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UNCONDITIONAL BASIC SEQUENCES IN SPACES OF

LARGE DENSITY

PANDELIS DODOS, JORDI LOPEZ-ABAD AND STEVO TODORCEVIC

Abstract. We study the problem of the existence of unconditional

basic sequences in Banach spaces of high density. We show, in particular,

the relative consistency with GCH of the statement that every Banach

space of density ℵω contains an unconditional basic sequence.

1. Introduction

In this paper we study particular instances of the general unconditional

basic sequence problem asking under which conditions a given Banach space

must contain an infinite unconditional basic sequence (see [LT],p.27). We

chose to study instances of the problem for Banach spaces of large densities

exposing thus its connections with large-cardinal Axioms of Set Theory. The

first paper on this line of research is a well-known paper of J. Ketonen [Ke]

which shows that if a density of a given Banach space E is greater or equal

to the first ω-Erdős cardinal, then E contains a basic sequence which is

equivalent to all of its subsequences, i.e. a sub-symmetric basic sequence

(therefore, E must also contain an unconditional basic sequence). Our first

result shows that some sort of a large cardinal is necessary for getting sub-

symmetric basic sequences.

Theorem 1. If sm is the minimal cardinal θ with the property that every

Banach space of density at least θ contains an infinite sub-symmetric basic

sequence, then sm lies somewhere in between first ω-Mahlo and first ω-Erdős

cardinal.

Our construction falls short of proving the analogous statement about

unconditional basic sequences, or more precisely, proving a similar lower

bound for the cardinal nc, the minimal cardinal λ such that every Banach
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space of density at least λ contains an infinite unconditional basic sequence.

The largest known lower bound for nc is that of S. A. Argyros and A. Tolias

[AT] who showed that nc > 2ℵ0 . So in particular the following problem is

widely open.

Question 1. Is expω(ℵ0) or any of the finite-tower exponents expn(ℵ0)

(n ≥ 2) an upper bound of nc?

Our second result shows that expω(ℵ0) is not such a bad candidate for an

upper bound of nc.

Theorem 2. The inequality expω(ℵ0) ≥ nc is a statement that is consistent

relative to the consistency of infinitely many strongly compact cardinals.

The consistency proof relies heavily on a Ramsey-theoretic property of

expω(ℵ0) established in a previous work of S. Shelah [Sh2] (see also [Mi]).

One can also arrange the joint consistency of GCH and the inequality

expω(ℵ0) = ℵω ≥ nc. The analysis given in this paper together with some

known results suggest, in particular, that by restricting the class of Banach

spaces to, say, reflexive, or more generally weakly compactly generated Ba-

nach spaces, one might get different answers about the size of the correspond-

ing cardinal numbers ncrfl and ncwcg respectively. To describe this difference

it will be convenient to introduce yet another natural cardinal character-

istic ncseq, the minimal cardinal θ such that every normalized weakly null

sequence (xα : α < θ) in some Banach space E has a subsequence which is

unconditional. Clearly ncrfl ≤ ncwcg while by the Amir-Lindenstrauss Theo-

rem [AL] we see that ncwcg ≤ ncseq. The first known lower bound on these

cardinal is due to B. Maurey and H. P. Rosenthal [MR] who showed that

ncseq > ℵ0, though considerably deeper is the lower bound of W. T. Gowers

and B. Maurey [GM] who showed that in fact ncrfl > ℵ0. The largest known

lower bound on these cardinals is given in [ALT] who showed that ncrfl > ℵ1.

This suggests the following question.

Question 2. Is ℵω or any of the finite successors ℵn (n ≥ 2) an upper

bound on any of the three cardinals ncseq, ncrfl, or ncwcg?

That ℵω is not such a bad choice for an upper bound of ncseq may be seen

from our third result.

Theorem 3. The inequality ℵω ≥ ncseq is a statement that is consistent

relative to the consistency of a single measurable cardinal.
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Thus, the consistency proof uses a considerably weaker assumption from

that used in Theorem 2. It relies on two Ramsey-theoretic principles, one

established by P. Koepke [Ko] and the other by C. A. Di Prisco and S.

Todorcevic [DT]. It also gives the joint consistency of the GCH and the

cardinal inequality ℵω ≥ ncseq.

2. Preliminaries

Our Banach space and set theoretic terminology and notation are stan-

dard and follow [LT] and [Ku] respectively. We will consider only real Ba-

nach spaces. We notice, however, that all our results are valid for complex

Banach spaces too (with the same proofs).

Since in this note we are concerned with the problem of the existence

of unconditional basic sequences in Banach spaces of high density, let us

introduce the following cardinal invariants related to the version of the un-

conditional basic sequence problem that we study here.

Definition 4. Let nc, ncwcg, ncrfl, sm and ncseq be defined as follows.

(1) nc (respectively ncwcg, ncrfl) is the minimal cardinal λ such that every

Banach space (respectively, every weakly compactly generated, every

reflexive Banach space) of density λ contains an unconditional basic

sequence.

(2) sm is the minimal cardinal λ such that every Banach space of density

λ contains a sub-symmetric basic sequence.

(3) ncseq is the minimal cardinal λ such that every normalized weakly

null sequence (xα : α < λ) in a Banach space E has a subsequence

which is unconditional.

For the convenience of the reader, we gather below some basic notions

used throughout the paper.

2.1. Ideals. Let X be a non-empty set. An ideal I on X is a collection of

subsets of X satisfying the following conditions.

(i) If A ∈ I and B ⊆ A, then B ∈ I.

(ii) If A,B ∈ I, then A ∪ B ∈ I.

If I is an ideal on X and κ is a cardinal, then we say that I is κ-complete if

for every λ < κ and every sequence (Aξ : ξ < λ) in I we have
⋃

ξ<λ Aξ ∈ I.

A subset A of X is said to be positive with respect to an ideal I if A /∈ I.

The set of all positive sets with respect to I is denoted by I+. If D is a

subset of I+ and κ is a cardinal, then we say that D is κ-closed in I+ if
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for every λ < κ and every decreasing sequence (Dξ : ξ < λ) in D we have
⋂

ξ<κ Dξ ∈ I+. We also say that such a set D is dense in I+ if for every

A ∈ I+ there exists D ∈ D with D ⊆ A.

If F is a filter on X, then the family {X \ A : A ∈ F} is an ideal. Having

in mind this correspondence, we will continue to use the above terminology

for the filter F . Notice that if the given filter is actually an ultrafilter U ,

then, setting I = P(X) \ U , we have that I+ = U .

2.2. Cardinals. Let θ be a cardinal.

(a) θ is said to be inaccessible if it is regular and strong limit; that is,

2λ < θ for every λ < θ.

(b) θ is said to be 0-Mahlo if it is inaccessible. In general, for an ordinal

α, θ is said to be α-Mahlo if for every β < α and every closed and

unbounded subset C of θ there is a β-Mahlo cardinal λ in C.

(c) An α-Erdős cardinal, if exists usually denoted by κ(α), is the mini-

mal cardinal λ such that λ → (α)<ω
2 , i.e., the least cardinal cardinal

λ with the property that for every coloring c : [λ]<ω → 2 there is

H ⊆ λ of order-type α such that c is constant on [H]n for every

n < ω. A cardinal λ that is λ-Erdős, or in other words, it has that

partition property λ → (λ)<ω
2 , is called a Ramsey cardinal.

