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Abstract

This paper studies the global asymptotic stability of the
nonlinear systems described by the multiple model approach
using the Takagi-Sugeno (T-S) fuzzy modelling. New
sufficient conditions for the stability of such systems are
given. Stability analysis is derived via Lyapunov technique
and LMIs (Linear Matrix Inequalities) formulation obtained
from BMIs (Bilinear Matrix Inequalities) linearisation.
Following a similar approach, sufficient conditions to
guarantee the stability of T-S fuzzy systems for both T-S
fuzzy controllers and T-S fuzzy observers are derived. The
stabilisation of the closed loop continuous T-S fuzzy models
is discussed using the well-known PDC (Parallel Distributed
Compensation) technique.

1  Introduction

The issue of stability and stabilisation of Takagi-Sugeno (T-
S) fuzzy control systems has been considered extensively in
nonlinear frameworks. The major advantage of the modelling
approach proposed by T-S (or Takagi-Sugeno-Kang) [5][6] is
the fact that this one has been shown to be a universal
approximator [9][14][17]. Universal approximator means that
given any real-valued continuous function on a compact
subset of n , there is a T-S fuzzy model that will
approximate this function to any accuracy [14]. Universal
controllers mean that given any process that can be controlled
by a continuous-time controller, it can also be controlled by a
T-S fuzzy controller [14]. The  T-S fuzzy models are
described by a set of fuzzy "If ... then" rules with fuzzy sets in
the antecedents and dynamic LTI systems in the consequent.
These sub-models are considered as local linear models, the
aggregation of which represent the nonlinear system
behaviour.
For example, Tanaka and Sugeno presented sufficient
conditions for the stability of T-S models [19] using a
quadratic Lyapunov approach. The stability depends on the
existence of a common positive definite matrix guarantying

the stability of all local subsystems. These stability conditions
may be expressed in linear matrix inequalities (LMIs) form
[20]. The obtaining of a solution is then facilitated by using
numerical toolboxes for solving such problems. Recently LMI
constraint has been added to compute a decay rate and to
guarantee that the control law action does not permit an
exceeding of a pre-defined norm-bound of input and output
signals [2][21]. LMIs constraints have also been used for pole
assignment in LMI regions to achieve the desired fuzzy
controllers and fuzzy observer’s performances [16][18].
However, if the number of sub-models is large, it might be
difficult to find a common matrix that simultaneously
stabilises all the local models. Moreover, these constraints are
often very conservative and it is well known that, in a lot of
cases, such a common positive definite matrix does not exist,
whereas the system is stable.
To overcome this limitation, some works have been
developed in order to establish new stability conditions by
relaxing some of the previous constraints. So one way for
obtaining relaxed stability conditions consists to use a
piecewise quadratic Lyapunov function formulated as a set of
LMIs [22]. Using the PI fuzzy controller and the Lyapunov
technique, the authors in [23] show that asymptotic stability
of the Takagi-Sugeno fuzzy systems can be ensured under
certain restrictions on the control signal and the rate of change
of the output. Jadbabaie in [24] uses a non-quadratic
Lyapunov function to prove the stability of the T-S fuzzy
systems by fixing an a priori bound on the variation of the
state. In [15] using LMIs technique and non-quadratic
Lyapunov function, a systematic way to pick the bound of
state variable vector is derived to prove the stability and the
stabilisability of the T-S fuzzy systems.

Using the Lyapunov technique and LMI formulation, the aim
of this paper is to derive new sufficient conditions for stability
of the T-S fuzzy models and also for both T-S fuzzy
controllers and T-S fuzzy observers. The stabilization is
discussed using the PDC technique [1][2][13].

This paper is organised as follows: section 2 presents an
overview of T-S fuzzy systems. In section 3 we recall the
LMI formulation of basic quadratic stability conditions. In
section 4, we develop new sufficient conditions to prove the
stability of T-S continuous fuzzy systems. In sections 5 and 6,
using the concept of PDC to perform control laws, a similar
approach is used for the design of fuzzy controllers and fuzzy



observers. For solving the obtained BMIs problem, a
linearisation method is used.

Notation
In this paper, we denote the minimum and maximum
eigenvalues of the matrix X by min ( )X and Max X( ) , the

conjugate transpose of X  by X*, the transpose of X  by XT .
The Hermitian and non Hermitian parts of a matrix X ,
respectively denoted by Xh and X , are defined as follows,

X X Xh = +1

2
( )* , X X X= 1

2
( )* .

k X( )is the kth eigenvalue of the matrix X .

