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Abstract: This paper deals with a fault detection method taking into account model
uncertainties described by bounded variables. A parity space approach is proposed,
where the parity matrix depends on uncertain parameters. Since residuals represent a set
of feasible behaviors, they therefore define a normal operation domain. In order to
simplify its evaluation, residuals are linearized in bounded variables. This procedure
generates an approximation, which can be enhanced by estimating bounds of uncertain
parameters. Temporal dependencies between residuals are then taken into account in
order to increase the precision of consistency tests. Copyright ’ 2002 IFAC
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1. INTRODUCTION

Residual generation is a step of Fault Detection (F.D.)
methods. It consists in structuring mathematical
equations of a model in order to make this
information exploitable in the form of indicators
(called residuals) sensible to faults which must be
detected. In this paper, the second section details a
F.D. procedure in case of dynamic models, where
uncertainties are assumed to be described by time-
variant and bounded variables. A parity space method
and associated consistency tests are developed. In
order to simplify these tests by working on convex
parallelotopes, a linearization procedure of residuals
is proposed. The section 3 focuses on the problems
caused by dependencies between bounded variables
and reminds a method allowing to determine the
characteristics representative of a parallelotope. The
section 4 describes a method which estimates bounds
of uncertainties in order to reduce the approximation
due to the linearization procedure. During this step,
dependencies between bounded variables are taken
into account and this additional information is used to
improve consistency test results. At last, an example
illustrates our method in section 5.

2. RESIDUAL GENERATION

2.1. Model presentation

Uncertain structured models take into account the
lack of knowledge on a physical system by indicating
which parameters are uncertain. These uncertainties
are known as multiplicative ones since they straight
affect model parameters. A set-membership approach
being chosen, these uncertainties are described by

normalized bounded variables, which bounds are
equal to -1 and 1. In fact, the components of the time-
variant uncertain vector θ k  are represented by
independent random variables θ k

i  with bounded
realizations. Moreover, at two different instants k and
t, it is assumed that a same uncertainty is represented
by two independent variables θ k

i  and θ t
i  with the

same bounds.

In the fault free case, only dynamic systems described
by linear discrete state equations are considered.
Notice that uncertainties may affect all the matrices
A, B and C of the following model:
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The terms xk , uk  and yk , k h∈ 1, ,Kp c, respectively
define the state, actuator input and sensor output
vectors at time k. The vector θ k  contains all uncertain
parameters affecting this model and the matrices A, B
and C are assumed to be linear in uncertainties.

2.2. Parity space approach

A major drawback of interval analysis is its explosive
nature in case of set-membership recursive systems.
In order to avoid this problem known as wrapping
effect, a parity space approach is chosen. This
approach consists in formulating the dynamic model
equations in the form of algebraic relations. By
stacking sensory observations on a chosen time
horizon s, a static representation is obtained where it
is no need to integrate model equations in order to
generate residuals (Adrot et al., 1999, 2000a):
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In the previous equality (2), the term on the left
depends on unknown state variables whereas the term
on the right groups together measured outputs and
inputs. Moreover both distribution matrices Os  and
Hs  depend on uncertainties. Now, the objective is to
eliminate the unknown vector xk s,  in order to build
some residuals which use the redundancy of the
previous model (1) and which can be evaluated. Thus,
an uncertain parity matrix W θ k s,h L orthogonal to

Os k sθ ,h L is searched: W Oθ θk s s k s, ,h Lh L=0 .

The existence condition of this parity matrix and its
symbolic expression are given in (Adrot et al., 2000b);
moreover, W θ k s,h L can always be written in the form
of a polynomial matrix in uncertainties. Now, after
multiplying the static form (2) by W θ k s,h L, the
expression of the residual vector rk is deduced:
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where P θ k s,h L is a polynomial matrix too. Moreover,
this expression depends on all the uncertainties which
initially affect the state representation (1).

2.3. Consistency test

At a given instant k, the physical system normally
operates if at least one particular value θ 0

1∈ +
C

s sf nθ

of the uncertain vector θ k s,  exists such that:
- the model is consistent with measurements, that

implies rk θ 0 0gk= ,
- θ 0  is a feasible value in the sense that θ 0 1∞ ≤ .

The value set S rkgk of the residual vector defines all
the feasible values of rk , which are consistent with
the chosen model according to sensory observations
and constraints θ k s, ∞

≤1. Thus, S rkgk represents
the normal operation domain of the monitored
physical system and a fault is detected if the origin O
of the residual space does not belong to S rkgk.
Since an interval polynomial function is inclusion
monotonic (Moore, 1979), the evaluation of S rkgk
leads to a domain which necessarily contains S rkgk.
Thus, the proposed method does not generate false
alarms other than those due to the no-completeness of
the model. Thus, if the model is initially complete
(Armengol et al., 1999), an inconsistency necessarily
guarantees the presence of a fault. On the contrary, a

consistency does not assure the absence of a fault
which may be masked by some uncertainties.