(d) θ is said to be measurable if there exists a κ-complete normal ul-

trafilter U on κ. Looking at the ultrapower of the universe using

U one can observe that the set {λ < θ : λ is inaccessible} belongs

to U . Similarly, one shows that sets {λ < θ : λ is λ-Mahlo} and

{λ < θ : λ is Ramsey} belong to U .

(e) θ is said to be strongly compact if every κ-complete filter can be

extended to a κ-complete ultrafilter.

2.3. The Lévy Collapse. Let λ be a regular infinite cardinal and let κ > λ

be an inaccessible cardinal. By Col(λ,< κ) we shall denote the set of all

partial mappings p satisfying the following.

(i) dom(p) ⊆ λ × κ and range(p) ⊆ κ.

(ii) |p| < λ.

(iii) For every (α, β) ∈ dom(p) with β > 0 we have p(α, β) < β.

We equip the set Col(λ,< κ) with the partial order ≤ defined by

p ≤ q ⇔ dom(q) ⊆ dom(p) and p ↾ dom(q) = q.
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If p and q is a pair in Col(λ,< κ), then by p ‖ q we denote the fact that

p and q are compatible (i.e. there exists r in Col(λ,< κ) with r ≤ p and

r ≤ q), while by p ⊥ q we denote the fact that p and q are incompatible.

We will need the following well-known properties of the Lévy collapse

(see, for instance, [Ka]). In what follows, G will be a Col(λ,< κ)-generic

filter.

(a) The generic filter G is λ-complete (this is a consequence of the fact

that the forcing Col(λ,< κ) is λ-closed).

(b) Col(λ,< κ) has the κ-cc (this follows from the fact that the cardinal

κ is inaccessible).

(c) In V [G], we have κ = λ+.

(d) In V [G], the sets κ2 and κ2 ∩ V are equipotent.

Finally, let us introduce some pieces of notation (actually, these pieces of

notation will be used only in §5). For every p ∈ Col(λ,< κ) and every

α < κ by p ↾ α we shall denote the restriction of the partial map p to

dom(p) ∩ (λ × α). Moreover, for every p ∈ Col(λ,< κ) we let (dom(p))1 =

{α < κ : ∃ξ < λ with (ξ, α) ∈ dom(p)}.

3. A polarized partition relation

The purpose of this section is to analyze the following partition property,

a variation of a partition property originally appearing in the problem lists

of P. Erdös and A. Hajnal [EH1], [EH2] (see also [Sh2]).

Definition 5. Let κ be a cardinal and d ∈ ω with d ≥ 1. By Pld(κ) we

shall denote the combinatorial principle asserting that for every coloring

c :
[

[κ]d
]<ω → ω there exists a sequence (xn) of infinite disjoint subsets of

κ such that for every m ∈ ω the restriction c ↾
∏m

n=0[xn]d is constant.

Clearly Pld(κ) implies Pld′(κ) for any cardinal κ and any pair d, d′ ∈ ω

with d ≥ d′ ≥ 1. It is well known that for every n ∈ ω the principles Pl1(ℵn)

and Pl2(expn(ℵ0)) are false (see, for instance, [EHMR], [CDPM] and [DT]).

Thus, the minimal cardinals for which these principles could possibly be true

are ℵω and expω(ℵ0), respectively. Indeed, C. Di Prisco and S. Todorcevic

[DT] have established the consistency of Pl1(ℵω) relative the consistency of

a single measurable cardinal, an assumption that happens to be optimal.

On the other hand, S. Shelah [Sh2] was able to establish that GCH and

Pl2(ℵω) are jointly consistent, relative to the consistency of GCH and the

existence of an infinite sequence of strongly compact cardinals.
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Our aim in this section is to present the consistency of Pl2
(

expω(ℵ0)
)

. We

shall treat the colorings in Definition 5 using an iteration of the following

lemma whose proof (given in §5), while it relies heavily on an idea of S.

Shelah [Sh2], it exposes certain features (the ideal I and the sufficiently

complete dense subset D of its quotient), not explicitly found in [Sh2], that

are likely to find application beyond the scope of our present paper.

Lemma 6. Suppose that κ is a strongly compact cardinal and that λ < κ

is an infinite regular cardinal. Let G be a Col(λ,< κ)-generic filter over V .

Then, in V [G] there exists an ideal I on [(2κ)+]ω and a subset D of I+ such

that the following are satisfied.

(1) I is κ-complete.

(2) D is dense in I+ and is λ-closed in I+.

(3) For every µ < κ, every coloring c : [(2κ)+]2 → µ and every A ∈ I+

there exist a color ξ < µ and an element D ∈ D with D ⊆ A and

such that for every x ∈ D the restriction c ↾ [x]2 is constantly equal

to ξ.

It will be convenient to introduce the following sequence (Θn) of cardinals

defined recursively by the rule

Θ0 = ℵ0 and Θn+1 =
(

2(2Θn )+
)++

.

Notice that (Θn) is strictly increasing and expn(ℵ0) < Θn ≤ exp5n(ℵ0)

for every n ∈ ω with n ≥ 1. Hence, sup{Θn : n ∈ ω} = expω(ℵ0). In

particular, if GCH holds, then Θn = ℵ5n for every n ∈ ω.

Corollary 7. Suppose that (κn) is a strictly increasing sequence of strongly

compact cardinals with κ0 = ℵ0. For every n ∈ ω set λn =
(

2(2κn )+
)+

. Let

P =
⊗

n∈ω

Col(λn, < κn+1)

be the iteration of the sequence of Lévy collapses. Let G be a P-generic filter

over V . Then, in V [G], for every n ∈ ω we have κn = Θn and there exist

an ideal In on [(2Θn+1)+]ω and a subset Dn of I+
n such that the following

are satisfied.

(P1) In is Θn+1-complete.

(P2) Dn is (< Θn+1)-closed in I+
n ; that is, Dn is µ-closed in I+

n for every

µ < Θn+1.

(P3) For every µ < Θn+1, every coloring c : [(2Θn+1)+]2 → µ and every

A ∈ I+
n there exist a color ξ < µ and an element D ∈ Dn with D ⊆ A
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and such that for every x ∈ D the restriction c ↾ [x]2 is constantly

equal to ξ.

Moreover, if GCH holds in V , then GCH also holds in V [G].

Proof. Fix m < ω. Notice, first, that the small forcing extension V [Gm],

where Gm is the restriction of G to the finite iteration

Pm =
⊗

n<m

Col(λn, < κn+1),

preserves the strong compactness of κm+1. This fact follows immediately

from the elementary-embedding characterization of strong compactness (see

[Ka, Theorem 22.17]). Working in V [Gm] and applying Lemma 6, we see

that the intermediate forcing extension V [Gm+1] has the ideal Im whose

quotient has properties (P1), (P2), and (P3). Working still in the interme-

diate forcing extension V [Gm+1], we see that the rest of the forcing

P
m+1 =

⊗

m<n<ω

Col(λn, < κn+1),

is λm+1-closed, and so, in particular, it adds no new subsets to the index

set on which the ideal Im lives, preserving, thus, properties (P1), (P2), and

(P3) of its quotient. �

As indicated above, for our purposes here we shall only need the following

result of Shelah.

Corollary 8 ([Sh2]). Suppose that in our universe V there exists a strictly

increasing sequence (κn) of strongly compact cardinals with κ0 = ℵ0. Then,

there is a forcing extension of V in which the principle Pl2
(

expω(ℵ0)
)

holds.

