of normalized Schauder basic sequences of length $m+1$ such that any normalized Schauder basic sequence $\left(y_{i}\right)_{i=0}^{m}$, in
some Banach space Y, is $\sqrt{1+\delta}$-equivalent to some sequence in the family \mathcal{D}. Hence, by a further application of Ramsey's Theorem and by passing to an infinite subset of L if necessary, we may assume that
$(*)$ for every $\left\{n_{0}<\cdots<n_{m}\right\},\left\{k_{0}<\cdots<k_{m}\right\} \in[L]^{m+1}$ the sequences $\left(x_{n_{i}}^{i}\right)_{i=0}^{m}$ and $\left(x_{k_{i}}^{i}\right)_{i=0}^{m}$ are $(1+\delta)$-equivalent.
Now, for every $i \in\{0, \ldots, m\}$ and every $\rho>0$ let

$$
\mathcal{K}_{i}(\rho)=\left\{\left\{n \in \omega:\left|x^{*}\left(x_{n}^{i}\right)\right| \geq \rho\right\}: x^{*} \in B_{E^{*}}\right\}
$$

Every sequence $\left(x_{n}^{i}\right)$ is weakly null, and so, each $\mathcal{K}_{i}(\rho)$ is a pre-compact ${ }^{1}$ family of finite subsets of ω. Hence, we may select a sequence $\left(F_{i}\right)_{i=0}^{m}$ of finite subsets of L such that
(a) $\max \left(F_{i}\right)<\min \left(F_{i+1}\right)$ for every $i \in\{0, \ldots, m-1\}$, and
(b) $F_{i} \notin \mathcal{K}_{i}\left(\delta \cdot 8^{-1} \cdot(m+1)^{-1}\right)$ for every $i \in\{0, \ldots, m\}$.

We set $n_{i}=\min \left(F_{i}\right)$ for all $i \in\{0, \ldots, m\}$. Property (a) above implies that $n_{0}<\cdots<n_{m}$. We claim that the sequence $\left(x_{n_{i}}^{i}\right)_{i=0}^{m}$ is $(1+\varepsilon)$-unconditional. Indeed, let $F \subseteq\{0, \ldots, m\}$ and $\left(a_{i}\right)_{i=0}^{m}$ be a choice of scalars. We want to prove that

$$
\left\|\sum_{i \in F} a_{i} x_{n_{i}}^{i}\right\| \leq(1+\varepsilon)\left\|\sum_{i=0}^{m} a_{i} x_{n_{i}}^{i}\right\|
$$

Clearly we may assume that $\left\|\sum_{i \in F} a_{i} x_{n_{i}}^{i}\right\|=1$. If $\left\|\sum_{i \notin F} a_{i} x_{n_{i}}^{i}\right\| \geq 2$, then

$$
\left\|\sum_{i=0}^{m} a_{i} x_{n_{i}}^{i}\right\| \geq\left\|\sum_{i \notin F} a_{i} x_{n_{i}}^{i}\right\|-\left\|\sum_{i \in F} a_{i} x_{n_{i}}^{i}\right\| \geq 1=\left\|\sum_{i \in F} a_{i} x_{n_{i}}^{i}\right\|
$$

So, suppose that $\left\|\sum_{i \notin F} a_{i} x_{n_{i}}^{i}\right\| \leq 2$. By (11), we see that

$$
\begin{equation*}
\max \left\{\left|a_{i}\right|: i \notin F\right\} \leq 8 \tag{2}
\end{equation*}
$$

We select $x_{0}^{*} \in S_{E^{*}}$ such that $x_{0}^{*}\left(\sum_{i \in F} a_{i} x_{n_{i}}^{i}\right)=\left\|\sum_{i \in F} a_{i} x_{n_{i}}^{i}\right\|$. We define a sequence $\left(k_{i}\right)_{i=0}^{m}$ in L as follows. If $i \notin F$, then let k_{i} be any member of F_{i} satisfying $\left|x_{0}^{*}\left(x_{k_{i}}^{i}\right)\right|<\delta \cdot 8^{-1} \cdot(m+1)^{-1}$ (such a selection is possible by (b) above); if $i \in F$, then we set $k_{i}=n_{i}$. By (a), we have $k_{0}<\cdots<k_{m}$. Moreover,

$$
\begin{aligned}
\left\|\sum_{i=0}^{m} a_{i} x_{k_{i}}^{i}\right\| & =x_{0}^{*}\left(\sum_{i=0}^{m} a_{i} x_{k_{i}}^{i}\right)=x_{0}^{*}\left(\sum_{i \in F} a_{i} x_{k_{i}}^{i}\right)+x_{0}^{*}\left(\sum_{i \notin F} a_{i} x_{k_{i}}^{i}\right) \\
& \geq x_{0}^{*}\left(\sum_{i \in F} a_{i} x_{k_{i}}^{i}\right)-\sum_{i \notin F}\left|a_{i}\right| \cdot\left|x_{0}^{*}\left(x_{k_{i}}^{i}\right)\right| \geq 1-\delta
\end{aligned}
$$

[^1]Invoking $(*)$, we conclude that

$$
\left\|\sum_{i=0}^{m} a_{i} x_{n_{i}}^{i}\right\| \geq \frac{1}{1+\delta}\left\|\sum_{i=0}^{m} a_{i} x_{k_{i}}^{i}\right\| \geq \frac{1-\delta}{1+\delta} \geq \frac{1}{1+\varepsilon}\left\|\sum_{i \in F} a_{i} x_{n_{i}}^{i}\right\|
$$

The proof is completed.
We are ready to proceed to the proof of Theorem 15.
Proof of Theorem 15. Let κ be a cardinal such that $\mathrm{Pl}_{2}(\kappa)$ holds. By a classical result of R. C. James (see LT, Proposition 2.e.3]), it is enough to show that if E is a Banach space of density κ not containing an isomorphic copy of ℓ_{1}, then E has an 1-unconditional basic sequence. So, let E be one. By Rosenthal's Dichotomy Ro and our assumptions on the space E, we see that every bounded sequence in E has a weakly Cauchy subsequence. Let $\left(x_{\alpha}: \alpha<\kappa\right)$ be a normalized sequence such that $\left\|x_{\alpha}-x_{\beta}\right\| \geq 1$ for every $\alpha<\beta<\kappa$. We define a coloring $c_{\mathrm{un}}:\left[[\kappa]^{2}\right]^{<\omega} \rightarrow \omega$ as follows. Let $s=\left(\left\{\alpha_{0}<\beta_{0}\right\}, \ldots,\left\{\alpha_{m}<\beta_{m}\right\}\right) \in\left[[\kappa]^{2}\right]^{<\omega}$ arbitrary. Assume that there exists $l \in \omega$ with $l>0$ and such that the sequence $\left(x_{\beta_{i}}-x_{\alpha_{i}}\right)_{i=0}^{m}$ is not $(1+1 / l)$-unconditional. In such a case, setting l_{s} to be the least $l \in \omega$ with the above property, we define $c_{\mathrm{un}}(s)=l_{s}$. If such an l does not exist, then we set $c_{\mathrm{un}}(s)=0$. By $\mathrm{Pl}_{2}(\kappa)$, there exist a sequence $\left(\mathbf{x}_{i}\right)$ of infinite subsets of κ and a sequence $\left(l_{m}\right)$ in ω such that for every $m \in \omega$ the restriction $c_{\mathrm{un}} \upharpoonright \prod_{i=0}^{m}\left[\mathbf{x}_{i}\right]^{2}$ of the coloring c_{un} on the product $\prod_{i=0}^{m}\left[\mathbf{x}_{i}\right]^{2}$ is constant with value l_{m}.

Claim 20. For every $m \in \omega$ we have $l_{m}=0$.
Grating the claim, the proof of the theorem is completed. Indeed, observe that for every infinite sequence of pairs $\left(\left\{\alpha_{i}<\beta_{i}\right\}\right) \in \prod_{i \in \omega}\left[\mathbf{x}_{i}\right]^{2}$ the sequence $\left(x_{\beta_{i}}-x_{\alpha_{i}}\right)$ is a semi-normalized 1-unconditional basic sequence in the Banach space E.

