Marie Chavent 
email: marie.chavent@math.u-bordeaux1.fr
  
Jérôme Saracco 
email: jerome.saracco@u-bordeaux4.fr
  
Distribution-free and link-free estimation for a multivariate semiparametric sample selection model ⋆

Keywords: Multivariate Sliced Inverse Regression, Canonical Analysis, Semiparametric Regression Models

Most of the prevalent estimation methods for sample selection model rely heavely on parametric assumptions. We consider in this communication a multivariate semiparametric sample selection model and we develop a geometric approach to the estimation of the slope vectors in the outcome equation and in the selection equation. Contrary to most existing methods, we deal symmetrically with both slope vectors. The estimation method is link-free and distribution-free, it works in two main steps: a multivariate Sliced Inverse Regression step, and a Canonical Analysis step. We establish √ n-consistency and asymptotic normality of the estimates. We give results from a simulation study in order to illustrate the estimation method.

Introduction

In this communication, we consider sample selection models (SSM). Basically they are described by two equations. A selection equation gives the state (missing / non missing) of the dependent variable y as a function of explanatory variables, and an outcome equation gives the value of the multivariate dependent variable, when observed, as another function of some explanatory variables x. Numerous papers dealing with univariate SSM have been published. The adjective "univariate" refers to y ∈ ℜ. Here, we focus on multivariate SSM, that is when y ∈ ℜ q , q > 1.

Let us first give a brief overview of univariate SSM. When the dependent variable is univariate, [Heckman, 1979] introduced what is now regarded as the prototype selection model. [Amemiya, 1985] refers to this model as the type II Tobit Model:

(E1) : y * 1i = x ′ 1i β 1 + ε 1i (E2) : y * 2i = x ′ 2i β 2 + ε 2i (E3) : y 2i = I[y * 2i > 0] (E4) : y 1i = y * 1i y 2i (E5) : (ε 1i , ε 2i ) ′ |x i ∼ N (0, Σ), Σ = σ 2 1 σ 12 σ 12 σ 2 2
The observed variables are y 1i , y 2i and E3) is the selection equation, and equation (E4) is the outcome equation. Maximum Likelihood method is generally used to estimate such models. The score equation is highly non linear. The convergence of the algorithm heavily depends on the choice of good initial values, and the asymptotic properties of the estimate are very sensitive to the model specification. This has been discussed by [Goldberger, 1983], among others. Alternative methods have been designed. [Heckman, 1979] proposed a twostep method, estimating first the selection equation and using the result to estimate the outcome equation in a second stage. Many authors have considered parametric estimation methods. For a survey of these aspects, one may read [Amemiya, 1985], [Maddala, 1983], [Maddala, 1993] or [Blundell and Smith, 1993]. Semiparametric estimation methods have been developed to bypass the sensitivity to specification assumptions. They handle more general models, especially for the error specification. [Melenberg and van Soest, 1993] give a panorama of the semiparametric estimation methods for SSM. Most semiparametric estimation techniques of the SSM proceed in two stages. The first one gives a consistent estimate of the slope of the selection equation. Indeed, this equation can, on its own, be considered as a Probit Model. The second stage works with the non missing y's only, (i) building a biased estimate of the slope of the outcome equation, and (ii) correcting for this bias with the help of the first step estimated slope. [Duan and Li, 1987], [Ahn and Powell, 1993], [Lee, 1994] follow such a scheme. [Ichimura and Lee, 1991] estimate the two slopes simultaneously in a reasonable time, but calculating the asymptotic covariance of the estimators requires lengthy computations.

x i = (x ′ 1i , x ′ 2i ) ′ . Equation (
In this communication, we study a multivariate semiparametric SSM. We propose a geometric approach to the estimation of the slopes of the outcome and selection equations. As [Duan and Li, 1987] in the univariate case, we do not need any assumption about the link functions or the error distribution. Moreover, contrary to most existing methods, we deal symmetrically with both slopes. The method works in two steps. The first one performs a Multivariate Sliced Inverse Regression (MSIR) analysis. The second step converts the MSIR indices to estimates of the slopes by means of two Canon-ical Analyses. The corresponding numerical algorithm is fast and does not require starting values.