Moreover, if GCH holds in V , then GCH also holds in the extension.

Proof. We shall deduce Pl2
(

expω(ℵ0)
)

from the conclusion of Corollary 7.

Indeed, for every n ∈ ω let In and Dn be given by Corollary 7. We need the

following.

Claim 9. Let n ∈ ω. Let also c :
∏n

i=0[(2
Θi+1)+]2 → ω be a coloring and

(Di)
n
i=0 ∈ ∏n

i=0 Di. Then, there exist (Ei)
n
i=0 ∈ ∏n

i=0 Di ↾ Di and a color

n0 ∈ ω such that for every (xi)
n
i=0 ∈ ∏n

i=0 Ei the restriction c ↾
∏n

i=0[xi]
2 is

constantly equal to n0.

Proof of Claim 9. By induction on n. The case n = 0 is an immediate

consequence of property (P3) in Corollary 7. Now let n ∈ ω with n ≥ 1
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and assume that the result has been proved for all k ∈ ω with k < n. Fix a

coloring c :
∏n

i=0[(2
Θi+1)+]2 → ω. Fix also (Di)

n
i=0 ∈ ∏n

i=0 Di and let

F = {f :
n−1
∏

i=0

[(2Θi+1)+]2 → ω : f is a coloring}.

Notice that |F| = 2(2Θn )+ , and so, |F| < Θn+1. We define a coloring d :

[(2Θn+1)+]2 → F by the rule d
(

{α, β}
)

(s̄) = c
(

s̄a{α, β}
)

for every s̄ ∈
∏n−1

i=0 [(2Θi+1)+]2. By (P3) in Corollary 7, there exist En ∈ Dn ↾ Dn and

f0 ∈ F such that for every x ∈ En the restriction d ↾ [x]2 is constantly equal

to f0. The result now follows by applying our inductive hypothesis to the

coloring f0. �

By Claim 9 and the fact that every Dn is σ-closed (property (P2) in

Corollary 7), the proof of Corollary 8 is completed. �

Clearly, in the forcing extension obtained above the combinatorial princi-

ple Pl1
(

expω(ℵ0)
)

holds as well. As already indicated above, one can obtain

the consistency of Pl1
(

expω(ℵ0)
)

using a considerably weaker large-cardinal

assumption from the one used for Pl2
(

expω(ℵ0)
)

, an assumption which in

fact happens to be optimal. More precisely, we have the following.

Theorem 10 ([DT]). Assume the existence of a measurable cardinal. Then,

there is a forcing extension in which GCH and Pl1(ℵω) hold.

4. Banach space implications

Let us recall that a sequence (xn) in a Banach space E is said to be C-

unconditional, where C ≥ 1, if for every pair F and G of non-empty finite

subsets of ω with F ⊆ G and every choice (an)n∈G of scalars we have

‖
∑

n∈F

anxn‖ ≤ C · ‖
∑

n∈G

anxn‖.

This section is devoted to the proof of the following result.

Theorem 11. Let κ be a cardinal and assume that property Pl2(κ) holds

(see Definition 5). Then every Banach space E not containing ℓ1 and of

density κ contains an 1-unconditional basic sequence.

In particular, if E is any Banach space of density κ, then for every ε > 0

the space E contains an (1 + ε)-unconditional basic sequence.

Combining Theorem 11 with Corollary 8 we get the following corollaries.
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Corollary 12. It is relatively consistent with the existence of a sequence of

strongly compact cardinals that for every ε > 0 and every Banach space E

of density at least expω(ℵ0), the space E contains an (1 + ε)-unconditional

basic sequence. Moreover, this statement is compatible with GCH.

Proof. Follows immediately by Corollary 8 and Theorem 11. �

Corollary 13. It is relatively consistent with the existence of a sequence

of strongly compact cardinals that every Banach space of density at least

expω(ℵ0) has a separable quotient with an unconditional basis. Moreover,

this statement is also compatible with GCH.

Proof. A well-known consequence of a result due to J. N. Hagler and W.

B. Johnson [HJ] asserts that if E is a Banach space such that E∗ has an

unconditional basic sequence, then E has a separable quotient with an un-

conditional basis (see also [ADK, Proposition 16]). Noticing that the density

of the dual E∗ of a Banach space E is at least as big as the density of E,

the result follows by Corollary 12. �

For the proof of Theorem 11 we need the following lemma, which is es-

sentially a multi-dimensional version of Odell’s Schreier unconditionality

Theorem [O2].

Lemma 14. Let E be a Banach space, m ∈ ω with m ≥ 1 and ε > 0.

For every i ∈ {0, ...,m} let (xi
n) be a normalized weakly null sequence in the

space E. Then, there exists an infinite subset L of ω such that for every

{n0 < · · · < nm} ⊆ L the sequence (xi
ni

)mi=0 is (1 + ε)-unconditional.

Proof. The first step towards the proof of the lemma is included in the

following claim. It shows that, by passing to an infinite subset of ω, we may

assume that for every {n0 < · · · < nm} ∈ [N]m+1 the finite sequence (xi
ni

)mi=0

is a particularly well behaved Schauder basic sequence.

Claim 15. For every ε > 0 there exists an infinite subset M of ω such that

for every {n0 < · · · < nm} ⊆ M the sequence (xi
ni

)mi=0 is an (1+ε)-Schauder

basic sequence.

Proof of Claim 15. We define a coloring B : [N]m+1 → 2 as follows. Let

s = {n0 < · · · < nm} ∈ [N]m+1 arbitrary. If (xi
ni

)mi=0 is an (1 + ε)-Schauder

basic sequence, then we set B(s) = 0; otherwise we set B(s) = 1. By

Ramsey’s Theorem, there exist an infinite subset M of ω and c ∈ {0, 1} such

that B ↾ [M ]m+1 is constantly equal to c. Using Mazur’s classical procedure
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for selecting Schauder basic sequences (see, for instance, [LT, Lemma 1.a.6]),

we find t = {k0 < · · · < km} ∈ [M ]m+1 such that the sequence (xi
ki

)mi=0 is

basic with basis constant (1 + ε). Therefore, B(t) = 0, and by homogeneity,

B ↾ [M ]m+1 = 0. The claim is proved. �

Applying Claim 15 for ε = 1, we get an infinite subset M of ω as described

above. Observe that for every {n0 < · · · < nm} ∈ [M ]m+1 and every choice

(ai)
m
i=0 of scalars we have

(1) ‖
m

∑

i=0

aix
i
ni
‖ ≥ 1

4
max{|ai| : i = 0, ...,m}.

The desired subset L of ω will be an infinite subset of M obtained after

another application of Ramsey’s Theorem. Specifically, consider the coloring

U : [M ]m+1 → 2 defined as follows. Let s = {n0 < · · · < nm} ∈ [M ]m+1 and

assume that the sequence (xi
ni

)mi=0 is (1 + ε)-unconditional. In such a case,

we set U(s) = 0; otherwise we set U(s) = 1. Let L be an infinite subset of

M be such U is constant on [L]m+1. It is enough to find some s ∈ [L]m+1

such that U(s) = 0.

To this end, fix δ > 0 such that (1 + δ) · (1 − δ)−1 ≤ (1 + ε). Notice

that there exists a finite family D of normalized Schauder basic sequences of

length m + 1 such that any normalized Schauder basic sequence (yi)
m
i=0, in

some Banach space Y , is
√

1 + δ-equivalent to some sequence in the family

D. Hence, by a further application of Ramsey’s Theorem and by passing to

an infinite subset of L if necessary, we may assume that

(∗) for every {n0 < · · · < nm}, {k0 < · · · < km} ∈ [L]m+1 the sequences

(xi
ni

)mi=0 and (xi
ki

)mi=0 are (1 + δ)-equivalent.

