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Abstract. Most of the prevalent estimation methods for sample selection model
rely heavely on parametric assumptions. We consider in this communication a
multivariate semiparametric sample selection model and we develop a geometric
approach to the estimation of the slope vectors in the outcome equation and in
the selection equation. Contrary to most existing methods, we deal symmetrically
with both slope vectors. The estimation method is link-free and distribution-free,
it works in two main steps: a multivariate Sliced Inverse Regression step, and a
Canonical Analysis step. We establish

√

n-consistency and asymptotic normality
of the estimates. We give results from a simulation study in order to illustrate the
estimation method.
Keywords: Multivariate Sliced Inverse Regression, Canonical Analysis, Semipara-
metric Regression Models.

1 Introduction

In this communication, we consider sample selection models (SSM). Basi-
cally they are described by two equations. A selection equation gives the
state (missing / non missing) of the dependent variable y as a function of
explanatory variables, and an outcome equation gives the value of the mul-
tivariate dependent variable, when observed, as another function of some
explanatory variables x. Numerous papers dealing with univariate SSM have
been published. The adjective “univariate” refers to y ∈ ℜ. Here, we focus
on multivariate SSM, that is when y ∈ ℜq, q > 1.
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Let us first give a brief overview of univariate SSM. When the dependent
variable is univariate, [Heckman, 1979] introduced what is now regarded as
the prototype selection model. [Amemiya, 1985] refers to this model as the
type II Tobit Model:

(E1) : y∗

1i = x′

1iβ1 + ε1i

(E2) : y∗

2i = x′

2iβ2 + ε2i

(E3) : y2i = I[y∗

2i > 0]
(E4) : y1i = y∗

1iy2i

(E5) : (ε1i, ε2i)
′|xi ∼ N(0, Σ), Σ =

[
σ2

1
σ12

σ12 σ2

2

]

The observed variables are y1i, y2i and xi = (x′

1i, x
′

2i)
′. Equation (E3) is the

selection equation, and equation (E4) is the outcome equation. Maximum
Likelihood method is generally used to estimate such models. The score
equation is highly non linear. The convergence of the algorithm heavily
depends on the choice of good initial values, and the asymptotic properties
of the estimate are very sensitive to the model specification. This has been
discussed by [Goldberger, 1983], among others.
Alternative methods have been designed. [Heckman, 1979] proposed a two-
step method, estimating first the selection equation and using the result to
estimate the outcome equation in a second stage. Many authors have consid-
ered parametric estimation methods. For a survey of these aspects, one may
read [Amemiya, 1985], [Maddala, 1983], [Maddala, 1993] or [Blundell and Smith, 1993].
Semiparametric estimation methods have been developed to bypass the sen-
sitivity to specification assumptions. They handle more general models, es-
pecially for the error specification. [Melenberg and van Soest, 1993] give a
panorama of the semiparametric estimation methods for SSM. Most semi-
parametric estimation techniques of the SSM proceed in two stages. The first
one gives a consistent estimate of the slope of the selection equation. Indeed,
this equation can, on its own, be considered as a Probit Model. The second
stage works with the non missing y’s only, (i) building a biased estimate of the
slope of the outcome equation, and (ii) correcting for this bias with the help of
the first step estimated slope. [Duan and Li, 1987], [Ahn and Powell, 1993],
[Lee, 1994] follow such a scheme. [Ichimura and Lee, 1991] estimate the two
slopes simultaneously in a reasonable time, but calculating the asymptotic
covariance of the estimators requires lengthy computations.

In this communication, we study a multivariate semiparametric SSM. We
propose a geometric approach to the estimation of the slopes of the outcome
and selection equations. As [Duan and Li, 1987] in the univariate case, we
do not need any assumption about the link functions or the error distribu-
tion. Moreover, contrary to most existing methods, we deal symmetrically
with both slopes. The method works in two steps. The first one performs
a Multivariate Sliced Inverse Regression (MSIR) analysis. The second step
converts the MSIR indices to estimates of the slopes by means of two Canon-
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ical Analyses. The corresponding numerical algorithm is fast and does not
require starting values.

2 A semiparametric multivariate sample selection

model

We consider the following semiparametric multivariate sample selection model:

y =

{
g1(x̃

′e
1

γ̃1, ε1) if g2(x̃
′e
2

γ̃2, ε2) > 0
0 otherwise.