A semiparametric multivariate sample selection model

We consider the following semiparametric multivariate sample selection model:

y = g 1 (x ′ e 1 γ1 , ε 1 ) if g 2 (x ′ e 2 γ2 , ε 2 ) > 0 0 otherwise. ( 1 
)
where:

• The dependent variable is multivariate: y ∈ ℜ q . The value "0" for y in equation ( 1) symbolically indicates a missing (non observed) value.

Another symbol might be used to avoid any confusion with an observed value, 0, of y. • The functions g 1 and g 2 are unknown link functions, g 1 is called the observation link function and g 2 the selection link function. • The variables x1 ∈ ℜ p1 and x2 ∈ ℜ p2 are subvectors of the random vector

x ∈ ℜ p , assumed to be elliptically distributed with parameters µ = E[x] and V(x) = Σ. Let A ′ j , j = 1, 2 be the matrices which select the components of xj , j = 1, 2 in x. A j is p × p j , 2 ≤ p j < p. A j has exactly one "1" in each column and at most one "1" in each row, and its other elements are "0". So A j is of full column rank and such that xj = A ′ j x. It follows that x1 and x2 are elliptically distributed with parameters µ j = A ′ j µ, j = 1, 2 and Σ j = A ′ j ΣA j , j = 1, 2. Moreover, from the definition of A j 's we have: A ′ j A j = I pj . • The couple (ε 1 , ε 2 ) is a random error vector independent of x with an unknown distribution. • The slope parameters γ1 ∈ ℜ p1 and γ2 ∈ ℜ p2 are two unknown vectors.

In this model, our main purpose is to estimate the directions of the slopes γ1 and γ2 . Then, the link function g 1 and the state of y (missing/non missing) probabilities can be nonparametrically estimated.

One can observe that model ( 1) is a particular case of a multivariate two indices semiparametric regression models of the form

y = f (x ′ e β 1 , x ′ e β 2 , ε). (2) 
Model (2) has been introduced by Li (1991) when y ∈ ℜ. Li (1991) proposed the sliced inverse regression in order to estimate the subspace of ℜ p , spanned by β 1 and β 2 , which is called the e.d.r. (effective dimension reduction) space.

Some extensions of the SIR approach to multivariate y have been studied by [Aragon, 1997], [Li et al., 2003], [Saracco, 2005], or [Barreda et al., 2006].

We are going to consider model (1) as a particular kind of model ( 2), with extra information about the e.d.r. space, namely, structural zeros in the coefficients. To do this, we define γ j = A j γj ∈ ℜ p , j = 1, 2, that is we expand γj to a p × 1 vector with zeros corresponding to the non-selected components. So model ( 1) is writen: Let us assign identifiability conditions which ensure that we are working on a two indices model (that is dim(E) = 2): (i) Each vector x j , j = 1, 2, has at least an x-component not present in the other x j ′ , j ′ = j; such a component could be called j-specific. (ii) At least one component of γ j among the j-specific component is non null, j = 1, 2.

y = g(x ′ e γ 1 , x ′ e γ 2 , ε) (3) with ε = (ε 1 , ε 2 )
We now bring these conditions into a geometric perspective. Let E j = Span(A j ), E j ⊂ ℜ p , dim(E j ) = p j . The identifiability conditions are:

(i) E 1 ⊂ E 2 and E 2 ⊂ E 1 , (ii) E ∩ E 1 = E and E ∩ E 2 = E.
Let us consider more closely the linear subspace E ∩ E j . Since dim(E) = 2, dim(E ∩ E j ) ≤ 2. From the definition of E and E j , γ j ∈ E ∩ E j , thus dim(E ∩ E j ) ≥ 1. But because of the identifiability conditions, for j ′ e = j, γ j ′ e ∈ E and γ j ′ e ∈ E j , thus γ j ′ e ∈ E ∩ E j and dim(E ∩ E j ) < 2. Finally, dim(E ∩ E j ) = 1 and E ∩ E j ⊂ ℜ p is spanned by γ j .

Population and sample approaches

The idea is to use multivariate sliced inverse regression in order to find another basis of E = Span(γ 1 , γ 2 ), the e.d.r. space. Let us call this basis {b 1 , b 2 }. These vectors are Σ-orthogonal. Since the matrices A 1 and A 2 are known (and so are the subspaces E 1 and E 2 ), two canonical analysis of the couples (E, E 1 ) and (E, E 2 ) give us bases of E ∩ E 1 and E ∩ E 2 .