It only remains to prove Claim 20. To this end we argue by contradiction. So, assume that there exists $m \in \omega$ such that $l_{m}>0$. Our definition of the coloring $c_{\text {un }}$ implies that $m \geq 1$. For every $i \in\{0, \ldots, m\}$ we may select an infinite subset $\left\{\alpha_{0}^{i}<\alpha_{1}^{i}<\cdots\right\}$ of \mathbf{x}_{i} such that the sequence $\left(x_{\alpha_{i}}\right)$ is weakly Cauchy. We set

$$
y_{n}^{i}=\frac{x_{\alpha_{2 n}^{i}}-x_{\alpha_{2 n+1}^{i}}}{\left\|x_{\alpha_{2 n}^{i}}-x_{\alpha_{2 n+1}^{i}}\right\|}
$$

for every $i \in\{0, \ldots, m\}$ and every $n \in \omega$. Then each $\left(y_{n}^{i}\right)$ is a normalized weakly null sequence in E. Moreover, for every $\left\{n_{0}<\cdots<n_{m}\right\} \subseteq[\mathbb{N}]^{m+1}$
the sequence $\left(y_{n_{i}}^{i}\right)_{i=0}^{m}$ is not $\left(1+1 / l_{m}\right)$-unconditional. This clearly contradicts Lemma 18. The proof is completed.
4.1. Sub-symmetric basic sequences. A semi-normalized basic sequence $\left(x_{n}\right)$ in a Banach space E is said to be sub-symmetric if every subsequence of $\left(x_{n}\right)$ is equivalent to $\left(x_{n}\right)$ itself ${ }^{2}$.

In light of Corollary 16, it is natural to ask whether we can show, consistently, that there exists a small cardinal θ such that every Banach space E of density θ contains a sub-symmetric basic sequence (this would improve upon Corollary (16).

Recall, first, that Ketonen Ke] has proved that if λ is an ω-Erdős cardinal, then any Banach space of density λ has a normalized sub-symmetric basic sequence. However, there do exist non-separable Banach spaces not containing a sub-symmetric basic sequence. The first such example is due to E. Odell [O1]. Odell's space is the dual of a separable Banach space, and so, it has density $2^{\aleph_{0}}$ (and, of course, is not reflexive). In ALT], a reflexive Banach space $\mathfrak{X}_{\omega_{1}}$ was constructed which has density \aleph_{1} and does not contain an unconditional basic sequence, and a fortiori neither a sub-symmetric basic sequence.

Our aim in this subsection is to show that if κ is any cardinal below the first ω-Mahlo cardinal (see $\S 2.2$), then we can construct, in ZFC, a Banach space E_{κ} of density κ not containing a sub-symmetric basic sequence. More precisely, we have the following.

Theorem 21. Let θ be the first ω-Mahlo cardinal and κ be a cardinal with $\kappa<\theta$. Then there exists a reflexive Banach space E_{κ} of density κ not containing a sub-symmetric basic sequence. In particular, $\mathfrak{s m} \geq \theta$.

For the proof of Theorem 21 we need a well-known construction in Banach Space Theory (see [TS or [TT). Let κ be any cardinal and let \mathcal{F} be a compact and hereditary family on κ containing the singletons. This means that \mathcal{F} is a family of finite subsets of κ satisfying the following conditions.
(i) If L is an infinite subset of κ, then there exists a non-empty finite subset G of L such that $G \notin \mathcal{F}$.

[^2](ii) If $G \in \mathcal{F}$ and $F \subseteq G$, then $F \in \mathcal{F}$.
(iii) For every $\alpha<\kappa$ we have $\{\alpha\} \in \mathcal{F}$.

Consider the Tsirelson ${ }^{3}$ space $T(\mathcal{F})$ on $c_{00}(\kappa)$ build using the family \mathcal{F}. For the convenience of the reader, we recall its definition. First, we define a norming set $K(\mathcal{F}) \subseteq c_{00}(\kappa)$ as follows.
(1) $K(\mathcal{F})$ contains the set $\left\{ \pm e_{\gamma}^{*}: \gamma<\kappa\right\}$.
(2) Let $\left(\phi_{i}\right)_{i=0}^{m}$ be a sequence in $K(\mathcal{F})$ with the following properties.
(2.a) If $i, j \in\{0, \ldots, m\}$ with $i \neq j$, then $\operatorname{supp} \phi_{i} \cap \operatorname{supp} \phi_{j}=\emptyset$.
(2.b) The set $\left\{\min \left(\operatorname{supp} \phi_{i}\right): 0 \leq i \leq m\right\}$ is in \mathcal{F}, i.e. the sequence $\left(\phi_{i}\right)_{i=0}^{m}$ is \mathcal{F}-admissible.
Then $2^{-1} \sum_{i=0}^{m} \phi_{i}$ belongs to $K(\mathcal{F})$.
(3) $K(\mathcal{F})$ is symmetric; that is, if $\phi \in K(\mathcal{F})$, then $-\phi \in K(\mathcal{F})$.
(4) $K(\mathcal{F})$ is the minimal set of $c_{00}(\kappa)$ satisfying (1), (2) and (3) above.

The space $T(\mathcal{F})$ is defined to be the completion of $c_{00}(\kappa)$ equipped with the norm

$$
\begin{equation*}
\|x\|=\sup \{\langle\phi, x\rangle: \phi \in K(\mathcal{F})\} \tag{3}
\end{equation*}
$$

The following properties of the space $T(\mathcal{F})$ are almost immediate consequences of the relevant definitions.
(P1) The standard Hamel basis $\left(e_{\gamma}: \gamma<\kappa\right)$ of $c_{00}(\kappa)$ defines an unconditional Schauder basis of $T(\mathcal{F})$.
(P2) Assume that for every infinite subset M of κ the restriction

$$
\mathcal{F} \upharpoonright M=\{s \in \mathcal{F}: s \subseteq M\}
$$

of \mathcal{F} on M has infinite Cantor-Bendixson rank; i.e. for every $n \in \omega$ with $n \geq 1$ there exists an infinite subset L of M such that $[L]^{n} \subseteq \mathcal{F}$. Then the space $T(\mathcal{F})$ is reflexive. Moreover, in such a case, the space $T(\mathcal{F})$ can contain no sub-symmetric basic sequence. To see this, notice that if $\left(x_{n}\right)$ is a sequence of normalized and disjoint supported vectors in $T(\mathcal{F})$, then for every $k \in \omega$ there exist $n_{0}<\cdots<n_{k}$ in ω such that ${ }^{4}$

$$
\left\|\frac{x_{n_{0}}+\cdots+x_{n_{k}}}{k+1}\right\| \geq \frac{1}{2} .
$$

[^3]Hence, if $T(\mathcal{F})$ contained a sub-symmetric sequence, then this sequence should be equivalent to the standard basis of ℓ_{1}; this is clearly impossible by the reflexivity of the space.
The above construction reduces the problem of finding non-separable Banach spaces not containing a sub-symmetric sequence to the problem of constructing non-trivial compact and hereditary families. This is the content of the following theorem.

Theorem 22. Let θ be the first ω-Mahlo cardinal and let κ be an infinite cardinal with $\kappa<\theta$. Then there exists a compact and hereditary family \mathcal{F} on κ containing the singletons and such that for every infinite set M of κ the restriction $\mathcal{F} \upharpoonright M$ of \mathcal{F} on M has infinite Cantor-Bendixson rank.

Proof. It will be convenient to adopt the following terminology. We say that a family \mathcal{F} of finite subsets of a cardinal κ is nice if \mathcal{F} is compact, hereditary, contains all singletons and is such that for every infinite subset M of κ the restriction $\mathcal{F} \upharpoonright M$ has infinite Cantor-Bendixson rank. We also need to introduce the following notation. If s and t are non-empty finite subsets of κ we write $s<t$ if $\max (s)<\min (t)$. Finally, we say that a sequence $\left(t_{i}\right)_{i=0}^{n}$ of non-empty finite subsets of κ is block provided that $t_{0}<t_{1}<\cdots<t_{n}$.