Now, for every i ∈ {0, ...,m} and every ρ > 0 let

Ki(ρ) =
{

{n ∈ ω : |x∗(xi
n)| ≥ ρ} : x∗ ∈ BE∗

}

.

Every sequence (xi
n) is weakly null, and so, each Ki(ρ) is a pre-compact1

family of finite subsets of ω. Hence, we may select a sequence (Fi)
m
i=0 of

finite subsets of L such that

(a) max(Fi) < min(Fi+1) for every i ∈ {0, ...,m − 1}, and

(b) Fi /∈ Ki(δ · 8−1 · (m + 1)−1) for every i ∈ {0, ...,m}.
We set ni = min(Fi) for all i ∈ {0, ...,m}. Property (a) above implies that

n0 < · · · < nm. We claim that the sequence (xi
ni

)mi=0 is (1+ε)-unconditional.

1Recall that a family F of finite subsets of ω is said to be pre-compact if, identifying

F with a subset of the Cantor set 2ω , the closure F of F in 2ω consists only of finite sets.
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Indeed, let F ⊆ {0, ...,m} and (ai)
m
i=0 be a choice of scalars. We want to

prove that

‖
∑

i∈F

aix
i
ni
‖ ≤ (1 + ε)‖

m
∑

i=0

aix
i
ni
‖.

Clearly we may assume that ‖∑

i∈F aix
i
ni
‖ = 1. If ‖∑

i/∈F aix
i
ni
‖ ≥ 2, then

‖
m

∑

i=0

aix
i
ni
‖ ≥ ‖

∑

i/∈F

aix
i
ni
‖ − ‖

∑

i∈F

aix
i
ni
‖ ≥ 1 = ‖

∑

i∈F

aix
i
ni
‖.

So, suppose that ‖∑

i/∈F aix
i
ni
‖ ≤ 2. By (1), we see that

(2) max{|ai| : i /∈ F} ≤ 8.

We select x∗
0 ∈ SE∗ such that x∗

0

(
∑

i∈F aix
i
ni

)

= ‖∑

i∈F aix
i
ni
‖. We define

a sequence (ki)
m
i=0 in L as follows. If i /∈ F , then let ki be any member of

Fi satisfying |x∗
0(x

i
ki

)| < δ · 8−1 · (m + 1)−1 (such a selection is possible by

(b) above); if i ∈ F , then we set ki = ni. By (a), we have k0 < · · · < km.

Moreover,

‖
m

∑

i=0

aix
i
ki
‖ = x∗

0

(

m
∑

i=0

aix
i
ki

)

= x∗
0

(

∑

i∈F

aix
i
ki

)

+ x∗
0

(

∑

i/∈F

aix
i
ki

)

≥ x∗
0

(

∑

i∈F

aix
i
ki

)

−
∑

i/∈F

|ai| · |x∗
0(x

i
ki

)| ≥ 1 − δ.

Invoking (∗), we conclude that

‖
m

∑

i=0

aix
i
ni
‖ ≥ 1

1 + δ
‖

m
∑

i=0

aix
i
ki
‖ ≥ 1 − δ

1 + δ
≥ 1

1 + ε
‖
∑

i∈F

aix
i
ni
‖.

The proof is completed. �

We are ready to proceed to the proof of Theorem 11.

Proof of Theorem 11. Let κ be a cardinal such that Pl2(κ) holds. By a

classical result of R. C. James (see [LT, Proposition 2.e.3]), it is enough to

show that if E is a Banach space of density κ not containing an isomorphic

copy of ℓ1, then E has an 1-unconditional basic sequence. So, let E be one.

By Rosenthal’s Dichotomy [Ro] and our assumptions on the space E, we

see that every bounded sequence in E has a weakly Cauchy subsequence.

Let (xα : α < κ) be a normalized sequence such that ‖xα − xβ‖ ≥ 1 for

every α < β < κ. We define a coloring cun :
[

[κ]2
]<ω → ω as follows. Let

s = ({α0 < β0}, . . . , {αm < βm}) ∈
[

[κ]2
]<ω

arbitrary. Assume that there

exists l ∈ ω with l > 0 and such that the sequence (xβi
− xαi

)mi=0 is not

(1 + 1/l)-unconditional. In such a case, setting ls to be the least l ∈ ω with
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the above property, we define cun(s) = ls. If such an l does not exist, then

we set cun(s) = 0. By Pl2(κ), there exist a sequence (xi) of infinite subsets

of κ and a sequence (lm) in ω such that for every m ∈ ω the restriction

cun ↾
∏m

i=0[xi]
2 of the coloring cun on the product

∏m
i=0[xi]

2 is constant with

value lm.

Claim 16. For every m ∈ ω we have lm = 0.

Grating the claim, the proof of the theorem is completed. Indeed, observe

that for every infinite sequence of pairs
(

{αi < βi}
)

∈ ∏

i∈ω[xi]
2 the sequence

(xβi
−xαi

) is a semi-normalized 1-unconditional basic sequence in the Banach

space E.

It only remains to prove Claim 16. To this end we argue by contradiction.

So, assume that there exists m ∈ ω such that lm > 0. Our definition of the

coloring cun implies that m ≥ 1. For every i ∈ {0, ...,m} we may select an

infinite subset {αi
0 < αi

1 < · · · } of xi such that the sequence (xαi
) is weakly

Cauchy. We set

yi
n =

xαi
2n

− xαi
2n+1

‖xαi
2n

− xαi
2n+1

‖
for every i ∈ {0, ...,m} and every n ∈ ω. Then each (yi

n) is a normalized

weakly null sequence in E. Moreover, for every {n0 < · · · < nm} ⊆ [N]m+1

the sequence (yi
ni

)mi=0 is not (1 + 1/lm)-unconditional. This clearly contra-

dicts Lemma 14. The proof is completed. �

4.1. Sub-symmetric basic sequences. A semi-normalized basic sequence

(xn) in a Banach space E is said to be sub-symmetric if every subsequence

of (xn) is equivalent to (xn) itself2.

In light of Corollary 12, it is natural to ask whether we can show, consis-

tently, that there exists a small cardinal θ such that every Banach space E

of density θ contains a sub-symmetric basic sequence (this would improve

upon Corollary 12).

Recall, first, that Ketonen [Ke] has proved that if λ is an ω-Erdős car-

dinal, then any Banach space of density λ has a normalized sub-symmetric

basic sequence. However, there do exist non-separable Banach spaces not

2We notice that our definition of a sub-symmetric basic sequence defers slightly from

the one adopted in [LT], where a sub-symmetric sequence (xn) is additionally assumed to

be unconditional. For our purposes, however, this extra assumption is redundant, as it is

easily seen, using Rosenthal’s Dichotomy, that every normalized sub-symmetric sequence

has a normalized block which is both sub-symmetric and unconditional.
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containing a sub-symmetric basic sequence. The first such example is due

to E. Odell [O1]. Odell’s space is the dual of a separable Banach space, and

so, it has density 2ℵ0 (and, of course, is not reflexive). In [ALT], a reflexive

Banach space Xω1
was constructed which has density ℵ1 and does not con-

tain an unconditional basic sequence, and a fortiori neither a sub-symmetric

basic sequence.