2.4. Linearization procedure

Since rk  (3) is non-linear in bounded variables θ k s, ,
to evaluate its value set S rkgk is very difficult. In
order to simplify consistency tests, a procedure
detailed in (Adrot et al., 2000b) allows to obtain a
residual vector linear in uncertainties. The principle is
to replace each monomial of bounded variables
occurring in rk  by a new independent variable with
an adequate value set. For example, monomials
θ θk

i
k
i

+1  and θ k
i 2

 are replaced by µ k
j  and 0 5 0 5. .+ µ k

l ,

where µ k
j  and µ k

l  defines the jth and lth components
of a normalized vector µ k . Thus, the dependence
between these monomials is lost since µ k

j  and µ k
l  are

considered as independent. In this way, the
linearization is guaranteed in the sense that the value
set of linearized residuals rlin k,  always includes the
exact domain S rkgk (Adrot et al., 2000b). Thus,
S rlin k,h L becomes a convex parallelotope, which can
be easily evaluated as explained in section 3.3.

At last, by noting µ k  the vector composed of all
normalized bounded variables contained in the
linearized residual vector, rlin k

sr
, ∈C  is written as

follows where the matrix Rµ  and the vector r0  are
linear in measurements:

r R y u r y ulin k k k s k s k k s k s, , , , ,, ,µ µgk h L h L= +− −µ 1 0 1 . (4)

3. DEPENDENCE PROBLEM

3.1. Dependence between some components of rk

The considered problem is that interval analysis does
not take into account the dependence between several
bounded variables (Moore, 1979). This comes from
the fact that interval analysis works on their bounds
where this dependence does not appear.

In case of a bounded vector field f θfn (like rlin k,  or
rk ), some bounded variables (called common
variables) may occur in several of its components
f i θfn. If f θfn has no common variable, every
function f i θfn is independent and the value set S ffn
leads to an axis-aligned orthotope in the space of
components f i. Nevertheless, if at least one common
variable exists, dependencies between some f i make
the shape of S ffn more complicated (Adrot et al.,
2000a). Thus, if all functions f i are linear in bounded
variables (as for rlin k, ), then S ffn is a convex
parallelotope, i.e. a polytope delimited by two by two
parallel hyperplanes. The following example, where
the variables θ i, i∈{1,’ ,3} are common, leads to the



domain S ffn represented in figure 1:
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3.2. Temporal dependence

The vector µ k  contains some bounded variables
expressed at different instants on the time horizon
[k,k+s]. In fact, residual vectors rlin k k, µgk and
rlin k t k t, + +µg k, t s∈ 1, ,Kp c, may depend on several
identical bounded variables. For example, if

µ k k
i

k
i T

= +θ θ 1 , then both vectors µ k  and µ k+1

depend on the same variable θ k
i

+1. These
dependencies between delayed residuals due to
identical uncertain parameters expressed at the same
instant are interesting because they introduce new
constraints on the normal operation field of the
physical system and thus may increase the quality of
the F.D. procedure. The objective is now to explain
how using this information for parameter estimation
and fault detection. Thus, by stacking the linearized
residual vector rlin k k, µgk (4) on the time horizon
[k,k+s], the following expression is obtained:
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This horizon makes it possible to treat the temporal
dependencies which can affect rlin k,  whereas a higher
value increases the delay in fault detection. For
simplifying notations, symbols u and y referring to
measurements will be omitted in the following.
Moreover, the columns of Rµ, ,k s  associated to the
same bounded variables must be put together. For

example, if µ θ θk
i

k
l

k
l= +1  and µ θ θk

j
k
l

k
l= + +1 2 , then the

columns associates to µ k
i

+1 and µ k
j  are summed since

µ µk
i

k
j

+ =1 . Thus, a reduced bounded vector υ k s,  is
built from µ k s,  and the residual vector becomes:

r R rlin k s k s k s k s k s k s
s

, , , , , , , , ,,υ υ υh L= + ∈υ
υ

0 C . (5)

3.3. Strip constraint decomposition

It is assumed that Rυ, ,k s  is full column rank. This
hypothesis is in no way restrictive. Indeed, if Rυ, ,k s  is
not full column rank, it can always be broken down
into R R Rυ, ,k s a

T
b=  where both matrices Ra  and Rb

are full row rank. In this case, (5) is multiplied by the
pseudo-inverse Ra

+  of Ra
T  and becomes:
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The second equality corresponds to a deterministic
relation and is carried out in a straightforward way,
while the first one has the same form as (5).

The objective of this section is to remember a method
making it possible to construct exactly S rlin k s, ,h L.
More precisely, since rlin k s, ,  is linear in bounded
variables υ k s, , its value set is a convex parallelotope
centered in r0, ,k s . In other words, it is a domain
delimited by two by two parallel hyperplanes (strip
constraints) in the residual space. In fact, S rlin k s, ,h L
can be described by the intersection of several strip
constraints S i : S Srlin k s

i
, ,h L=I . For example,

figure 2 shows a parallelotope perfectly defined by
the intersection of the strip constraints S i , i∈{1,2,3}.