We proceed to the proof. The construction of the family \mathcal{F} is done recursively on an infinite cardinal κ smaller than the first ω-Mahlo cardinal θ. If $\kappa=\omega$, we let $\mathcal{F}_{\omega}=\{s \subseteq \omega:|s| \leq \min (s)+1\}$ be the Schreier family. Suppose that $\kappa>\omega$. We distinguish the following cases.

CASE 1: κ is singular. Let $\xi=\operatorname{cf}(\kappa)<\kappa$. We select a sequence ($X_{\delta}: \delta<\xi$) of pairwise disjoint infinite subsets of κ such that $\kappa=\bigcup_{\delta<\xi} X_{\delta}$ and $\left|X_{\delta}\right|<\kappa$ for every $\delta<\xi$. By our inductive hypothesis, there exist a nice family \mathcal{F}_{ξ} on ξ and for every $\delta<\xi$ a nice family \mathcal{G}_{δ} on X_{δ}. We define \mathcal{F}_{κ} by the rule

$$
s \in \mathcal{F}_{\kappa} \Leftrightarrow s \cap X_{\delta} \in \mathcal{G}_{\delta} \text { for all } \delta<\xi \text { and }\left\{\delta<\xi: s \cap X_{\delta} \neq \emptyset\right\} \in \mathcal{F}_{\xi} .
$$

It is easily checked that \mathcal{F}_{κ} is a nice family on κ.
Case 2: κ is regular. Since κ is not ω-Mahlo, it is not n-Mahlo for some $n \in \omega$. So, we may use the characterization of J. H. Schmerl (see [Sch] or [Tod, Theorem 6.1.8]) to fix two integers $m, \bar{n} \geq 3$, an unbounded subset Γ of κ and a regressive ${ }^{5}$ mapping $f:[\Gamma]^{\bar{n}} \rightarrow \kappa$ such that the following holds.

[^4](*) For every $X \in[\Gamma]^{m}$ the restriction $f \upharpoonright[X]^{\bar{n}}$ is not min-homogeneous ${ }^{6}$.
We will define the desired family not directly on κ itself but instead on Γ. This is enough since κ is regular, and so, κ and Γ are equipotent. We use the inductive hypothesis and we fix for each $\delta \in \Gamma$ a nice family \mathcal{F}_{δ} on δ. Define \mathcal{F} by declaring that a finite set $s \subseteq \Gamma$ is in \mathcal{F} if and only if the following are satisfied.
(1) Either $|s|<\bar{n}$, or
(2) for every $\alpha \in s$ and every block sequence $\left(t_{i}\right)_{i=0}^{k}$ with $t_{i} \in[s]^{\bar{n}-1}$ $(i \leq k)$ and $\alpha<t_{0}$, we have that
(2.a) $f\left(\{\alpha\} \cup t_{i}\right)<f\left(\{\alpha\} \cup t_{j}\right)$ if $i<j \leq k$, and
(2.b) $\left\{f\left(\{\alpha\} \cup t_{i}\right): 0 \leq i \leq k\right\} \in \mathcal{F}_{\alpha}$.

The map f is regressive, and so, the family \mathcal{F} is well-defined. We claim that \mathcal{F} is a nice family on Γ. It is clear that \mathcal{F} is compact, hereditary and contains the singletons. What remains is to show that for every infinite subset M of Γ, the restriction $\mathcal{F} \upharpoonright M$ has infinite rank. So, let M be an infinite subset of Γ. It will be enough to prove that $\mathcal{F} \cap[N]^{k} \neq \emptyset$ for every $N \subseteq M$ of order type ω and every integer k. Let $k \geq 1$ arbitrary. We will prove that $\mathcal{F} \cap[N]^{(\bar{n}-1) k+1} \neq \emptyset$.

To this end we use, first, the Erdös-Rado canonization Theorem ER to find an infinite subset P of N such that $f \upharpoonright[P]^{\bar{n}}$ is canonical; that is, there exists some subset I of \bar{n} such that for every $s, t \in[P]^{\bar{n}}$ we have $f(s)=f(t)$ if and only if $s(i)=t(i)$ for every $i \in I$. Since $f \upharpoonright[P]^{\bar{n}}$ is canonical and not min-homogeneous, it follows that if $s, t \subseteq P$ with $|s|=|t|=\bar{n}-1$ and $\alpha<s<t$, then $f(\{\alpha\} \cup s) \neq f(\{\alpha\} \cup t)$. We define $d:[P]^{2 \bar{n}-1} \rightarrow 2$ as follows. Let $s \in[P]^{2 \bar{n}-1}$ arbitrary. There exist $\alpha \in P$ and $s_{0}, s_{1} \subseteq P$ such that $\alpha<s_{0}<s_{1},\left|s_{0}\right|=\left|s_{1}\right|=\bar{n}-1$ and $s=\{\alpha\} \cup s_{0} \cup s_{1}$. We set $d(s)=0$ if $f\left(\{\alpha\} \cup s_{0}\right)<f\left(\{\alpha\} \cup s_{1}\right)$, while we set $d(s)=1$ if $f\left(\{\alpha\} \cup s_{0}\right)>f\left(\{\alpha\} \cup s_{1}\right)$. By Ramsey's Theorem, there is some infinite subset Q of P such that d is constant on $[Q]^{2 \bar{n}-1}$. If the constant value were 1 , then we would be able to produce an infinite strictly decreasing sequence of ordinals. So the constant value must be 0 , i.e.
$(* *)$ for every $\alpha \in Q$ and every $s_{0}, s_{1} \subseteq Q$ with $\alpha<s_{0}<s_{1}$ and $\left|s_{0}\right|=$ $\left|s_{1}\right|=\bar{n}-1$ we have that $f\left(\{\alpha\} \cup s_{0}\right)<f\left(\{\alpha\} \cup s_{1}\right)$.

[^5]Finally, we define a coloring $e:[Q]^{(\bar{n}-1) k+1} \rightarrow 2$ as follows. Let $s \in$ $[Q]^{(\bar{n}-1) k+1}$ arbitrary and pick $\alpha \in Q$ and $s_{0}, \ldots, s_{k-1} \in[Q]^{\bar{n}-1}$ with $\alpha<$ $s_{0}<\cdots<s_{k-1}$ and $s=\{\alpha\} \cup s_{0} \cup \cdots \cup s_{k-1}$. We set $e(s)=0$ if $\left\{f\left(\{\alpha\} \cup s_{i}\right): 0 \leq i<k\right\} \in \mathcal{F}_{\alpha}$; otherwise we set $e(s)=1$. Let $R \subseteq Q$ infinite such that e is constant on R with value, say, $\varepsilon \in\{0,1\}$. We claim that $\varepsilon=0$. Suppose, towards a contradiction, that $\varepsilon=1$. Let $\alpha=\min (R)$ and let $\left(s_{i}\right)$ be a block sequence of subsets of $R \backslash\{\alpha\}$ each of which has size $\bar{n}-1$ and is such that $\bigcup_{i \in \omega} s_{i}=R \backslash\{\alpha\}$. Let $T=\left\{f\left(\{\alpha\} \cup s_{i}\right): i<\omega\right\}$. This is an infinite subset of α_{0}. By our hypothesis on \mathcal{F}_{α}, we can find $t \in \mathcal{F}_{\alpha} \cap[T]^{k}$. Find integers $i_{0}<\cdots<i_{k-1}$ such that $t=\left\{f\left(\{\alpha\} \cup s_{i_{j}}\right): j<k\right\} \in \mathcal{F}_{\alpha}$. Hence

$$
\begin{equation*}
e\left(\{\alpha\} \cup s_{i_{0}} \cup \cdots \cup s_{i_{k-1}}\right)=0, \tag{4}
\end{equation*}
$$

a contradiction. So, the constant value of the coloring e is 0 . Since every family \mathcal{F}_{α} is hereditary, we see that $[R]^{(\bar{n}-1) k+1} \subseteq \mathcal{F}$. This shows that the family \mathcal{F} is nice. The proof is completed.