2 Continuous Takagi-Sugeno systems

The T-S fuzzy models are described by a set of fuzzy
“If…then” rules with fuzzy sets in the antecedents and
dynamic LTI systems in the consequent. These sub-systems
represent local linear input-output relations of a non-linear
system. A general T-S plant rule can be written as follows:

i rule:th

IF is F and...and is F1
i

q
iz t z tq1( ) ( )

THEN ( ) ( ) ( )x t A x t B u ti i= +                i n1,...,

where n is the number of rules (sub-models), x t p( )  is the
state vector, y t l( )  is the output vector, u t m( )  is the

input vector, A Bi
pxp

i
pxm, , z t q( )  is the premise

variable, depending on the measurable state variables and,
possibly, on the input.

The global T-S fuzzy system is inferred as follows:
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where  z t f z ti j
i

j
j

q

( ( )) ( ( ))=
=1

and f z tj
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j( ( )) is the membership grade of z tj ( )  to the fuzzy

set Fj
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i
i

i
i

n
z t

 z t

 z t

( ( ))
( ( ))

( ( ))

=

=1

                                               (2)

i z t( ( ))  is the normalised membership function in relation
with the ith sub-system such that:
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Equation (1) can be rewritten as:

( ) ( ( ))( ( ) ( ))x t z t A x t B u ti i i
i

n

= +
=1

                                  (4)

The final output of T-S fuzzy model is also inferred as
follows:

y t

 z t C x t

 z t

i i
i

n

i
i

n( )

( ( )) ( )

( ( ))

= =

=

1

1

, that is

y t  z t C x ti i
i

n
( ) ( ( )) ( )=

=1

                    (5)

3  Basic stability conditions

The open-loop T-S fuzzy system of (4) is defined as:

( ) ( ( )) ( )x t z t A x ti i
i

n

=
=1

                             (6)

Let us recall first the basic stability conditions of the open-
loop system (6) derived using quadratic Lyapunov function.

The continuous fuzzy system described by (6) is globally
asymptotically stable if there exists a common matrix
P PT= > 0  such that [19]:

A P PA i ni
T

i+ < 0 1,...,                                            (7)

The existence of such a common positive definite matrix
described by LMIs (7) is a key to check the global stability of
a T-S continuous fuzzy system.

The authors in [10] propose an analytic way to finding a
common P in the particular case where the matrices Ai are
asymptotically stable and commute pairwise.

For a given positive definite matrix Q, let P1,…, Pn be the
unique solution of the following Lyapunov equations:

A P P A Q
A P P A P i n

T

i
T

i i i i

1 1 1 1

1 2
+ =
+ = ,...,

                  (8)

If the following assumption is made:

A A A A i j ni j j i= , ,...,1



i.e. all matrices commute pairwise, then the T-S fuzzy system
(6) is globally asymptotically stable and have as a common
lyapunov function V x x P xT

n( ) =  [10].

These results mean that a sufficient condition for the
existence of a common P is that each Ai must be
asymptotically stable and commute pairwise.

It is also shown that a common P exists only if the following
conditions hold [8]:

A A i j ni j+ < 0 1, ,...,                  (9)

The proof can be easily obtained by summing the LMIs (7).
This result means that a necessary condition for the existence
of a common P is that each Ai and ( )A Ai j+  must be stable.

These above conditions show clearly the conservativeness of
the method, i.e. we can find T-S fuzzy systems that are stable
but for which there is no common P to prove the stability.

4  Stability analysis

In this section, we present a new sufficient condition for the
global asymptotic stability of an unforced continuous  T-S
fuzzy model (6).

We need the following theorems to prove Theorem 3

Theorem 1 [7]: Weyl inequality
Let X  and Y  be Hermitian matrices. Then the eigenvalues of
X Y+  are such that k s1,...,

min max( ) ( ) ( ) ( ) ( )Y X X Y X Yk k k+ + +

Where
min max( ) ( ) .. ( ) .. ( ) ( )X X X X Xk s= =1          

Theorem 2 [25]   
Let X  be square matrix. Xh  and X , the Hermitian and non-
Hermitian matrices related to X . Then k s1,...,

min max( ) ( ( )) ( )

min ( ( )) ( ( )) max ( ( ))

X e X X

J
X m X

J
X

h k h

k
1 1

Where J 2 1= .           

Considering the unforced system (6) rewritten as

( ) ( ( )) ( )x t A z t x t= , where A z t z t Ai i
i

n

( ( )) ( ( ))=
=1

the Hermitian and non Hermitian matrices of A z( ) , A zh ( )  and
A z( ) , can be expressed as follows

A z t z t Ah i ih
i

n

( ( )) ( ( ))=
=1

A z t z t Ai i
i

n

( ( )) ( ( ))=
=1

Taking into account the properties of the normalised
membership function (3), it directly follows from theorem 1
that
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Theorem 2 applied to (10) allows the following inequality to
be deduced.
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            (11)

k s1,...,

So if

max ( ) ,...,A i nih < 0 1

then the T-S model (6) is globally asymptotically stable. The
following theorem describes this sufficient conditions for
stability.