Our aim in this subsection is to show that if κ is any cardinal below the

first ω-Mahlo cardinal (see §2.2), then we can construct, in ZFC, a Banach

space Eκ of density κ not containing a sub-symmetric basic sequence. More

precisely, we have the following.

Theorem 17. Let θ be the first ω-Mahlo cardinal and κ be a cardinal with

κ < θ. Then there exists a reflexive Banach space Eκ of density κ not

containing a sub-symmetric basic sequence. In particular, sm ≥ θ.

For the proof of Theorem 17 we need a well-known construction in Banach

Space Theory (see [Ts] or [LT]). Let κ be any cardinal and let F be a

compact and hereditary family on κ containing the singletons. This means

that F is a family of finite subsets of κ satisfying the following conditions.

(i) If L is an infinite subset of κ, then there exists a non-empty finite

subset G of L such that G /∈ F .

(ii) If G ∈ F and F ⊆ G, then F ∈ F .

(iii) For every α < κ we have {α} ∈ F .

Consider the Tsirelson3 space T (F) on c00(κ) build using the family F . For

the convenience of the reader, we recall its definition. First, we define a

norming set K(F) ⊆ c00(κ) as follows.

(1) K(F) contains the set {±e∗γ : γ < κ}.
(2) Let (φi)

m
i=0 be a sequence in K(F) with the following properties.

(2.a) If i, j ∈ {0, ...,m} with i 6= j, then suppφi ∩ suppφj = ∅.
(2.b) The set {min(suppφi) : 0 ≤ i ≤ m} is in F , i.e. the sequence

(φi)
m
i=0 is F-admissible.

Then 2−1
∑m

i=0 φi belongs to K(F).

(3) K(F) is symmetric; that is, if φ ∈ K(F), then −φ ∈ K(F).

(4) K(F) is the minimal set of c00(κ) satisfying (1), (2) and (3) above.

3The observant reader will realize that the space T (F) actually corresponds to the

modified version of Tsirelson’s space, discovered by W. B. Johnson [Jo].
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The space T (F) is defined to be the completion of c00(κ) equipped with the

norm

(3) ‖x‖ = sup{〈φ, x〉 : φ ∈ K(F)}.

The following properties of the space T (F) are almost immediate conse-

quences of the relevant definitions.

(P1) The standard Hamel basis (eγ : γ < κ) of c00(κ) defines an uncondi-

tional Schauder basis of T (F).

(P2) Assume that for every infinite subset M of κ the restriction

F ↾ M = {s ∈ F : s ⊆ M}

of F on M has infinite Cantor-Bendixson rank; i.e. for every n ∈ ω

with n ≥ 1 there exists an infinite subset L of M such that [L]n ⊆ F .

Then the space T (F) is reflexive. Moreover, in such a case, the space

T (F) can contain no sub-symmetric basic sequence. To see this,

notice that if (xn) is a sequence of normalized and disjoint supported

vectors in T (F), then for every k ∈ ω there exist n0 < · · · < nk in ω

such that4
∥

∥

xn0
+ · · · + xnk

k + 1

∥

∥ ≥ 1

2
.

Hence, if T (F) contained a sub-symmetric sequence, then this se-

quence should be equivalent to the standard basis of ℓ1; this is clearly

impossible by the reflexivity of the space.

The above construction reduces the problem of finding non-separable Ba-

nach spaces not containing a sub-symmetric sequence to the problem of con-

structing non-trivial compact and hereditary families. This is the content

of the following theorem.

Theorem 18. Let θ be the first ω-Mahlo cardinal and let κ be an infinite

cardinal with κ < θ. Then there exists a compact and hereditary family F
on κ containing the singletons and such that for every infinite set M of κ

the restriction F ↾ M of F on M has infinite Cantor-Bendixson rank.

Proof. It will be convenient to adopt the following terminology. We say that

a family F of finite subsets of a cardinal κ is nice if F is compact, hereditary,

contains all singletons and is such that for every infinite subset M of κ the

4This observation actually shows that, under the hypotheses on the family F described

in (P2), any normalized weakly null sequence (xn) in the space T (F) has a subsequence

generating an ℓ1 spreading model.
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restriction F ↾ M has infinite Cantor-Bendixson rank. We also need to

introduce the following notation. If s and t are non-empty finite subsets of

κ we write s < t if max(s) < min(t). Finally, we say that a sequence (ti)
n
i=0

of non-empty finite subsets of κ is block provided that t0 < t1 < · · · < tn.

We proceed to the proof. The construction of the family F is done re-

cursively on an infinite cardinal κ smaller than the first ω-Mahlo cardinal

θ. If κ = ω, we let Fω = {s ⊆ ω : |s| ≤ min(s) + 1} be the Schreier family.

Suppose that κ > ω. We distinguish the following cases.

Case 1: κ is singular. Let ξ = cf(κ) < κ. We select a sequence (Xδ : δ < ξ)

of pairwise disjoint infinite subsets of κ such that κ =
⋃

δ<ξ Xδ and |Xδ | < κ

for every δ < ξ. By our inductive hypothesis, there exist a nice family Fξ

on ξ and for every δ < ξ a nice family Gδ on Xδ . We define Fκ by the rule

s ∈ Fκ ⇔ s ∩ Xδ ∈ Gδ for all δ < ξ and {δ < ξ : s ∩ Xδ 6= ∅} ∈ Fξ.

It is easily checked that Fκ is a nice family on κ.

Case 2: κ is regular. Since κ is not ω-Mahlo, it is not n-Mahlo for some

n ∈ ω. So, we may use the characterization of J. H. Schmerl (see [Sch] or

[Tod, Theorem 6.1.8]) to fix two integers m, n̄ ≥ 3, an unbounded subset Γ

of κ and a regressive5 mapping f : [Γ]n̄ → κ such that the following holds.

(∗) For every X ∈ [Γ]m the restriction f ↾ [X]n̄ is not min-homogeneous6.

We will define the desired family not directly on κ itself but instead on Γ.

This is enough since κ is regular, and so, κ and Γ are equipotent. We use the

inductive hypothesis and we fix for each δ ∈ Γ a nice family Fδ on δ. Define

F by declaring that a finite set s ⊆ Γ is in F if and only if the following are

satisfied.

(1) Either |s| < n̄, or

(2) for every α ∈ s and every block sequence (ti)
k
i=0 with ti ∈ [s]n̄−1

(i ≤ k) and α < t0, we have that

(2.a) f({α} ∪ ti) < f({α} ∪ tj) if i < j ≤ k, and

(2.b) {f({α} ∪ ti) : 0 ≤ i ≤ k} ∈ Fα.