We are ready to give the proof of Theorem 21.
Proof of Theorem 21. Fix an infinite cardinal κ smaller than the first ω Mahlo cardinal θ. Let \mathcal{F} be the family obtained by Theorem 22 and consider the Tsirelson space $T(\mathcal{F})$ build using the family \mathcal{F}. The space $T(\mathcal{F})$ is as desired.
4.2. Unconditional subsequences of weakly null sequences. We have the following "subsequence" version of Theorem 15 .

Theorem 23. Let κ be a cardinal and assume that property $\mathrm{Pl}_{1}(\kappa)$ holds (see Definition [G). Then $\mathfrak{n c}_{\text {seq }} \leq \kappa$. In fact, every normalized weakly null sequence ($x_{\alpha}: \alpha<\kappa$) has an 1-unconditional subsequence.

Proof. The proof is very similar to the one of Theorem 15. Indeed, consider the coloring $c_{\text {un }}:[\kappa]^{<\omega} \rightarrow \omega$ defined as follows. Let $s=\left(\alpha_{0}<\cdots<\alpha_{m}\right) \in$ $[\kappa]^{<\omega}$. Assume that there exists $l \in \omega$ with $l>0$ such that the sequence $\left(x_{\alpha_{i}}\right)_{i=0}^{m}$ is not $(1+1 / l)$-unconditional. In such a case, let $c_{\text {un }}(s)$ be the least l with this property. Otherwise, we set $c_{\mathrm{un}}(s)=0$. Using $\mathrm{Pl}_{1}(\kappa)$ and Lemma 18, the result follows.

Corollary 24. It is relative consistent with the existence of a measurable cardinal that every normalized weakly null sequence ($x_{\alpha}: \alpha<\aleph_{\omega}$) has an

1-unconditional subsequence. Moreover, this statement is compatible with GCH.

Proof. Follows immediately by Theorem 11 and Theorem 23.
There is another well-known combinatorial property of a cardinal κ, closely related to $\mathrm{Pl}_{1}(\kappa)$, which also implies the estimate $\mathfrak{n c}_{\text {seq }} \leq \kappa$. This property is the free set property of κ (see [Sh1, [K0, DT] and the references therein).

Definition 25. By a structure on κ we mean a first order structure $\mathcal{M}=$ $\left(\kappa,\left(f_{i}\right)_{i \in \omega}\right)$, where $n_{i} \in \omega$ and $f_{i}: \kappa^{n_{i}} \rightarrow \kappa$ for all $i \in \omega$.

The free set property of κ, denoted by $\operatorname{Fr}_{\omega}(\kappa, \omega)$, is the assertion that every structure $\mathcal{M}=\left(\kappa,\left(f_{i}\right)_{i \in \omega}\right)$ has a free infinite set. That is, there exists an infinite subset L of κ such that every element x of L does not belong to the substructure of \mathcal{M} generated by $L \backslash\{x\}$.

We need the following fact (its proof is left to the interested reader).
Fact 26. Let κ be a cardinal. Then the following are equivalent.
(a) $\operatorname{Fr}_{\omega}(\kappa, \omega)$ holds.
(b) For every structure $\mathcal{M}=\left(\kappa,\left(f_{i}\right)_{i \in \omega}\right)$ there exists an infinite subset L of κ such that for every $x \in L$ we have

$$
x \notin\left\{f_{i}(s): s \in(L \backslash\{x\})^{n_{i}} \text { and } i \in \omega\right\} .
$$

(c) Every extended structure $\mathcal{N}=\left(\kappa,\left(g_{i}\right)_{i \in \omega}\right)$, where $g_{i}: \kappa^{<\omega} \rightarrow[\kappa] \leq \omega$ for all $i \in \omega$, has an infinite free subset. That is, there exists an infinite subset L of κ such that for every $x \in L$ we have

$$
x \notin \bigcup_{i \in \omega} \bigcup_{s \in(L \backslash\{x\})<\omega} g_{i}(s) .
$$

Theorem 27. Let κ be a cardinal and assume that $\operatorname{Fr}_{\omega}(\kappa, \omega)$ holds. Then every normalized weakly null sequence $\left(x_{\alpha}: \alpha<\kappa\right)$ has an 1-unconditional subsequence.

Proof. Let $\left(x_{\alpha}: \alpha<\kappa\right)$ be a normalized weakly null sequence in a Banach space E. For every $s \in[\kappa]^{<\omega}$ we select a subset F_{s} of $S_{E^{*}}$ which is countable and 1-norming for the finite-dimensional subspace $E_{s}:=\operatorname{span}\left\{x_{\alpha}: \alpha \in s\right\}$ of E. That is, for every $x \in E_{s}$ we have

$$
\begin{equation*}
\|x\|=\sup \left\{x^{*}(x): x \in F_{s}\right\} \tag{5}
\end{equation*}
$$

Define $g:[\kappa]^{<\omega} \rightarrow[\kappa]^{\leq \omega}$ by
(6) $g(s)=\left\{\alpha<\kappa\right.$: there is some $x^{*} \in F_{s}$ such that $\left.x^{*}\left(x_{\alpha}\right) \neq 0\right\}$.

Since $\left(x_{\alpha}: \alpha<\kappa\right)$ is weakly null and F_{s} is countable, we see that $g(s)$ is also countable; i.e. g is well-defined. Consider the extended structure $\mathcal{N}=(\kappa, g)$. Since $\operatorname{Fr}_{\omega}(\kappa, \omega)$ holds, there exists an infinite free subset L of κ. We claim that the sequence $\left(x_{\alpha}: \alpha \in L\right)$ is 1-unconditional.

Indeed, let s and t be finite subsets of L with $s \subseteq t$. Fix a sequence ($a_{\alpha}: \alpha \in t$) of scalars and let $\varepsilon>0$ arbitrary. By equality (5) above, we may select $y^{*} \in F_{s}$ such that

$$
\begin{equation*}
\left\|\sum_{\alpha \in s} a_{\alpha} x_{\alpha}\right\| \leq(1+\varepsilon) \cdot y^{*}\left(\sum_{\alpha \in s} a_{\alpha} x_{\alpha}\right) . \tag{7}
\end{equation*}
$$

The set L is free, and so, for every $\alpha \in t \backslash s$ we have $\alpha \notin g(s)$. This implies, in particular, that $y^{*}\left(x_{\alpha}\right)=0$ for every $\alpha \in t \backslash s$. Hence

$$
\begin{aligned}
\left\|\sum_{\alpha \in s} a_{\alpha} x_{\alpha}\right\| & \leq(1+\varepsilon) \cdot y^{*}\left(\sum_{\alpha \in s} a_{\alpha} x_{\alpha}\right)=(1+\varepsilon) \cdot y^{*}\left(\sum_{\alpha \in t} a_{\alpha} x_{\alpha}\right) \\
& \leq(1+\varepsilon) \cdot\left\|\sum_{\alpha \in t} a_{\alpha} x_{\alpha}\right\| .
\end{aligned}
$$

Since $\varepsilon>0$ was arbitrary, the result follows.

5. Proof of Lemma 7

Assume that $\lambda<\kappa$ is a pair of two infinite cardinals with λ regular and κ strongly compact. We fix a κ-complete normal ultrafilter \mathcal{U} on κ. Let $\left\{V_{\alpha}: \alpha \in\right.$ Ord $\}$ be the von-Neumann hierarchy of V. As κ is inaccessible (being strongly compact), we see that $\left|V_{\kappa}\right|=\kappa$.

