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Abstract: This paper presents a Fault Detection and Isolation (FDI) method based on a 
fuzzy evaluation of residuals. The advantages of this non-Boolean evaluation are 
described. The ability of this approach to integrate a persistence index of the residual 
deviations and the sensitivity of the residuals with regard to faults is particularly studied. 
Some results issued from the implementation of the proposed approach on an urban water 
supply network illustrate its pertinence. Copyright © 2000 IFAC 
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1. PROBLEM POSITION 
 

Chow and Willsky (1984) have described the 
organization of a model-based Fault Detection and 
Isolation (FDI) procedure. The first stage of the 
proposed procedure is the generation of residuals that 
are revealing of the concordance between the model 
corresponding to the normal functioning state and the 
measurements. The second stage concerns the 
residual evaluation in order to detect and locate the 
eventual faults occurring on the system. The residuals 
are subjected to statistical testing, to eliminate, or at 
least alleviate, the noise effects. The test thresholds 
are determined on the basis of the nominal noise 
variances. Each individual test yields a Boolean 
decision, the full set of parallel tests resulting in a 
Boolean vector that is called the failure signature. 
This experimental signature is then compared with 
the columns of the theoretical signature matrix that 
indicates the occurrence of the variables (or faults) in 
the different equations (or residuals). 
 
In practice, a fault of intermediate size may cause 
some of the tests fire while others not. So the 
resulting signature is a degraded version of the 
theoretical ones. If there is a failure that corresponds 
to this degraded signature, this partial firing leads to 
misisolation of the fault. Gertler and co-workers 
(Gertler, 1991, Gertler and Anderson, 1992) have 
extensively studied this problem and have proposed 
some solutions to enhance the isolation of faults. 
Despite these enhancements this type of approaches 
is still difficult to implement because the obtained 
decision is “absolute”; no means are given to 
appreciate the quality of the result of the decision 
process. 
 

Alternate approaches that recognize the role of 
uncertainty are required. In the proposed method, 
incremental changes in the plant state results in 
incremental changes in degrees of belief of fault 
hypotheses. This eliminates the noise effects that 
become dominant when residual values are near 
threshold values. Also, a ranking of probable faults is 
obtained (Kramer, 1987). 
 
The proposed paper will be organized as follows. In a 
second section, a short introduction recalls the basic 
principles of model-based fault detection and 
isolation methods. In particular, the isolation of faults 
based on a comparison of an experimental fault 
signature to theoretical signatures is explained. The 
drawbacks of this type of methods are pointed out. 
The third section concerns the fuzzy based fault 
isolation. A new conjunction operator for evaluating 
the truth degree of the rules is presented. Its structure 
is justified with regard to the problem of fault 
detection and isolation. 
 
One of the drawbacks of the classical methods is the 
instability of the decision with regard to time when 
the residual values are near the thresholds. That leads 
to an unceasing switch between the normal (no fault) 
and fault situations. In order to remedy to this 
situation a persistence index is introduced in the 
calculus of the membership grade of the residuals to 
the different modalities. It will be presented in the 
fourth part of the proposed paper. Moreover, it will 
be shown that the flexibility of the method also 
allows the sensitivity of the residuals to be taken into 
account in the fuzzy evaluation. Some results issued 
from the implementation of the proposed method on 
an urban water supply network will be provided. 
 
 



 
2. FDI BASED ON A BOOLEAN SIGNATURE 

ANALYSIS 
 
As previously mentioned, model-based FDI 
encompasses two main steps: generation of residuals 
and decision. This latter itself may be split up in a 
stage of fault detection and a stage concerning fault 
isolation (or localization). 
 
Let us consider the following set of four residuals ri  
that link three measurements x j : 

 
r1 = f1( x1, x2 )
r2 = f2(x1,x3)
r3 = f3(x1,x2,x3)
r4 = f4( x2, x3)

 

 
 

 
 

 (1) 

 
The theoretical matrix of fault signature, Σ, is defined 
by coding with binary variables, the occurrence of 
variables in the different residuals. For the considered 
example, we have: 
 

Σ =

1 1 0
1 0 1
1 1 1
0 1 1

 

 

 
 
 

 

 

 
 
 

 (2) 

 

This matrix expresses the theoretical influence of the 
faults onto the residuals. Indeed, to the jth column 
(signature) of Σ that will be denoted Σ .j , may be 
associated the fault δ j . Then, the corresponding 
signature indicates how the fault affects the different 
residuals. A signature corresponding to a normal 
functioning may complete this matrix; this one is only 
constituted of null elements. 
 