The map f is regressive, and so, the family F is well-defined. We claim

that F is a nice family on Γ. It is clear that F is compact, hereditary and

contains the singletons. What remains is to show that for every infinite

5A mapping f : [κ]<ω → κ is said to be regressive if f(s) < min(s) for every s ∈ [κ]<ω

with min(s) 6= 0.
6Recall that X is called min-homogeneous for f if f(s) = f(t) for every pair s, t ∈ [X]n̄

with min(s) = min(t).
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subset M of Γ, the restriction F ↾ M has infinite rank. So, let M be an

infinite subset of Γ. It will be enough to prove that F ∩ [N ]k 6= ∅ for every

N ⊆ M of order type ω and every integer k. Let k ≥ 1 arbitrary. We will

prove that F ∩ [N ](n̄−1)k+1 6= ∅.
To this end we use, first, the Erdös-Rado canonization Theorem [ER] to

find an infinite subset P of N such that f ↾ [P ]n̄ is canonical ; that is, there

exists some subset I of n̄ such that for every s, t ∈ [P ]n̄ we have f(s) = f(t)

if and only if s(i) = t(i) for every i ∈ I. Since f ↾ [P ]n̄ is canonical and

not min-homogeneous, it follows that if s, t ⊆ P with |s| = |t| = n̄ − 1 and

α < s < t, then f({α} ∪ s) 6= f({α} ∪ t). We define d : [P ]2n̄−1 → 2 as

follows. Let s ∈ [P ]2n̄−1 arbitrary. There exist α ∈ P and s0, s1 ⊆ P such

that α < s0 < s1, |s0| = |s1| = n̄−1 and s = {α}∪s0∪s1. We set d(s) = 0 if

f({α}∪s0) < f({α}∪s1), while we set d(s) = 1 if f({α}∪s0) > f({α}∪s1).

By Ramsey’s Theorem, there is some infinite subset Q of P such that d is

constant on [Q]2n̄−1. If the constant value were 1, then we would be able to

produce an infinite strictly decreasing sequence of ordinals. So the constant

value must be 0, i.e.

(∗∗) for every α ∈ Q and every s0, s1 ⊆ Q with α < s0 < s1 and |s0| =

|s1| = n̄ − 1 we have that f({α} ∪ s0) < f({α} ∪ s1).

Finally, we define a coloring e : [Q](n̄−1)k+1 → 2 as follows. Let s ∈
[Q](n̄−1)k+1 arbitrary and pick α ∈ Q and s0, ..., sk−1 ∈ [Q]n̄−1 with α <

s0 < · · · < sk−1 and s = {α} ∪ s0 ∪ · · · ∪ sk−1. We set e(s) = 0 if

{f({α} ∪ si) : 0 ≤ i < k} ∈ Fα; otherwise we set e(s) = 1. Let R ⊆ Q infi-

nite such that e is constant on R with value, say, ε ∈ {0, 1}. We claim that

ε = 0. Suppose, towards a contradiction, that ε = 1. Let α = min(R) and

let (si) be a block sequence of subsets of R\{α} each of which has size n̄−1

and is such that
⋃

i∈ω si = R \ {α}. Let T = {f({α} ∪ si) : i < ω}. This is

an infinite subset of α0. By our hypothesis on Fα, we can find t ∈ Fα∩ [T ]k.

Find integers i0 < · · · < ik−1 such that t = {f({α} ∪ sij ) : j < k} ∈ Fα.

Hence

(4) e({α} ∪ si0 ∪ · · · ∪ sik−1
) = 0,

a contradiction. So, the constant value of the coloring e is 0. Since every

family Fα is hereditary, we see that [R](n̄−1)k+1 ⊆ F . This shows that the

family F is nice. The proof is completed. �

We are ready to give the proof of Theorem 17.
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Proof of Theorem 17. Fix an infinite cardinal κ smaller than the first ω-

Mahlo cardinal θ. Let F be the family obtained by Theorem 18 and consider

the Tsirelson space T (F) build using the family F . The space T (F) is as

desired. �

4.2. Unconditional subsequences of weakly null sequences. We have

the following “subsequence” version of Theorem 11.

Theorem 19. Let κ be a cardinal and assume that property Pl1(κ) holds

(see Definition 5). Then ncseq ≤ κ. In fact, every normalized weakly null

sequence (xα : α < κ) has an 1-unconditional subsequence.

Proof. The proof is very similar to the one of Theorem 11. Indeed, consider

the coloring cun : [κ]<ω → ω defined as follows. Let s = (α0 < · · · < αm) ∈
[κ]<ω. Assume that there exists l ∈ ω with l > 0 such that the sequence

(xαi
)mi=0 is not (1 + 1/l)-unconditional. In such a case, let cun(s) be the

least l with this property. Otherwise, we set cun(s) = 0. Using Pl1(κ) and

Lemma 14, the result follows. �

Corollary 20. It is relative consistent with the existence of a measurable

cardinal that every normalized weakly null sequence (xα : α < ℵω) has an

1-unconditional subsequence. Moreover, this statement is compatible with

GCH.

Proof. Follows immediately by Theorem 10 and Theorem 19. �

There is another well-known combinatorial property of a cardinal κ, closely

related to Pl1(κ), which also implies the estimate ncseq ≤ κ. This property

is the free set property of κ (see [Sh1], [Ko], [DT] and the references therein).

Definition 21. By a structure on κ we mean a first order structure M =

(κ, (fi)i∈ω), where ni ∈ ω and fi : κni → κ for all i ∈ ω.

The free set property of κ, denoted by Frω(κ, ω), is the assertion that every

structure M = (κ, (fi)i∈ω) has a free infinite set. That is, there exists an

infinite subset L of κ such that every element x of L does not belong to the

substructure of M generated by L \ {x}.

We need the following fact (its proof is left to the interested reader).

Fact 22. Let κ be a cardinal. Then the following are equivalent.

(a) Frω(κ, ω) holds.
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(b) For every structure M = (κ, (fi)i∈ω) there exists an infinite subset

L of κ such that for every x ∈ L we have

x /∈ {fi(s) : s ∈ (L \ {x})ni and i ∈ ω}.

(c) Every extended structure N = (κ, (gi)i∈ω), where gi : κ<ω → [κ]≤ω

for all i ∈ ω, has an infinite free subset. That is, there exists an

infinite subset L of κ such that for every x ∈ L we have

x /∈
⋃

i∈ω

⋃

s∈(L\{x})<ω

gi(s).

Theorem 23. Let κ be a cardinal and assume that Frω(κ, ω) holds. Then

every normalized weakly null sequence (xα : α < κ) has an 1-unconditional

subsequence.

Proof. Let (xα : α < κ) be a normalized weakly null sequence in a Banach

space E. For every s ∈ [κ]<ω we select a subset Fs of SE∗ which is countable

and 1-norming for the finite-dimensional subspace Es := span{xα : α ∈ s}
of E. That is, for every x ∈ Es we have

(5) ‖x‖ = sup{x∗(x) : x ∈ Fs}.

Define g : [κ]<ω → [κ]≤ω by

(6) g(s) = {α < κ : there is some x∗ ∈ Fs such that x∗(xα) 6= 0}.

Since (xα : α < κ) is weakly null and Fs is countable, we see that g(s)

is also countable; i.e. g is well-defined. Consider the extended structure

N = (κ, g). Since Frω(κ, ω) holds, there exists an infinite free subset L of κ.

We claim that the sequence (xα : α ∈ L) is 1-unconditional.

Indeed, let s and t be finite subsets of L with s ⊆ t. Fix a sequence

(aα : α ∈ t) of scalars and let ε > 0 arbitrary. By equality (5) above, we

may select y∗ ∈ Fs such that

(7) ‖
∑

α∈s

aαxα‖ ≤ (1 + ε) · y∗
(

∑

α∈s

aαxα

)

.

The set L is free, and so, for every α ∈ t \ s we have α /∈ g(s). This implies,

in particular, that y∗(xα) = 0 for every α ∈ t \ s. Hence

‖
∑

α∈s

aαxα‖ ≤ (1 + ε) · y∗
(

∑

α∈s

aαxα

)

= (1 + ε) · y∗
(

∑

α∈t

aαxα

)

≤ (1 + ε) · ‖
∑

α∈t

aαxα‖.