For every coloring $c:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow V_{\kappa}$ we let

$$
\begin{equation*}
\operatorname{Sol}_{\kappa}^{\omega}(c)=\left\{\mathbf{x} \in\left[\left(2^{\kappa}\right)^{+}\right]^{\omega}: c \upharpoonright[\mathbf{x}]^{2} \text { is constant }\right\} \tag{8}
\end{equation*}
$$

and we define

$$
\begin{equation*}
\operatorname{Sol}_{\kappa}^{\omega}=\left\{\operatorname{Sol}_{\kappa}^{\omega}(c): c:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow V_{\kappa} \text { is a coloring }\right\} \tag{9}
\end{equation*}
$$

The idea of considering the family of sets which are monochromatic with respect to a coloring is taken from Shelah's paper Sh2 and has been also used by other authors (see, for instance, Mi]).

Fact 28. The following hold.
(a) For every coloring $c:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow V_{\kappa}$ we have $\operatorname{Sol}_{\kappa}^{\omega}(c) \neq \emptyset$.
(b) The family Sol $_{\kappa}^{\omega}$ is κ-complete. That is, for every $\delta<\kappa$ and every sequence $\left(A_{\xi}: \xi<\delta\right)$ in $\operatorname{Sol}_{\kappa}^{\omega}$ we have that $\bigcap_{\xi<\delta} A_{\xi} \in \operatorname{Sol}_{\kappa}^{\omega}$.

Proof. (a) By our assumptions we see that $\left|V_{\kappa}\right|=\kappa$. Moreover, by the classical Erdös-Rado partition Theorem (see Ku), we have

$$
\left(2^{\kappa}\right)^{+} \rightarrow\left(\kappa^{+}\right)_{\kappa}^{2}
$$

and the result follows.
(b) For every $\xi<\delta$ let $c_{\xi}:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow V_{\kappa}$ be a coloring such that $A_{\xi}=$ $\operatorname{Sol}_{\kappa}^{\omega}\left(c_{\xi}\right)$. Observe that $\left(V_{\kappa}\right)^{\delta} \subseteq V_{\kappa}$. We define the coloring $c:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow$ $\left(V_{\kappa}\right)^{\delta}$ by $c(s)=\left(c_{\xi}(s): \xi<\delta\right)$. Noticing that

$$
\bigcap_{\xi<\delta} \operatorname{Sol}_{\kappa}^{\omega}\left(c_{\xi}\right)=\operatorname{Sol}_{\kappa}^{\omega}(c),
$$

the proof is completed.
By Fact 28(b) and our hypothesis that κ is a strongly compact cardinal, we see that there exists a κ-complete ultrafilter \mathcal{V} on $\left[\left(2^{\kappa}\right)^{+}\right]^{\omega}$ extending the family $\operatorname{Sol}_{\kappa}^{\omega}$. We fix such an ultrafilter \mathcal{V}.

Definition 29. $A \mathcal{V}$-sequence of conditions is a sequence $\bar{p}=\left(p_{\mathbf{x}}: \mathbf{x} \in A\right)$ in $\operatorname{Col}(\lambda,<\kappa)$, belonging to the ground model V and indexed by a member A of the ultrafilter \mathcal{V}. We will refer to the set A as the index set of \bar{p} and we shall denote it by $I(\bar{p})$.

Definition 30. Let $\bar{p}=\left(p_{\mathbf{x}}: \mathbf{x} \in I(\bar{p})\right)$ be a \mathcal{V}-sequence of conditions. We say that a condition r in $\operatorname{Col}(\lambda,<\kappa)$ is a root of \bar{p} if

$$
\begin{equation*}
(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x}) \quad p_{\mathbf{x}} \upharpoonright \alpha=r^{7} . \tag{10}
\end{equation*}
$$

Related to the above definitions, we have the following.
Fact 31. Every \mathcal{V}-sequence of conditions \bar{p} has a unique root $r(\bar{p})$.
Proof. For every $\alpha<\kappa$ the map $I(\bar{p}) \ni \mathbf{x} \mapsto p_{\mathbf{x}} \upharpoonright \alpha$ has fewer than κ values. So, by the κ-completeness of \mathcal{V}, there exist $p_{\alpha} \in \operatorname{Col}(\lambda,<\kappa)$ and $I_{\alpha} \in \mathcal{V} \upharpoonright I(\bar{p})$ so that $p_{\mathbf{x}} \upharpoonright \alpha=p_{\alpha}$ for all $\mathbf{x} \in I_{\alpha}$. Hence, we can select a sequence $\left(p_{\alpha}: \alpha<\kappa\right)$ in $\operatorname{Col}(\lambda,<\kappa)$ and a decreasing sequence ($I_{\alpha}: \alpha<\kappa$) of elements of $\mathcal{V} \upharpoonright I(\bar{p})$ such that for every $\alpha<\kappa$ and every $\mathbf{x} \in I_{\alpha}$ we have that $p_{\mathbf{x}} \upharpoonright \alpha=p_{\alpha}$.

Let $A \subseteq \kappa$ be the set of all limit ordinals $\alpha<\kappa$ with $\operatorname{cf}(\alpha)>\lambda$. Since \mathcal{U} is normal, the set A is in \mathcal{U}. Consider the mapping $c: A \rightarrow \kappa$ defined by

$$
c(\alpha)=\sup \left\{\xi: \xi \in\left(\operatorname{dom}\left(p_{\alpha} \upharpoonright \alpha\right)\right)_{1}\right\}
$$

[^6]for every $\alpha \in A$. As $\operatorname{cf}(\alpha)>\lambda$, we get that c is a regressive mapping. The ultrafilter \mathcal{U} is normal, and so, there exist $A^{\prime} \in \mathcal{U} \upharpoonright A$ and $\gamma_{0}<\kappa$ such that $c(\alpha)=\gamma_{0}$ for every $\alpha \in A^{\prime}$. Now consider the map
$$
A^{\prime} \ni \alpha \mapsto p_{\alpha} \upharpoonright \alpha=p_{\alpha} \upharpoonright \gamma_{0} \subseteq\left(\lambda \times \gamma_{0}\right) \times \gamma_{0} .
$$

Noticing that $\left|\mathcal{P}\left(\left(\lambda \times \gamma_{0}\right) \times \gamma_{0}\right)\right|<\kappa$ and recalling that \mathcal{U} is κ-complete, we see that there exist $A^{\prime \prime} \in \mathcal{U} \upharpoonright A^{\prime}$ and $r(\bar{p})$ in $\operatorname{Col}(\lambda,<\kappa)$ such that $p_{\alpha} \upharpoonright \alpha=r(\bar{p})$ for every $\alpha \in A^{\prime \prime}$. It follows that for every $\alpha \in A^{\prime \prime}$ the set $\left\{\mathbf{x} \in\left[\left(2^{\kappa}\right)^{+}\right]^{\omega}: p_{\mathbf{x}} \upharpoonright \alpha=r(\bar{p})\right\}$ contains the set I_{α}, and so

$$
(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x}) p_{\mathbf{x}} \upharpoonright \alpha=r(\bar{p}) .
$$

The uniqueness of $r(\bar{p})$ is an immediate consequence of property (10) in Definition 30. The proof is completed.

Let G be a $\operatorname{Col}(\lambda,<\kappa)$-generic filter (the generic filter G will be fixed until the end of the proof). We are ready to introduce the ideal \mathcal{I}.