Statistical methods of abrupt change detection permit, 
at each sample time k, to code in a binary form also, a 
set of experimental residuals ri (k) ,   i = 1,K, N : 
 

si (k) = 0, if the taking into account of the value 
ri (k)  in the analysis allows an abrupt change in ri  to 
be detected 
 

si (k) = 1, if this value does not allow an abrupt 
change in the residual ri  to be detected. 
 
By this way, one builds the experimental signature 

  
S(k) = s1(k) L sN (k)( )T

. The fault localization is 
then obtained by searching, in the theoretical 
signature matrix, that corresponding to the observed 
experimental signature. 
 
In practice, the experimental signatures are often 
degraded. The most frequent situation is the 
transformation of a “1” into a “0” corresponding to a 
non-detection. This situation has been extensively 
studied by Gertler (Gertler, 1988), (Gertler and 
Singer, 1990), (Gertler and Anderson, 1992). Indeed, 
according to the residual sensitivity to certain faults 
(this sensitivity does not intervene in the proposed 
coding), certain small magnitude faults cannot been 
detected by the proposed statistical tests. The 

localization must therefore been done with the help of 
a distance calculus between the experimental and 
theoretical signatures. The most likelihood fault is 
that corresponding to the theoretical signature closer 
to the experimental one. The most frequently 
employed signatures are the Euclidian one, defined 
by: 
 

d j (k ) = Σ ij − si (k)( )2

i =1

N
∑
 

 
 

 

 
 

1/2

d j (k ) = Σ. j − S(k )( )T
Σ. j − S(k )( ) 

 
  

 
 

1/2
 (3) 

 
and the Hamming distance: 
 

d j (k ) = Σij ⊕ si (k)( )
i =1

N

∑  (4) 

 
where the symbol ⊕  denotes the logic exclusive or 
operator. 
 
The performance of this recognition step depends on 
the dissimilarity of the theoretical signatures. In the 
vector space 0,  1{ }N , the points representing the 
binary vectors of signatures must be as distant as 
possible. The goal of the structuration of residuals is 
precisely to increase the distances between the 
different theoretical signatures. Indeed, facing with k 
decision errors when analyzing the experimental 
residuals, it needs a Hamming distance equal, at least, 
to 2k + 1 for guaranteeing a correct localization of a 
fault. 
 
More information may also be kept by using a ternary 
coding of the residuals that take into account the sign 
of the detected abrupt change. In this case, we have: 
 
si (k) = 1, if the detected abrupt change in the 
residual ri  is positive, 
 

si (k) = −1, if the detected abrupt change in the 
residual ri  is negative 
 
A similar analysis to those previously presented 
allows the fault to be detected. 
 

3. NON-BOOLEAN EVALUATION OF 
RESIDUALS 

 
The method presented in this paragraph uses a non-
Boolean inference technique and is based on 
elementary notions related to fuzzy set theory. A 
fuzzy set is characterized by a membership function 
expressing the progressive character of the transition 
between "belonging" and "not belonging". It is then 
defined by: 
 
A= x,µ A(x)( )  x ∈ X{ } (5) 

where µ A( x)  represents the membership function of 
the x element to the fuzzy set A defined on the 
definition support X and taking values in the interval 
[0,  1] . 



 

 

Fuzzy sets can represent "linguistic variables" which 
express a qualitative or imprecise knowledge such 
that "the temperature is low" or "the magnitude of the 
residual is great". 
 
For the residual analysis, three fuzzy sets or 
modalities have been defined. The modality ri

+  
(respectively ri

−  and ri
0 ) is related to a "positive" 

residual (respectively “negative” and “null”) in a 
linguistic sense. For a residual ri (k) , the membership 
functions to these modalities are defined on the 
following manner: 
 

µ ri
0 (k) = 1 −

ri (k) τ i( )ρ

1 + ri (k) τ i( )ρ
 (6a) 

 

µ ri
+ (k) =

0 si  ri (k) ≤ 0
1− µ

ri
0 (k) si  ri (k) > 0

 
 
 

 (6b) 

 

µ ri
_ (k) =

1− µri
0 (k) si  ri (k) ≤ 0

0 si  ri (k) > 0

 
 
 

 (6c) 

 
where ρ  even real and τ i  are shape parameters 
chosen by the user. Notice that (µ ri

0 (k)  is a 
simplified notation that stands for µ ri

0 (ri (k)) ). 
 