Since ε > 0 was arbitrary, the result follows. �
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5. Proof of Lemma 6

Assume that λ < κ is a pair of two infinite cardinals with λ regular and

κ strongly compact. We fix a κ-complete normal ultrafilter U on κ. Let

{Vα : α ∈ Ord} be the von-Neumann hierarchy of V . As κ is inaccessible

(being strongly compact), we see that |Vκ| = κ.

For every coloring c : [(2κ)+]2 → Vκ we let

(8) Solωκ(c) = {x ∈ [(2κ)+]ω : c ↾ [x]2 is constant}
and we define

(9) Solωκ = {Solωκ(c) : c : [(2κ)+]2 → Vκ is a coloring}.
The idea of considering the family of sets which are monochromatic with

respect to a coloring is taken from Shelah’s paper [Sh2] and has been also

used by other authors (see, for instance, [Mi]).

Fact 24. The following hold.

(a) For every coloring c : [(2κ)+]2 → Vκ we have Solωκ(c) 6= ∅.
(b) The family Solωκ is κ-complete. That is, for every δ < κ and every

sequence (Aξ : ξ < δ) in Solωκ we have that
⋂

ξ<δ Aξ ∈ Solωκ .

Proof. (a) By our assumptions we see that |Vκ| = κ. Moreover, by the

classical Erdös-Rado partition Theorem (see [Ku]), we have

(2κ)+ → (κ+)2κ

and the result follows.

(b) For every ξ < δ let cξ : [(2κ)+]2 → Vκ be a coloring such that Aξ =

Solωκ(cξ). Observe that (Vκ)δ ⊆ Vκ. We define the coloring c : [(2κ)+]2 →
(Vκ)δ by c(s) = (cξ(s) : ξ < δ). Noticing that

⋂

ξ<δ

Solωκ(cξ) = Solωκ(c),

the proof is completed. �

By Fact 24(b) and our hypothesis that κ is a strongly compact cardinal,

we see that there exists a κ-complete ultrafilter V on [(2κ)+]ω extending the

family Solωκ . We fix such an ultrafilter V.

Definition 25. A V-sequence of conditions is a sequence p = (px : x ∈ A)

in Col(λ,< κ), belonging to the ground model V and indexed by a member

A of the ultrafilter V. We will refer to the set A as the index set of p and

we shall denote it by I(p).
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Definition 26. Let p = (px : x ∈ I(p)) be a V-sequence of conditions. We

say that a condition r in Col(λ,< κ) is a root of p if

(10) (Uα) (Vx) px ↾ α = r7.

Related to the above definitions, we have the following.

Fact 27. Every V-sequence of conditions p has a unique root r(p).

Proof. For every α < κ the map I(p) ∋ x 7→ px ↾ α has fewer than κ

values. So, by the κ-completeness of V, there exist pα ∈ Col(λ,< κ) and

Iα ∈ V ↾ I(p) so that px ↾ α = pα for all x ∈ Iα. Hence, we can select a

sequence (pα : α < κ) in Col(λ,< κ) and a decreasing sequence (Iα : α < κ)

of elements of V ↾ I(p) such that for every α < κ and every x ∈ Iα we have

that px ↾ α = pα.

Let A ⊆ κ be the set of all limit ordinals α < κ with cf(α) > λ. Since U
is normal, the set A is in U . Consider the mapping c : A → κ defined by

c(α) = sup{ξ : ξ ∈ (dom(pα ↾ α))1}

for every α ∈ A. As cf(α) > λ, we get that c is a regressive mapping. The

ultrafilter U is normal, and so, there exist A′ ∈ U ↾ A and γ0 < κ such that

c(α) = γ0 for every α ∈ A′. Now consider the map

A′ ∋ α 7→ pα ↾ α = pα ↾ γ0 ⊆ (λ × γ0) × γ0.

Noticing that |P
(

(λ × γ0) × γ0

)

| < κ and recalling that U is κ-complete,

we see that there exist A′′ ∈ U ↾ A′ and r(p) in Col(λ,< κ) such that

pα ↾ α = r(p) for every α ∈ A′′. It follows that for every α ∈ A′′ the set

{x ∈ [(2κ)+]ω : px ↾ α = r(p)} contains the set Iα, and so

(Uα) (Vx) px ↾ α = r(p).

The uniqueness of r(p) is an immediate consequence of property (10) in

Definition 26. The proof is completed. �

Let G be a Col(λ,< κ)-generic filter (the generic filter G will be fixed until

the end of the proof ). We are ready to introduce the ideal I.

Definition 28. In V [G] we define

I = {I ⊆ [(2κ)+]ω : there is some A ∈ V such that I ∩ A = ∅}.

We isolate, for future use, the following (easily verified) properties of I.

7This is an abbreviation of the statement that {α : {x : px ↾ α = r} ∈ V} ∈ U .



UNCONDITIONAL BASIC SEQUENCES 21

(P1) I is an ideal; in fact, I is a κ-complete ideal.

(P2) V ⊆ I+.

(P3) If A ∈ V and B ∈ I+, then A ∩ B ∈ I+.

For every V-sequence of conditions p we let

(11) Dp = {x ∈ I(p) : px ∈ G}.
Now we are ready to introduce the set D.

Definition 29. In V [G] we define

D = {Dp : p is a V-sequence of conditions in the ground model V } ∩ I+.

By definition, we have that D ⊆ I+. The rest of the proof will be devoted

to the verification that the ideal I and the set D satisfy the requirements of

Lemma 6. To this end, we need the following.

Lemma 30. Let p = (px : x ∈ I(p)) be a V-sequence of conditions. Then

the following are equivalent.

(1) Dp ∈ D.

(2) r(p) ∈ G.

Proof. (1)⇒(2) Assume that Dp ∈ D. We use the fact that Dp ∈ I+ and

that

(Uα) (Vx) px ↾ α = r(p)

to find x ∈ Dp such that px ≤ r(p). By the definition of Dp, we see that

px ∈ G, and so, r(p) ∈ G as well.

(2)⇒(1) Suppose that r(p) ∈ G. Fix a ground model set A which is in V.

It is enough to show that Dp ∩ A 6= ∅. To this end, let

E = {q ∈ Col(λ,< κ) : q ⊥ r(p) or there is x ∈ I(p) ∩ A with q ≤ px}.
We claim that E is a dense subset of Col(λ,< κ). To see this, let r ∈
Col(λ,< κ) arbitrary. If r ⊥ r(p), then r ∈ E. So, suppose that r ‖ r(p).

Using this and the fact that

(Uα) (Vx) px ↾ α = r(p)

we may find x ∈ I(p) ∩ A such that px ‖ r. So, there exist q ∈ Col(λ,< κ)

and x ∈ I(p) ∩ A such that q ≤ px and q ≤ r. In other words, there exists

q ∈ E with q ≤ r. This establishes our claim that E is a dense subset of

Col(λ,< κ).

It follows by the above discussion that there exists q ∈ G with q ∈ E.

Since r(p) ∈ G we have that r(p) ‖ q. Hence, by the definition of the set
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E, there exists x ∈ I(p) ∩ A with q ≤ px. It follows that px ∈ G, and so,

x ∈ Dp ∩ A. The proof is completed. �

Lemma 31. D is dense in I+.