Definition 32. In $V[G]$ we define

$$
\mathcal{I}=\left\{I \subseteq\left[\left(2^{\kappa}\right)^{+}\right]^{\omega}: \text { there is some } A \in \mathcal{V} \text { such that } I \cap A=\emptyset\right\} .
$$

We isolate, for future use, the following (easily verified) properties of \mathcal{I}.
(P1) \mathcal{I} is an ideal; in fact, \mathcal{I} is a κ-complete ideal.
(P2) $\mathcal{V} \subseteq \mathcal{I}^{+}$.
(P3) If $A \in \mathcal{V}$ and $B \in \mathcal{I}^{+}$, then $A \cap B \in \mathcal{I}^{+}$.
For every \mathcal{V}-sequence of conditions \bar{p} we let

$$
\begin{equation*}
D_{\bar{p}}=\left\{\mathbf{x} \in I(\bar{p}): p_{\mathbf{x}} \in G\right\} . \tag{11}
\end{equation*}
$$

Now we are ready to introduce the set \mathcal{D}.
Definition 33. In $V[G]$ we define
$\mathcal{D}=\left\{D_{\bar{p}}: \bar{p}\right.$ is a \mathcal{V}-sequence of conditions in the ground model $\left.V\right\} \cap \mathcal{I}^{+}$.
By definition, we have that $\mathcal{D} \subseteq \mathcal{I}^{+}$. The rest of the proof will be devoted to the verification that the ideal \mathcal{I} and the set \mathcal{D} satisfy the requirements of Lemma $\begin{aligned} & \text { T }\end{aligned}$ To this end, we need the following.

Lemma 34. Let $\bar{p}=\left(p_{\mathbf{x}}: \mathbf{x} \in I(\bar{p})\right)$ be a \mathcal{V}-sequence of conditions. Then the following are equivalent.
(1) $D_{\bar{p}} \in \mathcal{D}$.
(2) $r(\bar{p}) \in G$.

Proof. (1) \Rightarrow (2) Assume that $D_{\bar{p}} \in \mathcal{D}$. We use the fact that $D_{\bar{p}} \in \mathcal{I}^{+}$and that

$$
(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x}) \quad p_{\mathbf{x}} \upharpoonright \alpha=r(\bar{p})
$$

to find $\mathbf{x} \in D_{\bar{p}}$ such that $p_{\mathbf{x}} \leq r(\bar{p})$. By the definition of $D_{\bar{p}}$, we see that $p_{\mathbf{x}} \in G$, and so, $r(\bar{p}) \in G$ as well.
$(2) \Rightarrow(1)$ Suppose that $r(\bar{p}) \in G$. Fix a ground model set A which is in \mathcal{V}. It is enough to show that $D_{\bar{p}} \cap A \neq \emptyset$. To this end, let

$$
E=\left\{q \in \operatorname{Col}(\lambda,<\kappa): q \perp r(\bar{p}) \text { or there is } \mathbf{x} \in I(\bar{p}) \cap A \text { with } q \leq p_{\mathbf{x}}\right\}
$$

We claim that E is a dense subset of $\operatorname{Col}(\lambda,<\kappa)$. To see this, let $r \in$ $\operatorname{Col}(\lambda,<\kappa)$ arbitrary. If $r \perp r(\bar{p})$, then $r \in E$. So, suppose that $r \| r(\bar{p})$. Using this and the fact that

$$
(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x}) \quad p_{\mathbf{x}} \upharpoonright \alpha=r(\bar{p})
$$

we may find $\mathbf{x} \in I(\bar{p}) \cap A$ such that $p_{\mathbf{x}} \| r$. So, there exist $q \in \operatorname{Col}(\lambda,<\kappa)$ and $\mathbf{x} \in I(\bar{p}) \cap A$ such that $q \leq p_{\mathbf{x}}$ and $q \leq r$. In other words, there exists $q \in E$ with $q \leq r$. This establishes our claim that E is a dense subset of $\operatorname{Col}(\lambda,<\kappa)$.

It follows by the above discussion that there exists $q \in G$ with $q \in E$. Since $r(\bar{p}) \in G$ we have that $r(\bar{p}) \| q$. Hence, by the definition of the set E, there exists $\mathbf{x} \in I(\bar{p}) \cap A$ with $q \leq p_{\mathbf{x}}$. It follows that $p_{\mathbf{x}} \in G$, and so, $\mathbf{x} \in D_{\bar{p}} \cap A$. The proof is completed.

Lemma 35. \mathcal{D} is dense in \mathcal{I}^{+}.
Proof. Fix $J \in \mathcal{I}^{+}$. We will prove that there exists a \mathcal{V}-sequence of conditions \bar{q} in the ground model V satisfying $D_{\bar{q}} \in \mathcal{D}$ and $D_{\bar{q}} \subseteq J$. This will finish the proof.

To this end, we fix a $\operatorname{Col}(\lambda,<\kappa)$-name \dot{J} for J. Let $p \in \operatorname{Col}(\lambda,<\kappa)$ be an arbitrary condition such that $p \Vdash \dot{J} \notin \mathcal{I}$. Define, in the ground model V, the set

$$
A_{p}=\left\{\mathbf{x} \in\left[\left(2^{\kappa}\right)^{+}\right]^{\omega}: \text { there is } q \leq p \text { such that } q \Vdash \check{\mathbf{x}} \in \dot{J}\right\} .
$$

First we claim that $A_{p} \in \mathcal{V}$. Suppose, towards a contradiction, that the set $C:=\left[\left(2^{\kappa}\right)^{+}\right]^{\omega} \backslash A_{p}$ is in \mathcal{V}. Since $J \in \mathcal{I}^{+}$we see that $J \cap C \neq \emptyset$ in $V[G]$. Using the fact that $p \Vdash \dot{J} \notin \mathcal{I}$ and that the forcing $\operatorname{Col}(\lambda,<\kappa)$ is σ-closed, we may find $\mathbf{x} \in C$ and a condition $q \leq p$ such that $q \Vdash \check{\mathbf{x}} \in \dot{J}$. But this implies that $\mathbf{x} \in A_{p}$, a contradiction.

By the above discussion, we may find \mathcal{V}-sequence of conditions $\bar{q}=\left(q_{\mathbf{x}}\right.$: $\left.\mathbf{x} \in A_{p}\right)$ such that $q_{\mathbf{x}} \leq p$ and $q_{\mathbf{x}} \Vdash \check{\mathbf{x}} \in \dot{J}$ for every $\mathbf{x} \in A_{p}$. By Fact 31, let $r(\bar{q})$ be the root of \bar{q}. Clearly $r(\bar{q}) \leq p$.

Now fix a condition r such that $r \Vdash \dot{J} \notin \mathcal{I}$. What we have just proved is that the set of conditions $r(\bar{q})$ such that
$(*) r(\bar{q})$ is the root of a \mathcal{V}-sequence of conditions $\bar{q}=\left(q_{\mathbf{x}}: \mathbf{x} \in I(\bar{q})\right)$ with the property that $q_{\mathbf{x}} \Vdash \check{\mathbf{x}} \in \dot{J}$ for every $\mathbf{x} \in I(\bar{q})$
is dense below r. As G is generic, we may find such a canonical \mathcal{V}-sequence of conditions \bar{q} such that $r(\bar{q}) \in G$. On the one hand, by Lemma 34, we see that $D_{\bar{q}} \in \mathcal{D}$. On the other hand, property ($*$) above implies that $D_{\bar{q}} \subseteq J$; indeed, if $\mathbf{x} \in D_{\bar{q}}$, then $q_{\mathbf{x}} \in G$ and, by $(*), q_{\mathbf{x}} \Vdash \check{\mathbf{x}} \in \dot{J}$. The proof is completed.

Lemma 36. \mathcal{D} is λ-closed in \mathcal{I}^{+}.
Proof. Fix $\mu<\lambda$ and a decreasing sequence $\left(D_{\xi}: \xi<\mu\right)$ in \mathcal{D}. For every $\xi<\mu$ let $\bar{p}_{\xi}=\left(p_{\mathbf{x}}^{\xi}: \mathbf{x} \in I\left(\bar{p}_{\xi}\right)\right)$ be a \mathcal{V}-sequence of conditions in V such that $D_{\xi}=D_{\bar{p}_{\xi}}$. Our forcing $\operatorname{Col}(\lambda,<\kappa)$ is λ-closed, and so, the sequence $\left(\bar{p}_{\xi}: \xi<\mu\right)$ is in the ground model V as well. Applying Fact 31 to every \bar{p}_{ξ}, we find a sequence $\left(r_{\xi}: \xi<\mu\right)$ in $\operatorname{Col}(\lambda,<\kappa)$ such that r_{ξ} is the root of \bar{p}_{ξ} for every $\xi<\mu$. By Lemma 34, we get that $r_{\xi} \in G$ for all $\xi<\mu$.