The figure 1 shows the shape of these membership 
functions. 
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Figure 1. Aspect of the membership functions 
 
The fault localization is based on a conjoined 
analysis of the residuals and the theoretical signature 
matrix. Let us consider the following signature 
matrix: 
 

Σ =
1 −1 0

−1 0 0
0 −1 0

 

 
 
 

 

 
 
  

 
related to three residuals and two potential faults (the 
third column corresponds to the absence of fault) 
 
This matrix express, for example, the fact that a 
positive fault f1

+  (first column of the matrix) induces 
a positive deviation of the first residual, a negative 
one of the second and does not influence the third 
residual. 
 
Fault isolation corresponds to solve the reverse 
problem, i.e. deduce, from the different residuals 

values, the variable that is affected by the fault(s). 
For that purpose, one constitutes, from the signature 
matrix, a rule base (fuzzy inference rules) linking 
symptoms (residual deviations) to causes (occurrence 
of fault(s)). Each rule is made up of a premise part 
related to the different residuals and a consequence 
part related to a fault. For example, from the previous 
signature matrix and for the fault f1

+ , one can write: 
 
if  r1(k)  is r1

+
 and r2(k )  is r2

−
 and r3(k)  is r3

0
 then f1

+  
 (7) 
The quantifying of the different propositions is done 
by the means of membership grades of the residuals 
to the different modalities. For example, the premise 
proposition “r1(k)  is r1

− ” is quantified by the value 
µ r1

−  of the membership grade of r1(k)  to r1
− . 

 
At each instant and for each rule of the base, the truth 
degree of the consequences (or the truth degree of the 
rules) must be evaluated with regard the validity of 
the premise. The “and” operator in the rule (7) is an 
aggregation or conjunction operator that describes the 
combination of the membership grades of the premise 
used for the elaboration of the truth degree of the 
corresponding rule. Various conjunction operators 
can be used as for example the "product", the 
“minimum” or the “mean” (Bouchon-Meunier, 1995). 
Considering the rule (7) related to fault f1

+ , and 
using these operators, the truth degrees are given by 
the following expressions: 
 
µ f1

+ (k) = µr1
+ (k)µr2

− (k)µr3
0 (k)  (8a) 

µ f1
+ (k) = min µ r1

+ (k),  µ r2
− (k),  µr3

0 (k) 
 

 
  (8b) 

µ f1
+ (k) =

1
3

µr1
+ (k) + µ r2

− (k) + µ r3
0 (k) 

 
 
  (8c) 

 
Nevertheless, these operators are not well adapted for 
the problem of fault isolation. Indeed, in the case 
where, among the set of residuals which intervene in 
the premises of a rule, one of them is weakly affected 
by a fault (due to a weak sensitivity of the residual or 
a small magnitude fault), the use of the minimum or 
product operators leads to a very small truth degree 
of this rule. The mean operator is less sensitive to this 
phenomenon; however, if the number of non-sensitive 
residuals to a particular fault is too much important 
(with regard to the number of residuals that are 
sensitive to the fault), it may produce relatively high 
value of truth degree of the rule even when the 
considered fault has not occur. 
 
In order to alleviate these problems, Denis Mandel 
(Mandel, 1998) proposed to take into account 
separately, on one hand the modalities ri

0  and, on the 
other hand, ri

+  and ri
− , by combining minimum and 

mean operators. The resulting aggregation operator is 
then defined as the minimum of the mean of the 
membership grades related to ri

0  modalities and the 
mean of the membership grades related to ri

+  and 
ri

− . In the particular case of the rule (7), its 
expression is given by: 



 

µ f1 (k) = min µr3
0 (k),

µ
r1

+ (k) + µ
r2

− (k)

2

 

 
  

 

 
   (8d) 

 
The isolation of the fault is based on the analysis of 
the truth degree of the rules. Indeed, the rule which 
truth degree is the highest designates the most 
likelihood fault. 
 

4. ENHANCEMENT OF THE METHOD 
 
Two enhancements of the described method are 
proposed. The first one concerns the taking into 
account of the persistence of a symptom. Indeed, in 
the previous approach, only the magnitude of the 
residuals is analyzed through the different 
membership grades. If the magnitude of the fault is 
continuously small, the associated truth degree of the 
corresponding rule remains small. By combining the 
magnitude of the residuals and the persistence of their 
deviations, it is possible to obtain a high truth degree 
of the rule associated to a certain fault even if this 
fault is very small but persistent. 
 