(1)

where:

• The dependent variable is multivariate: y ∈ ℜq. The value “0” for y
in equation (1) symbolically indicates a missing (non observed) value.
Another symbol might be used to avoid any confusion with an observed
value, 0, of y.

• The functions g1 and g2 are unknown link functions, g1 is called the
observation link function and g2 the selection link function.

• The variables x̃1 ∈ ℜp1 and x̃2 ∈ ℜp2 are subvectors of the random vector
x ∈ ℜp, assumed to be elliptically distributed with parameters µ = E[x]
and V(x) = Σ.
Let A′

j , j = 1, 2 be the matrices which select the components of x̃j , j =
1, 2 in x. Aj is p×pj , 2 ≤ pj < p. Aj has exactly one “1” in each column
and at most one “1” in each row, and its other elements are “0”. So Aj

is of full column rank and such that x̃j = A′

jx.
It follows that x̃1 and x̃2 are elliptically distributed with parameters
µj = A′

jµ, j = 1, 2 and Σj = A′

jΣAj , j = 1, 2. Moreover, from the
definition of Aj ’s we have: A′

jAj = Ipj
.

• The couple (ε1, ε2) is a random error vector independent of x with an
unknown distribution.

• The slope parameters γ̃1 ∈ ℜp1 and γ̃2 ∈ ℜp2 are two unknown vectors.

In this model, our main purpose is to estimate the directions of the slopes
γ̃1 and γ̃2. Then, the link function g1 and the state of y (missing/non missing)
probabilities can be nonparametrically estimated.

One can observe that model (1) is a particular case of a multivariate two
indices semiparametric regression models of the form

y = f(x
′eβ1, x

′eβ2, ε). (2)

Model (2) has been introduced by Li (1991) when y ∈ ℜ. Li (1991) proposed
the sliced inverse regression in order to estimate the subspace of ℜp, spanned
by β1 and β2, which is called the e.d.r. (effective dimension reduction) space.
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Some extensions of the SIR approach to multivariate y have been studied by
[Aragon, 1997], [Li et al., 2003], [Saracco, 2005], or [Barreda et al., 2006].

We are going to consider model (1) as a particular kind of model (2),
with extra information about the e.d.r. space, namely, structural zeros in
the coefficients. To do this, we define γj = Aj γ̃j ∈ ℜp, j = 1, 2, that is
we expand γ̃j to a p × 1 vector with zeros corresponding to the non-selected
components. So model (1) is writen:

y = g(x
′eγ1, x

′eγ2, ε) (3)

with ε = (ε1, ε2) and g(t, u, e) = g1(t, e1)I[g2(u, e2) > 0], where e = (e1, e2)
and I[.] denotes the indicator function. Let us define E = Span(γ1, γ2) ⊂ ℜp.
Without additional conditions, we have dim(E) ≤ 2. If γ1 and γ2 are linearly
independent, then dim(E) = 2, and {γ1, γ2} determines a basis of the e.d.r.
space.

Let us assign identifiability conditions which ensure that we are working on
a two indices model (that is dim(E) = 2):

(i) Each vector xj , j = 1, 2, has at least an x-component not present in the
other xj′ , j′ 6= j; such a component could be called j-specific.

(ii) At least one component of γj among the j-specific component is non null,
j = 1, 2.

We now bring these conditions into a geometric perspective. Let Ej =
Span(Aj), Ej ⊂ ℜp, dim(Ej) = pj . The identifiability conditions are:

(i) E1 6⊂ E2 and E2 6⊂ E1,

(ii) E ∩ E1 6= E and E ∩ E2 6= E.

Let us consider more closely the linear subspace E ∩ Ej . Since dim(E) = 2,
dim(E ∩ Ej) ≤ 2. From the definition of E and Ej , γj ∈ E ∩ Ej , thus

dim(E ∩ Ej) ≥ 1. But because of the identifiability conditions, for j
′e 6= j,

γj′e ∈ E and γj′e 6∈ Ej , thus γj′e 6∈ E ∩ Ej and dim(E ∩ Ej) < 2. Finally,
dim(E ∩ Ej) = 1 and E ∩ Ej ⊂ ℜp is spanned by γj .

3 Population and sample approaches

The idea is to use multivariate sliced inverse regression in order to find an-
other basis of E = Span(γ1, γ2), the e.d.r. space. Let us call this basis
{b1, b2}. These vectors are Σ-orthogonal. Since the matrices A1 and A2 are
known (and so are the subspaces E1 and E2), two canonical analysis of the
couples (E,E1) and (E,E2) give us bases of E ∩ E1 and E ∩ E2.