We claim, first, that for every $\xi<\zeta<\mu$ we have

$$
\begin{equation*}
(\mathcal{V} \mathbf{x}) p_{\mathbf{x}}^{\xi} \| p_{\mathbf{x}}^{\zeta} . \tag{12}
\end{equation*}
$$

Suppose, towards a contradiction, that there exist $\xi<\zeta<\mu$ such that the set $L:=\left\{\mathrm{x} \in A: p_{\mathbf{x}}^{\xi} \perp p_{\mathbf{x}}^{\zeta}\right\}$ is in \mathcal{V}. As $D_{\bar{p}_{\zeta}} \in \mathcal{D} \subseteq \mathcal{I}^{+}$and $L \in \mathcal{V}$, there exists $\mathbf{x} \in D_{\bar{p}_{\zeta}} \cap L$. And since $D_{\bar{p}_{\zeta}}=D_{\zeta} \subseteq D_{\xi}=D_{\bar{p}_{\xi}}$ we have $\mathbf{x} \in D_{\bar{p}_{\xi}}$ as well. But this implies that both $p_{\mathbf{x}}^{\xi}$ and $p_{\mathbf{x}}^{\zeta}$ are in G and at the same time $p_{\mathrm{x}}^{\xi} \perp p_{\mathbf{x}}^{\zeta}$, a contradiction.

Invoking (12) above, we may find $A \in \mathcal{V}$ such that for every $\xi<\zeta<\mu$ and every $\mathbf{x} \in A$ we have that $p_{\mathbf{x}}^{\xi} \| p_{\mathbf{x}}^{\zeta}$. We set

$$
p_{\mathbf{x}}=\bigcup_{\xi<\mu} p_{\mathbf{x}}^{\xi} \quad \text { for every } \mathbf{x} \in A
$$

and we define $\bar{p}=\left(p_{\mathbf{x}}: \mathbf{x} \in A\right)$. It is clear that \bar{p} is a well-defined \mathcal{V}-sequence of conditions. Also observe that $D_{\bar{p}} \subseteq D_{\xi}$ for every $\xi<\mu$. We are going to show that $D_{\bar{p}} \in \mathcal{D}$. This will finish the proof.

To this end, let r be the root of \bar{p}. By Lemma 34, it is enough to show that $r \in G$. Notice, first, that

$$
\begin{equation*}
(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x}) \bigcup_{\xi<\mu} p_{\mathbf{x}}^{\xi} \upharpoonright \alpha=p_{\mathbf{x}} \upharpoonright \alpha=r \tag{13}
\end{equation*}
$$

On the other hand, as r_{ξ} is the root of \bar{p}_{ξ}, we have

$$
\begin{equation*}
(\forall \xi<\mu)(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x}) \quad p_{\mathbf{x}}^{\xi} \upharpoonright \alpha=r_{\xi} \tag{14}
\end{equation*}
$$

Both \mathcal{U} and \mathcal{V} are κ-complete, and so, (14) is equivalent to

$$
\begin{equation*}
(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x})(\forall \xi<\mu) p_{\mathbf{x}}^{\xi} \upharpoonright \alpha=r_{\xi} \tag{15}
\end{equation*}
$$

Combining (13) and (15) we get that

$$
\begin{equation*}
(\mathcal{U} \alpha)(\mathcal{V} \mathbf{x}) r=\bigcup_{\xi<\mu} p_{\mathbf{x}}^{\xi} \upharpoonright \alpha=\bigcup_{\xi<\mu} r_{\xi} \tag{16}
\end{equation*}
$$

Summing up, we see that the root r of \bar{p} is the union $\bigcup_{\xi<\mu} r_{\xi}$ of the roots of the \bar{p}_{ξ} 's. Since the generic filter G is λ-complete, we conclude that $r \in G$. The proof is completed.

Lemma 37. Work in $V[G]$. Let $\mu<\kappa$ and let $c:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow \mu$ be a coloring. Let also $A \in \mathcal{I}^{+}$arbitrary. Then there exist a color $\xi<\mu$ and an element $D \in \mathcal{D}$ with $D \subseteq A$ and such that for every $\mathbf{x} \in D$ and every $\{\alpha, \beta\} \in[\mathbf{x}]^{2}$ we have $c(\{\alpha, \beta\})=\xi$.

Proof. Fix a coloring $c:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow \mu$ and let $A \in \mathcal{I}^{+}$. Let also \dot{c} be a $\operatorname{Col}(\lambda,<\kappa)$-name for the coloring c. In V, let $\mathrm{RO}(\operatorname{Col}(\lambda,<\kappa))$ be the collection of all regular-open subsets of $\operatorname{Col}(\lambda,<\kappa)$. Working in V, we define a coloring $d:\left[\left(2^{\kappa}\right)^{+}\right]^{2} \rightarrow(\operatorname{RO}(\operatorname{Col}(\lambda,<\kappa)))^{\mu}$ by the rule

$$
d(s)=(\llbracket \dot{c}(\check{s})=\check{\xi} \rrbracket: \xi<\mu)
$$

where $\llbracket \dot{c}(\check{s})=\check{\xi} \rrbracket=\{p \in \operatorname{Col}(\lambda,<\kappa): p \Vdash \dot{c}(\check{s})=\check{\xi}\}$ is the boolean value of the formula " $c(s)=\xi$ ".

The forcing $\operatorname{Col}(\lambda,<\kappa)$ is κ-cc, and so, $(\operatorname{RO}(\operatorname{Col}(\lambda,<\kappa)))^{\mu} \subseteq V_{\kappa}$. Hence, $\operatorname{Sol}_{\kappa}^{\omega}(d) \in \mathcal{V}$. We set $J=A \cap \operatorname{Sol}_{\kappa}^{\omega}(d)$. Then J is in \mathcal{I}^{+}. Notice that for every $\mathbf{x} \in J$ and every $s, s^{\prime} \in[\mathbf{x}]^{2}$ we have $d(s)=d\left(s^{\prime}\right)$. It follows that for every $\mathbf{x} \in J$ we may select a sequence $\bar{U}_{\mathbf{x}}=\left(U_{\mathbf{x}}^{\xi}: \xi<\mu\right)$ in $(\operatorname{RO}(\operatorname{Col}(\lambda,<\kappa)))^{\mu}$ such that for every $s \in[\mathbf{x}]^{2}$ and every $\xi<\mu$ we have $\llbracket \dot{c}(\check{s})=\check{\xi} \rrbracket=U_{\mathbf{x}}^{\xi}$.

Now observe that for every $s \in\left[\left(2^{\kappa}\right)^{+}\right]^{2}$ the set $\{\llbracket \dot{c}(\check{s})=\check{\xi} \rrbracket: \xi<\mu\}$ is a maximal antichain. So, we can naturally define in $V[G]$ a coloring $e: J \rightarrow \mu$ by the rule

$$
e(\mathbf{x})=\xi \text { if and only if } U_{\mathbf{x}}^{\xi} \in G
$$

Equivalently, for every $\mathbf{x} \in J$ we have that $e(\mathbf{x})=\xi$ if and only if $c \upharpoonright[\mathbf{x}]^{2}$ is constant with value ξ. The ideal \mathcal{I} is κ-complete and $J \in \mathcal{I}^{+}$. Hence there exists $\xi_{0}<\mu$ such that $e^{-1}\left\{\xi_{0}\right\} \in \mathcal{I}^{+}$. By Lemma 35, we may select $D \in \mathcal{D}$ with $D \subseteq e^{-1}\left\{\xi_{0}\right\} \subseteq J \subseteq A$. Finally, notice that for every $\mathbf{x} \in D$ the restriction $c \upharpoonright[\mathbf{x}]^{2}$ is constant with value ξ_{0}. The proof is completed.