Theorem 3
Suppose that there exist symmetric positive definite matrices
Pi  such that

A P P A i nih i i ih+ < 0 1,...,

where Aih  is the Hermitian matrix related to Ai ,  then the
global T-S fuzzy model (6) is globally asymptotically stable.

          

Remark:

Since i
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n
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=
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1

1, we note that
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ihz t A A A( ( )) ( ) min( ( )) , max( ( ))min min min
= = =1 1 1

Consequently,  (11) implies

min ( ) ( ( ( ( )))) max ( )min max
i

n

ih k
i

n

ihA e A z t A
= =1 1

Obviously, if max ( )max
i

n

ihA
=

<
1

0  then the system (6) is

globally asymptotically stable.

By theorem 2, the imaginary part of the eigenvalues of
A z t( ( ))  can be expressed as follows

min ( ( )) ( ( ( ( ))))

( ( ( ( )))) max ( ( ))

1

1

1

1

J
z t A m A z t

m A z t
J

z t A

i i
i

n

i i
i

n
=

=

Thus the eigenvalues of the A z t( ( ))  matrix belong to the
defined rectangle bellow (figure 1), making it possible to
bound the dynamic performances of the non-linear system
described by the multiple model approach (6).

5   Fuzzy controllers design

5.1  Stability analysis

In this section, the PDC technique [1][2][13] is used in order
to design fuzzy controllers to stabilise fuzzy system (4). In the
PDC approach, the consequent part is local linear feedback
law and the antecedent part shares the same fuzzy sets as the
fuzzy system.
For the T-S fuzzy controller design, it is supposed that the
fuzzy system (4) is locally controllable, i.e. the pairs
( , ), ,...,A B i ni i 1  are controllable.

Controller rule i:

IF is F and...and is F1
i

q
iz t z tq1( ) ( )

THEN u t -K x ti( ) ( )=              Ki , i n1,...,

The resulting global fuzzy controller, which is nonlinear in
general, is:

u t z t K x ti i
i

n

( ) ( ( )) ( )=
=1

                     (12)

where i z t( ( ))  has to respect constraint  (3).

Substituting (12) in (4), we obtain the closed-loop T-S
continuous fuzzy system:

( )
~

( ( )) ( )x t A z t x t=       (13)

where
~

( ( )) ( ( )) ( ( ))
~

A z t z t z t Ai j ij
j

n

i

n

=
== 11

                            (14)

~
A A B Kij i i j=               (15)

Theorem 4
Suppose that there exist symmetric positive definite matrices
Pij  such that

~ ~

, ,..., / ( ( )) ( ( ))
A P P A

i j n z t z t
ijh ij ij ijh

i j

+ < 0
1 0

                     (16)

where 
~
Aijh  is the Hermitian part of 

~
Aij . Then the closed loop

T-S fuzzy system (13) is globally asymptotically stable.

Proof:
It follows directly from theorem 3.                                    

Several researches are based on finding a common positive
definite matrix [1][2][13][16][18][21], which satisfies a set of
LMIs. However there exist a lot of cases, where a common
positive definite matrix does not exist, whereas the system is
stable.

The proposed method does not require a common positive
definite matrix to prove the global asymptotic stability. Thus,
if we suppose that there exist Ki  gains such that the

Hermitian matrices 
~
Aijh  are asymptotically stable, then the

closed loop system (13) is globally asymptotically stable.

5.2  Linearisation for solving BMIs

Conditions (16) given in theorem 4 and definition (15) lead to
solve the following BMIs problem.

( ) ( )2 2 0A B K K B P P A B K K Bih i j j
T

i
T

ij ij ih i j j
T

i
T+ <

                     (17)
which is BMIs in the variables Pij  and K j .

We know that BMI problem is not convex and may have
multiple local solutions. However, many control problems

e( (A(z)))

m( (A(z)))

e

m

Figure 1. Case where the system (6) is  globally
               asymptotically stable.



that require the solution to BMIs can be formulated as LMIs,
which may be solved very efficiently. Unfortunately, the LMI
formulation is very difficult in our case.
In this paper we use the path-following method, developed in
[3], for solving BMI problem. This method utilises a first
order perturbation approximation to linearize the BMI
problem. Hence, the BMIs are converted into a series of LMIs
iteratively solved until a desired performance is achieved.
Examples are given in [3] [4].