For taking into account this notion of persistence, the 
membership grades of the residuals to the different 
modalities are modified following this scheme. 
 
Let us considered an observation window comprising 
L samples of a residual ri  (ri (l ) , l = k − L + 1,.. .,k). 
Let S be a chosen threshold and N µ( ) the number of 
values of the membership grade µ  which go beyond 
this threshold S during this window. On this basis, 
three persistence indexes pi

+ , pi
−  and pi

0 
corresponding to the persistence of the membership 
grades are evaluated. These indexes are equal to the 
ratio between the number N µ( ) and the number of 
the window samples L. For example, for the modality 
ri

− , the persistence index is given by: 
 

pi
− (k) =

N µ
r
i
−

 
 
 

 
 
 

L
 (9) 

 
Therefore, new membership grades ˜ µ  taking into 
account both the magnitude of the residuals and the 
persistence of their deviations are defined. Always 
for ri

−  modality, we have: 
 

˜ µ 
ri

− (k) =
pi

−(k ) + µ
r
i
− (k)

2
 (10) 

 
The choice of this ordinary mean is arbitrary and a 
more sophisticated weighted mean can be employed 
according the relative importance of magnitude and 
persistence of residuals. 
 
These new membership grades ˜ µ  are then used, in 
replacement of the old ones (6), in the proposed 
approach. 
 

The second enhancement that can be proposed 
concerns the integration of the sensitivity of the 
residuals with regard to faults. The presentation only 
deals with the situation where residuals are linear 
functions of measurements although the method can 
be extended, by using linearization techniques, to the 
nonlinear case. 
 
In the linear case, the set of residuals may be 
expressed as R= MX , where X is the vector of 
measurements, R the vector of residuals and M the 
matrix of redundancy equations. In this situation, it is 
easy to evaluate the sensitivity of a particular residual 
to a given fault. Let us denote dij  the magnitude of 
the fault on the jth variable that implies an overshoot 
of a given threshold of the ith residual (for example, 
this upper bound may be chosen equal to τ i  
corresponding to a membership grade equal to 0.5). It 
is clear that the sensitivity of the ith residual to the jth 
fault evolves inversely with the magnitude dij . This 
remark helps to define weighting factors on the basis 
of these sensitivities as: 
 

δ ij =

1
dij

1

dijj
∑

 (11) 

 
that corresponds to a kind of "normalized 
sensitivities". These coefficients δ ij  are then used as 
weighting factors of the membership grades µ ri

+  and 
µ ri

−  used in the jth rule. For example, expression 
(8d) related to rule (7) is transformed as follows: 
 

µ f1
+ (k) = min µ r3

0 (k),
δ11µr1

+ (k) + δ21µ r2
− (k )

δ11+ δ21

 

 
  

 

 
   (12) 

 
Of course the two proposed enhancements of the 
method may be implemented simultaneously. 
 

5. APPLICATION TO A URBAN WATER 
SUPPLY NETWORK 

 
The proposed approach has been applied on an urban 
water supply network. This process is depicted 
schematically in figure 2. The part of the water 
network considered in this study is the storage 
network. The function of this network consists, with 
help of pumping stations, in sharing out water 
reserves among the whole agglomeration, before its 
distribution to the consumers. More precisely, the 
storage network is composed of pumping stations that 
make up an arborescent network of about thirty tanks. 
On account of its importance for the water 
distribution reliability, the managers pay a great 
attention to the supervision of the storage network. 
Consequently, this part of the network has been 
supplied with numerous measuring devices. Indeed, 
to each tank corresponds a water level measurement 
and almost all the flowrate variables, roughly a 
hundred, are measured. 
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Figure 2. Water supply network 
 
Due to lack of space, the results obtained by the 
suggested approach only concern one of the pumping 
stations. This latter is made up of four interconnected 
tanks. The measurements collected are the water level 
(hi ) of the tanks, different flowrates (qi ), binary 
variables indicating the state (on/off) of the pumps 
(wi ) and some pressure variables (pi ). Figure 3 
shows some experimental signals (from top to 
bottom, a water level, a flowrate, an outflow of a 
pump, a binary state variable of a pump and a 
pressure). The sampling period of these 
measurements is equal to 1 minute. 
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Figure 3. Experimental signals 
 

Four types of redundancy equations has been 
established. The first one concerns dynamic material 
balance expressed for each tank while the second 
links nominal outflows of the pumps, binary state 
variables and measured outflows of the considered 
pumps. These two types of equations are considered 
as "exact". The two other redundancy equations, 
which are established by using a correlation analysis, 

link on one-hand, flowrate and pressure 
measurements and, on the other hand, flowrates 
between themselves. Indeed, it is clear that water 
consumptions of some residential areas are very 
similar and present same cyclic shape. These last two 
types of redundancy equations are more "incertain" 
as their describing parameters are estimated on the 
basis of sets of measurements. 
 