Proof. Fix J ∈ I+. We will prove that there exists a V-sequence of condi-

tions q in the ground model V satisfying Dq ∈ D and Dq ⊆ J . This will

finish the proof.

To this end, we fix a Col(λ,< κ)-name J̇ for J . Let p ∈ Col(λ,< κ) be

an arbitrary condition such that p 
 J̇ /∈ I. Define, in the ground model V ,

the set

Ap = {x ∈ [(2κ)+]ω : there is q ≤ p such that q 
 x̌ ∈ J̇}.

First we claim that Ap ∈ V. Suppose, towards a contradiction, that the set

C := [(2κ)+]ω \ Ap is in V. Since J ∈ I+ we see that J ∩ C 6= ∅ in V [G].

Using the fact that p 
 J̇ /∈ I and that the forcing Col(λ,< κ) is σ-closed,

we may find x ∈ C and a condition q ≤ p such that q 
 x̌ ∈ J̇ . But this

implies that x ∈ Ap, a contradiction.

By the above discussion, we may find V-sequence of conditions q = (qx :

x ∈ Ap) such that qx ≤ p and qx 
 x̌ ∈ J̇ for every x ∈ Ap. By Fact 27, let

r(q) be the root of q. Clearly r(q) ≤ p.

Now fix a condition r such that r 
 J̇ /∈ I. What we have just proved is

that the set of conditions r(q) such that

(∗) r(q) is the root of a V-sequence of conditions q = (qx : x ∈ I(q))

with the property that qx 
 x̌ ∈ J̇ for every x ∈ I(q)

is dense below r. As G is generic, we may find such a canonical V-sequence

of conditions q such that r(q) ∈ G. On the one hand, by Lemma 30, we see

that Dq ∈ D. On the other hand, property (∗) above implies that Dq ⊆ J ;

indeed, if x ∈ Dq, then qx ∈ G and, by (∗), qx 
 x̌ ∈ J̇ . The proof is

completed. �

Lemma 32. D is λ-closed in I+.

Proof. Fix µ < λ and a decreasing sequence (Dξ : ξ < µ) in D. For every

ξ < µ let pξ = (pξ
x : x ∈ I(pξ)) be a V-sequence of conditions in V such

that Dξ = Dpξ
. Our forcing Col(λ,< κ) is λ-closed, and so, the sequence

(pξ : ξ < µ) is in the ground model V as well. Applying Fact 27 to every pξ,

we find a sequence (rξ : ξ < µ) in Col(λ,< κ) such that rξ is the root of pξ

for every ξ < µ. By Lemma 30, we get that rξ ∈ G for all ξ < µ.
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We claim, first, that for every ξ < ζ < µ we have

(12) (Vx) pξ
x
‖ pζ

x
.

Suppose, towards a contradiction, that there exist ξ < ζ < µ such that the

set L := {x ∈ A : pξ
x ⊥ pζ

x} is in V. As Dpζ
∈ D ⊆ I+ and L ∈ V, there

exists x ∈ Dpζ
∩ L. And since Dpζ

= Dζ ⊆ Dξ = Dpξ
we have x ∈ Dpξ

as

well. But this implies that both pξ
x and pζ

x are in G and at the same time

pξ
x ⊥ pζ

x, a contradiction.

Invoking (12) above, we may find A ∈ V such that for every ξ < ζ < µ

and every x ∈ A we have that pξ
x ‖ pζ

x. We set

px =
⋃

ξ<µ

pξ
x

for every x ∈ A

and we define p = (px : x ∈ A). It is clear that p is a well-defined V-sequence

of conditions. Also observe that Dp ⊆ Dξ for every ξ < µ. We are going to

show that Dp ∈ D. This will finish the proof.

To this end, let r be the root of p. By Lemma 30, it is enough to show

that r ∈ G. Notice, first, that

(13) (Uα) (Vx)
⋃

ξ<µ

pξ
x

↾ α = px ↾ α = r.

On the other hand, as rξ is the root of pξ, we have

(14) (∀ξ < µ) (Uα) (Vx) pξ
x

↾ α = rξ.

Both U and V are κ-complete, and so, (14) is equivalent to

(15) (Uα) (Vx) (∀ξ < µ) pξ
x

↾ α = rξ.

Combining (13) and (15) we get that

(16) (Uα) (Vx) r =
⋃

ξ<µ

pξ
x

↾ α =
⋃

ξ<µ

rξ.

Summing up, we see that the root r of p is the union
⋃

ξ<µ rξ of the roots of

the pξ’s. Since the generic filter G is λ-complete, we conclude that r ∈ G.

The proof is completed. �

Lemma 33. Work in V [G]. Let µ < κ and let c : [(2κ)+]2 → µ be a coloring.

Let also A ∈ I+ arbitrary. Then there exist a color ξ < µ and an element

D ∈ D with D ⊆ A and such that for every x ∈ D and every {α, β} ∈ [x]2

we have c({α, β}) = ξ.
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Proof. Fix a coloring c : [(2κ)+]2 → µ and let A ∈ I+. Let also ċ be

a Col(λ,< κ)-name for the coloring c. In V , let RO(Col(λ,< κ)) be the

collection of all regular-open subsets of Col(λ,< κ). Working in V , we

define a coloring d : [(2κ)+]2 → (RO(Col(λ,< κ)))µ by the rule

d(s) = ([[ċ(š) = ξ̌]] : ξ < µ)

where [[ċ(š) = ξ̌]] = {p ∈ Col(λ,< κ) : p 
 ċ(š) = ξ̌} is the boolean value of

the formula “c(s) = ξ”.

The forcing Col(λ,< κ) is κ-cc, and so, (RO(Col(λ,< κ)))µ ⊆ Vκ. Hence,

Solωκ(d) ∈ V. We set J = A∩Solωκ(d). Then J is in I+. Notice that for every

x ∈ J and every s, s′ ∈ [x]2 we have d(s) = d(s′). It follows that for every

x ∈ J we may select a sequence Ux = (U ξ
x : ξ < µ) in (RO(Col(λ,< κ)))µ

such that for every s ∈ [x]2 and every ξ < µ we have [[ċ(š) = ξ̌]] = U ξ
x.

Now observe that for every s ∈ [(2κ)+]2 the set {[[ċ(š) = ξ̌]] : ξ < µ} is a

maximal antichain. So, we can naturally define in V [G] a coloring e : J → µ

by the rule

e(x) = ξ if and only if U ξ
x
∈ G.

Equivalently, for every x ∈ J we have that e(x) = ξ if and only if c ↾ [x]2

is constant with value ξ. The ideal I is κ-complete and J ∈ I+. Hence

there exists ξ0 < µ such that e−1{ξ0} ∈ I+. By Lemma 31, we may select

D ∈ D with D ⊆ e−1{ξ0} ⊆ J ⊆ A. Finally, notice that for every x ∈ D the

restriction c ↾ [x]2 is constant with value ξ0. The proof is completed. �

We are now ready to finish the proof of Lemma 6. As we have already

mention, the ideal I will be the one defined in Definition 28, while the dense

subset D of I+ will be the one defined in Definition 29. First, we notice

that property (1) in Lemma 6 (i.e. the fact that I is κ-complete) follows

easily by the definition I and the fact that V is κ-complete (in fact, we have

already isolated this property of I in (P1) above). Property (2) in Lemma

6 (i.e. the fact that D is λ-closed in I+) has been established in Lemma

32. Finally, property (3) is proved in Lemma 33. The proof of Lemma 6 is

completed.
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