Let P0  and K0  be initial values such that

P P P K K Kij ij j j= + = +0 0,                      (18)

The BMIs (17) can be rewritten as

( )( ) ( )( )

( ( ) ( ) )

( ( ) ( ) )

( ( ) ( ) )

( ( ) ( ) )

A A P P P P A A

B K K K K B P

P B K K K K B

B K K K K B P

P B K K K K B

i i
T

ij ij i i
T

i j j
T

i
T

i j j
T

i
T

i j j
T

i
T

ij

ij i j j
T

i
T

+ + + + +
+ + +

+ + +
+ + +

+ + + <

0 0

0 0 0

0 0 0

0 0

0 0 0

      (19)

Thus, by neglecting the second order terms
B K P P B Ki j ij ij i j, , we get the following LMIs in the

variables Pij  and K j .

P P
A P P P P A

B K K K K B P

P B K K K K B

B K K B P P B K K B

ij

ih ij ij ih

i j j
T

i
T

i j j
T

i
T

i
T

i
T

ij ij i
T

i
T

0

0 0

0 0 0

0 0 0

0 0 0 0

0
2 2

0

+ >
+ + +

+ + +
+ + +

+ + <

( ) ( )

( ( ) ( ) )

( ( ) ( ) )

( ) ( )

         (20)

i j n x t x ti j, ,..., / ( ( )) ( ( ))1 0

It is important to note that the following constraints:

P Pij < 0  and K Kj < 0 , 0 1< << , must be added

in order to ensure that the linear approximation should be
valid. For less conservatism it is also possible to take different
initial values ( )Pij0  and ( )K j0  instead of common initial

values ( )P0  and ( )K0 .

The major weakness of this method is, firstly, the choice of
initial value for an acceptable solution and secondly the
convergence to a solution which is not guaranteed.

6   Fuzzy observers design

The fuzzy controller proposed in section 5 is based on a state
feedback. However, in practice, all states of a system are not
fully measurable. Thus, the problem addressed in this section
is the construction of a fuzzy observer [11][12][2] to estimate
states of the T-S fuzzy model (4 ).

It is supposed that the premise variables are measurable and
the T-S fuzzy system ( 4 ) is locally observable, i. e. the pairs
( , ), ,...,A C i ni i 1  are observable.
In this case, state observers are designed as follows:

Observer rule i :

IF is F and...and is F1
i

q
iz t z tq1( ) ( )

THEN ( ) ( ) ( ) ( ( ) ( ))
( ) ( ) ,...,

x t A x t B u t L y t y t
y t C x t i n

i i i

i

= + +
= 1

where ( )x t  and ( )y t  denote the estimated state vector and
output vector respectively.

The global fuzzy observer for the global T-S fuzzy model (4)
is written as follows

( ) ( ( ))( ( ) ( ) ( ( ) ( )))

( ) ( ( )) ( )

x t z t A x t B u t L y t y t

y t z t C x t

i i i i
i

n

i i
i

n

= + +

=

=

=

1

1

      (21)

The same membership function i z t( ( )) is used as in the ith

rule of T-S fuzzy model (4).

Denoting the state estimation error by

~( ) ( ) ( )x t x t x t=

It follows from (4), (5) and (21) that the observer error
dynamics is given by the differential equation

~( ) ( ( )) ( ( )) ~( )x t z t z t A x ti j ij
j

n

i

n
=

== 11

              (22)

where  A A L Cij i i j=                      (23)

The design of the fuzzy observer consists of determining the
local gains Li  to ensure the convergence to zero of the error
estimation, i.e. the fuzzy observer must satisfy the following
condition: lim ~( )

t
x t = 0

Theorem  5
Suppose that there exists symmetric positive definite matrix
Pij such that

A P P Aijh ij ij ijh+ < 0                             (24)

i j n x t x ti j, ,..., / ( ( )) ( ( ))1 0

where Aijh  is the Hermitian part of Aij . Then there exists a

fuzzy observer such that the error estimation (22) is globally
asymptotically stable.



Proof: It follows directly from theorem 3.           

For solving the BMIs (24) the same method as in part 5.2 is
used, with  L L Li i= +0  and Pij  is as in (18). Thus, we get

the following LMIs in the variables Pij  and Li .

P P
A P P P P A

L L C C L L P

P L L C C L L

L C C L P P L C C L

ij

ih ij ij ih

i j j
T

i
T

i j j
T

i
T

j j
T T

ij ij j j
T T

0

0 0

0 0 0

0 0 0

0 0 0 0

0
2 2

0

+ >
+ + +

+ + +
+ + +

+ + <

( ) ( )

(( ) ( ) )

(( ) ( ) )

( ) ( )

         (25)

i j n x t x ti j, ,..., / ( ( )) ( ( ))1 0

Conclusion

In this paper we present a new sufficient conditions for the
global asymptotic stability of the T-S fuzzy systems. This
approach allows stabilising each local model independently
and ensures in the same way the global asymptotic stability of
the closed loop T-S fuzzy systems. This result classically
requires a common quadratic lyapunov function, needs only
local quadratic lyapunov functions in the proposed approach.
The proposed method will be later extended to the discrete T-
S fuzzy systems.
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