Population version

• For model (3), [Saracco, 2005] has shown that pooled marginal sliced inverse regression provides a basis denoted {b 1 , b 2 } of the e.d.r. space E, the only novelty is to consider a transformation (slicing) T (.) which does not modify the missing y value. The vector b j are the eigenvectors corresponding to the two largest eigenvalues of

Σ -1 M T . Lest us denote B = [b 1 , b 2 ],
we have Span(B) = E. • Let us consider two subspaces F and G of ℜ p equipped with the inner product Σ. Canonical analysis is a useful tool to find out a Σorthogonal basis of F ∩ G. This basis is formed by the eigenvectors corresponding to the eigenvalue 1 of P F P G , where P F and P G are the Σ-orthogonal projectors onto F and G. Specifically, we take F = E and G = E j , j = 1, 2. Thus, P E = B(B ′ ΣB) -1 B ′ Σ = BB ′ Σ and and

P Ej = A j (A ′ j ΣA j ) -1 A ′ j Σ.
It is equivalent and simpler to diagonalize P Ej P E P Ej which is a Σ-symmetric matrix. Let us call v j the unique eigenvector corresponding to the eigenvalue 1; v j is colinear to γ j and is normalized: v ′ j Σv j = 1. We next derive a vector, ṽj , colinear to γj :

ṽj = A ′ j v j .
This vector ṽj is normalized: ṽ′ j Σ j ṽj = 1 where Σ j = A ′ j ΣA j .

Estimation of the directions

As was precised in the former section, the directions are obtained from computations based only on covariance matrices. Substituting estimates in place of these matrices yields estimated directions. Let {(y i , x i ), i = 1, ..., n} be a sample from the reference model (1). Let Σ be the empirical covariance matrix of the x i 's.

• Step 1: Estimating a basis of the e.d.r. space E by pooled marginal sliced inverse regression. We can apply the usual procedure in order to obtain M T , the estimates of the matrix M T . The only constraint is about the slicing of each y component. Let H j + 1 be a fixed number of slices for the jth component of y. One of them, say s j 0 , contains the cases with y = 0 (a missing value of the jth component of y), the other slices, s j h , h = 1, ..., H j , are made by splitting the range of the non-missing values of the jth component of y into slices of nearly equal weight. The two estimated e.d.r. directions, b1 and b2 , are the eigenvectors corresponding to the two largest eigenvalues of Σ-1 M T . These vectors form a Σ-orthonormal basis of the estimated e.d.r. space = Span( B) where B = [ b1 , b2 ].

• Step 2: Estimating the direction of γ j , j = 1, 2. We get these directions by the canonical analyses of ( Ê, E 1 ) and ( Ê, E 2 ). Let vj be the eigenvector associated with the largest eigenvalue of PEj P Ê PEj , where P Ê = B( B′ e Σ B) -1 B′ e Σ = B B′ e Σ and PEj = A j (A ′ e j ΣA j ) -1 A j Σ. An estimation of the direction of γj is given by γj = A ′ e j vj .

Asymptotics. With classical asymptotic theory, we can obtain the convergence in probability of the estimated directions to the true directions at rate n -1/2 : γj = v j + O p (1/ √ n), j = 1, 2.

Asymptotic normality of γj , j = 1, 2 can be also derived from the asymptotic distribution of the canonical analysis (that is √ n( PEj P Ê PEj -P Ej P E P Ej )) and the asymptotic distribution of the corresponding two major eigenvectors. The estimates of the asymptotic covariances of the estimators may be obtained through standard matrix calculus.

Simulation results. In order to evaluate the numerical behaviour of our approach, we conduct a simulation study with sample sizes n = 100 and 300 and percentage of missing values of y around 50%. The quality of the estimates has been measured by the square cosine between the true direction slope and its estimate.

  and g(t, u, e) = g 1 (t, e 1 )I[g 2 (u, e 2 ) > 0], where e = (e 1 , e 2 ) and I[.] denotes the indicator function. Let us define E = Span(γ 1 , γ 2 ) ⊂ ℜ p . Without additional conditions, we have dim(E) ≤ 2. If γ 1 and γ 2 are linearly then dim(E) = 2, and {γ 1 , γ 2 } determines a basis of the e.d.r. space.