The detection and the localization of two different 
faults are now presented. The residuals presented 
figure 4 has been calculated from experimental data 
on a time period of about 10 000 minutes. During this 
time, residuals r13 and r32  are clearly perturbed by a 
fault. On the contrary, residuals r36  and r38  remain 
statistically null during this period. Expressions (13) 
give the structure of the redundancy equations that 
have been used for generating these residuals. 
 

  
r13 =R 1(−q39, −q40, −q41,−q42,+ q44)  (13a) 

  
r32 =R 2(+q39,−q40 )  (13b) 

  
r36 =R 3(+q40, −q41)  (13c) 

  
r38 =R 4(+q41, −q42 ) (13d) 
 
One observes that q39  and q40  variables intervene 
both in the calculus of r13 and r32  residuals. 
However, the measurement of the flowrate q40  
cannot be suspected to be faulty because it intervenes 
with a minus sign in the calculus of these two 
residuals whereas the signs of the two residual 
deviations are opposite. Moreover, the flowrate q40  
also intervene in the calculus of the residual r36  that 
is not affected by this fault. Consequently, the 
measurement q40  is strongly suspected. 
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Figure 4. Experimental residuals 
 
The fault hypothesis corresponding to negative faults 
(respectively positive) that affect q39 , q40  and q41  
are denoted f39

−  (resp. f39
+ ), f40

−  (resp. f40
+ ) et f41

−  
(resp. f41

+ ). The truth degrees of these hypotheses 
(rules) are shown figure 5. The more likelihood 
hypothesis corresponds to a positive fault on q39 . 
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Figure 5. Truth degrees of fault hypotheses 
 
The analysis of the evolution of q39  flowrate (figure 
6) confirms the occurrence of a fault between 
samples 4 424 to 5 172. Although the proposed 
method has been mainly designed for the detection of 
sensor faults, a more precise analysis of this 
particular situation has shown that this fault 
corresponded to a leak (in fact a process fault) of 
about 30 m3 / h , during about 12 hours. 
 

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

10

20

30

40

50

60

70

80

90

minutes

0

m3/h

 
 

Figure 6. Temporal evolution of q39  
 

The second fault situation points out the importance 
of the integration of residual sensitivity to the 
different faults. Figure 7 shows the temporal 
evolution of the measurement of a pump outflow 
(q36). From sample 5670, this measurement is 
affected by a bias. During a first period, this bias is of 
low magnitude, then, in a second period, this 
magnitude becomes very high. As in the second 
period, the detection of this fault is easy; it is not the 
case during the first one. 
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Figure 7. Temporal evolution of q36  
 

Remark that this bias only appears when the pump is 
functioning as measurement of the flowrate is 
automatically set up to zero by the programmable 
logic controller when the pump is stopped. Figure 8 
presents the truth degrees of the hypothesis f36

+   

corresponding to the occurrence of a positive fault on 
the flowrate q36  with and without taking into account 
the sensitivity of the residuals to this fault as 
described in section 4. 
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Figure 8. Truth degrees of fault hypotheses 
 

In the first case, the truth degree of hypothesis f36
+  

stays around the value 0.5 during the first period due 
to the weak sensitivity of certain residuals to this 
fault. Taking into account these different sensitivities 
allows the contrast between the normal and fault 
situation to be enhanced as shown by the second 
figure where the truth degree of hypothesis f36

+  is 
close to 1 as early as the fault occurs.  
 

6. CONCLUSION 
 
A Fault Detection and Isolation method based on 
fuzzy evaluation of residuals has been elaborated and 
implemented for the supervision of a water 
distribution network. If the fuzzy evaluation of the 
residuals has already been presented elsewhere, the 
main contribution of the study concerns the definition 
of a new conjunction operator well adapted to fault 
isolation and the integration of additional information 
such the persistence of the faults or the fault 
sensitivity of the residuals. For this application 
concerning a water distribution network, the fuzzy 
approach has demonstrated its superiority with regard 
to most classical approaches. Indeed, all the available 
data has been taken into account in order to produce 
the most accurate diagnosis of the process. 
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