Estimation for a multivariate semiparametric sample selection model 5

3.1 Population version

• For model (3), [Saracco, 2005] has shown that pooled marginal sliced
inverse regression provides a basis denoted {b1, b2} of the e.d.r. space
E, the only novelty is to consider a transformation (slicing) T (.) which
does not modify the missing y value. The vector bj are the eigenvectors
corresponding to the two largest eigenvalues of Σ−1MT . Lest us denote
B = [b1, b2], we have Span(B) = E.

• Let us consider two subspaces F and G of ℜp equipped with the in-
ner product Σ. Canonical analysis is a useful tool to find out a Σ-
orthogonal basis of F ∩ G. This basis is formed by the eigenvectors
corresponding to the eigenvalue 1 of PF PG, where PF and PG are the
Σ-orthogonal projectors onto F and G. Specifically, we take F = E
and G = Ej , j = 1, 2. Thus, PE = B(B′ΣB)−1B′Σ = BB′Σ and and
PEj

= Aj(A
′

jΣAj)
−1A′

jΣ. It is equivalent and simpler to diagonalize
PEj

PEPEj
which is a Σ-symmetric matrix. Let us call vj the unique

eigenvector corresponding to the eigenvalue 1; vj is colinear to γj and is
normalized: v′jΣvj = 1. We next derive a vector, ṽj , colinear to γ̃j :

ṽj = A′

jvj .

This vector ṽj is normalized: ṽ′jΣj ṽj = 1 where Σj = A′

jΣAj .

3.2 Estimation of the directions

As was precised in the former section, the directions are obtained from com-
putations based only on covariance matrices. Substituting estimates in place
of these matrices yields estimated directions.

Let {(yi, xi), i = 1, ..., n} be a sample from the reference model (1). Let
Σ̂ be the empirical covariance matrix of the xi’s.

• Step 1: Estimating a basis of the e.d.r. space E by pooled

marginal sliced inverse regression. We can apply the usual proce-
dure in order to obtain M̂T , the estimates of the matrix MT . The only
constraint is about the slicing of each y component. Let Hj + 1 be a

fixed number of slices for the jth component of y. One of them, say sj
0
,

contains the cases with y = 0 (a missing value of the jth component of
y), the other slices, sj

h, h = 1, ...,Hj , are made by splitting the range
of the non-missing values of the jth component of y into slices of nearly
equal weight.

The two estimated e.d.r. directions, b̂1 and b̂2 , are the eigenvectors
corresponding to the two largest eigenvalues of Σ̂−1M̂T . These vectors
form a Σ̂-orthonormal basis of the estimated e.d.r. space Ê = Span(B̂)

where B̂ = [b̂1, b̂2].
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• Step 2: Estimating the direction of γj , j = 1, 2. We get these

directions by the canonical analyses of (Ê, E1) and (Ê, E2). Let v̂j be the

eigenvector associated with the largest eigenvalue of P̂Ej
P̂ÊP̂Ej

, where

P̂Ê = B̂(B̂
′eΣ̂B̂)−1B̂

′eΣ̂ = B̂B̂
′eΣ̂ and P̂Ej

= Aj(A
′e
j Σ̂Aj)

−1AjΣ̂.
An estimation of the direction of γ̃j is given by

ˆ̃γj = A
′e
j v̂j .

Asymptotics. With classical asymptotic theory, we can obtain the conver-
gence in probability of the estimated directions to the true directions at rate
n−1/2:

ˆ̃γj = vj + Op(1/
√

n), j = 1, 2.

Asymptotic normality of ˆ̃γj , j = 1, 2 can be also derived from the asymp-

totic distribution of the canonical analysis matrix (that is
√

n(P̂Ej
P̂ÊP̂Ej

−
PEj

PEPEj
)) and the asymptotic distribution of the corresponding two major

eigenvectors. The estimates of the asymptotic covariances of the estimators
may be obtained through standard matrix calculus.

Simulation results. In order to evaluate the numerical behaviour of our ap-
proach, we conduct a simulation study with sample sizes n = 100 and 300 and
percentage of missing values of y around 50%. The quality of the estimates
has been measured by the square cosine between the true direction slope and
its estimate.
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