We are now ready to finish the proof of Lemma 7 . As we have already mention, the ideal \mathcal{I} will be the one defined in Definition 32, while the dense subset \mathcal{D} of \mathcal{I}^{+}will be the one defined in Definition 33. First, we notice that property (1) in Lemma (i.e. the fact that \mathcal{I} is κ-complete) follows easily by the definition \mathcal{I} and the fact that \mathcal{V} is κ-complete (in fact, we have already isolated this property of \mathcal{I} in (P1) above). Property (2) in Lemma 7 (i.e. the fact that \mathcal{D} is λ-closed in \mathcal{I}^{+}) has been established in Lemma 36. Finally, property (3) is proved in Lemma 37. The proof of Lemma 7 is completed.

References

[AL] D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. Math., 88 (1968), 35-45.
[ADK] S. A. Argyros, P. Dodos and V. Kanellopoulos, Unconditional families in Banach spaces, Math. Ann., 301 (2008), 15-38.
[ALT] S. A. Argyros, J. Lopez-Abad and S. Todorcevic, A class of Banach spaces with few non-strictly singular operators, J. Funct. Anal., 222 (2005), 306-384.
[AT] S. A. Argyros and A. Tolias, Methods in the theory of hereditarily indecomposable Banach spaces, Memoirs AMS, 170 (2004), no. 806.
[CDPM] M. Carrasco, C. A. Di Prisco and A. Millán, Partitions of the set of finite sequences, J. Comb. Theory, Ser. A, 71 (1995), 255-274.
[DT] C. A. Di Prisco and S. Todorcevic, A cardinal defined by a polarized partition relation, Israel J. Math., 109 (1999), 41-52.
[GM] W. T. Gowers and B. Maurey, The unconditional basic sequence problem, Journal AMS, 6 (1993), 851-874.
[ER] P. Erdös and R. Rado, A combinatorial theorem, J. London Math. Soc., 25 (1950), 249-255.
[EH1] P. Erdös and A. Hajnal, Unsolved problems in set theory, 1971 Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967), pp. 17-48, Amer. Math. Soc., Providence, R.I.
[EH2] P. Erdös and A. Hajnal, Unsolved and solved problems in set theory, Proceedings of the Tarski Symposium (Proc. Sympos. Pure Math., Vol. XXV, Univ. California, Berkeley, Calif., 1971), pp. 269-287, Amer. Math. Soc., Providence, R.I., 1974.
[EHMR] P. Erdös, A. Hajnal, A. Máté and R. Rado, Combinatorial set theory: partition relations for cardinals, Studies in Logic and the Foundations of Mathematics, 106, North-Holland Publishing Co., Amsterdam, 1984.
[HJ] J. N. Hagler and W. B. Johnson, On Banach spaces whose dual balls are not weak* sequentially compact, Israel J. Math., 28 (1977), 325-330.
[Jo] W. B. Johnson, A reflexive Banach space which is not sufficiently Euclidean, Studia Math., 55 (1976), 201-205.
[Ka] A. Kanamori, The Higher Infinite: Large Cardinals in Set Theory, Springer Monogr. Math., Springer, 2003.
[Ke] J. Ketonen, Banach spaces and large cardinals, Fund. Math., 81 (1974), 291-303.
[Ko] P. Koepke, The consistency strength of the free subset property at ω_{ω}, J. Symbolic Logic, 49 (1984), 1198-1204.
[Ku] K. Kunen, Set Theory. An introduction to independence proofs, Studies in Logic and the Foundations of Mathematics, 102, North-Holland, Amsterdam, 1983.
[LT] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces I, sequence spaces, Springer Verlag, 92, 1977.
[MR] B. Maurey and H. P. Rosenthal, Normalized weakly null sequence with no unconditional subsequence, Studia Math., 61 (1977), 77-98.
[Mi] H. Mildenberger, More canonical forms and dense free subsets, Ann. Pure Appl. Logic, 125 (2004), 75-99.
[O1] E. Odell, A nonseparable Banach space not containing a subsymmetric basic sequence, Israel J. Math., 52 (1985), 97-109.
[O2] E. Odell, On Schreier unconditional sequences, Contemp. Math., 144 (1993), 197-201.
[Ro] H. P. Rosenthal, A characterization of Banach spaces containing ℓ_{1}, Proc. Nat. Acad. Sci. USA, 71 (1974), 2411-2413.
[Sch] J. H. Schmerl, A partition property characterizing cardinals hyperinaccessible of finite type, Trans. AMS, 188 (1974), 281-291.
[Sh1] S. Shelah, Independence of strong partition relation for small cardinals, and the free-subset problem, J. Symbolic Logic, 45 (1980), 505-509.
[Sh2] S. Shelah, § ω_{ω} may have a strong partition relation, Israel J. Math., 38 (1981), 283288.
[Ts] B. S. Tsirelson, Not every Banach space contains ℓ_{p} or c_{0}, Functional Anal. Appl., 8 (1974), 138-141.
[Tod] S. Todorcevic, Walks on Ordinals and Their Characteristics, Progress in Mathematics, 263, Birkhäuser Verlag, Basel, 2007.

Université Pierre et Marie Curie - Paris 6, Equipe d’ Analyse Fonctionnelle, Boîte 186, 4 place Jussieu, 75252 Paris Cedex 05, France.

E-mail address: pdodos@math.ntua.gr

Université Denis Diderot - Paris 7, Equipe de Logique Mathématiques, 2 place Jussieu, 72521 Paris Cedex 05, France.

E-mail address: abad@logique.jussieu.fr

Université Denis Diderot - Paris 7, C.N.R.S., UMR 7056, 2 place Jussieu Case 7012, 72521 Paris Cedex 05, France,
Department Of Mathematics, University of Toronto, Toronto, Canada, M5S 2E4

E-mail address: stevo@logique.jussieu.fr, stevo@math.toronto.edu

[^0]: ${ }^{1} 2000$ Mathematics Subject Classification. Primary 46B03, 03E35; Secondary 03E02, 03E55, 46B26, 46A35.
 ${ }^{2}$ Key words: unconditional basic sequence, non-separable Banach spaces, separable quotient problem, forcing, polarized Ramsey, strongly compact cardinal.

[^1]: ${ }^{1}$ Recall that a family \mathcal{F} of finite subsets of ω is said to be pre-compact if, identifying \mathcal{F} with a subset of the Cantor set 2^{ω}, the closure $\overline{\mathcal{F}}$ of \mathcal{F} in 2^{ω} consists only of finite sets.

[^2]: ${ }^{2}$ We notice that our definition of a sub-symmetric basic sequence defers slightly from the one adopted in LT, where a sub-symmetric sequence $\left(x_{n}\right)$ is additionally assumed to be unconditional. For our purposes, however, this extra assumption is redundant, as it is easily seen, using Rosenthal's Dichotomy, that every normalized sub-symmetric sequence has a normalized block which is both sub-symmetric and unconditional.

[^3]: ${ }^{3}$ The observant reader will realize that the space $T(\mathcal{F})$ actually corresponds to the modified version of Tsirelson's space, discovered by W. B. Johnson Jd.
 ${ }^{4}$ This observation actually shows that, under the hypotheses on the family \mathcal{F} described in (P2), any normalized weakly null sequence $\left(x_{n}\right)$ in the space $T(\mathcal{F})$ has a subsequence generating an ℓ_{1} spreading model.

[^4]: ${ }^{5}$ A mapping $f:[\kappa]^{<\omega} \rightarrow \kappa$ is said to be regressive if $f(s)<\min (s)$ for every $s \in[\kappa]^{<\omega}$ with $\min (s) \neq 0$.

[^5]: ${ }^{6}$ Recall that X is called min-homogeneous for f if $f(s)=f(t)$ for every pair $s, t \in[X]^{\bar{n}}$ with $\min (s)=\min (t)$.

[^6]: ${ }^{7}$ This is an abbreviation of the statement that $\left\{\alpha:\left\{\mathbf{x}: p_{\mathbf{x}} \mid \alpha=r\right\} \in \mathcal{V}\right\} \in \mathcal{U}$.