In a general manner, S i  is defined by a two sides
inequality deduced from (5) describing two half
spaces which frontiers are parallel:

S i
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where the parameters k i  and hi  must be computed.
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Fig 2. Strip constraint decomposition



The scalar k i  and the vector hi  respectively adjust
the width and the direction of S i , as shown in figure
2. The computation of k i  and hi  uses the algorithm
presented in (Ploix et al., 2000). Let us note by el ,
l s∈ 1, ,K υq m, the vectors of the canonical basis of

C
sυ . Let us consider the  s

s sr
υ

+ −1 1f n  matrices Rυ, ,k s
i

built by combination of s sr+ −1 1f n  different columns
of the matrix Rυ, ,k s :
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If this matrix is full column rank, then a new strip
constraint S i  exists and is determined by:

h Ri
k s

iT

υ, , =0  and k i i
k s

T
= h Rυ, ,

1
.

At the end, S rlin k s, ,h L can be exactly described by an
inequality system Mr nlin k s, , ≤  generated by strip
constraints (6), where the matrix M and the vector n
are certain and depend on k i  and hi . In this way,
consistency tests for fault detection consist in
verifying whether the origin O of the residual space
belongs to S rlin k s, ,h L, i.e. the inequality 0≤n  holds.

Nevertheless, if uncertainty bounds are not known, a
set-membership parameter estimation procedure,
presented in the following section, is needed.

4. SET-MEMBERSHIP PARAMETER ESTIMATION

4.1. Principle

The problem considered herein is the following: the
residual vector rlin k s, ,  (5) is affected by bounded
uncertainties υ k s,  assumed to fluctuate inside a time-
invariant bounded domain S υ k s,h L. The objective is
the computation of this domain, such that residuals
are consistent with data and model structure. At first,
this step makes it possible to deduce the bounds of
the different parameter uncertainties of model (1)
(Ploix et al, 1999). In addition, this procedure allows
to reduce the overestimation on S rlin k s, ,h L (due to the
linearization procedure) directly by working on
residuals instead of model (1) (Adrot et al, 2000c).

The time-invariant domain S υ k s,h L is assumed to be
a parallelotope centered on a value υc:

υ υ νk s c k, = +λT0 , (8)

ν νk
s

k
s s∈ ≤ ∈ ∈∞

× +C C Cν υ ν λ, , ,1 0T .

The normalized vector ν k  represents mutually
independent bounded variables. The fixed matrix T0

and the parameter λ∈C + impose respectively the
shape and the size of the domain S υ k s,h L. With this

definition, in the fault free case, (5) is expressed as:

R rυ, , , , ,k s k s k sυ + =0 0 , (9)

and becomes:

R R T rυ υλ, , , , , ,k s c k s k k sυ ν+ + =0 0 0 . (10)

Notice that the central parameter vector υc is time-
invariant. It can be obtained using a classical
estimator by minimizing an α-norm of the equation
error raised to power β:
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The solution is to compute the coefficient λ (when υc
and T0  are fixed) such that the residual vector rlin k s, ,
(5) explains all the observations (in the fault free
case) on the time horizon k∈{1,’ ,h}. Thus, the
origin O must belong to S R rυ, , , , ,k s k s k sυ + 0h L. The
individual study of each component of (10) leads to
s sr+1f n  constraints at each time k h s∈ −1 2, ,Kp c:

r r Tυ υλ, , , , , ,k s
i

c k s
i

k k s
iT T

rυ ν+ + =0 0 0, ν k ∞ ≤1, (12)

where rυ, ,k s
iT

 and r k s
i
0, ,  respectively define the ith row

of Rυ, ,k s  and the ith element of r0, ,k s . By using
interval analysis (Moore, 1979; Ploix et al, 1999),
relation (12) leads to following two-sides constraints:
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Therefore, the parameter λ satisfies inequalities (14)
for all k h s∈ −1 2, ,Kp c and i s sr∈ +1 1, ,Kf nq m:

λ
υ

υ

≥
+H

G
III

K

J
UUU

max ,
, , , ,

, ,

0
0

0
1

r k s
i

k s
i

c

k s
i

T

T

r

r T

υ
. (14)

Constraints (13) define the axis-aligned orthotope
which is circumscribed to S R rυ, , , , ,k s k s k sυ + 0h L. Now,
the objective is to take into account dependencies
between different equations (12), i s sr∈ +1 1, ,Kf nq m, in
order to work exactly on the parallelotope
S R rυ, , , , ,k s k s k sυ + 0h L.

From expression (10), the matrix Rk λgk associated
with parameter uncertainties ν k  is defined:

R R Tk k sλ λ υgk= , , 0 .

The method proposed in the following is based on the
results detailed in section 3.3, by replacing the matrix
Rυ, ,k s  by Rk λgk. Let us note by el , l s∈ 1, ,K νq m, the

vectors of the canonical basis of C sν . Then, the



following matrices (see (7)) are built:
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If the rank of Rk
i λgk is equal to s sr+ −1 1f n , an

orthogonal row vector hk
iT

 such that h Rk
i

k
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λgk=0 is
computed. In fact, due to the particular structure of
Rk λgk, the parameter λ does not modify the rank of
Rk

i λgk when it is different from 0 (that is to say when
some parameter uncertainties exist). Since λ is
unknown during this step, the projection row vector is
found by imposing arbitrary λ=1 and working on
Rk

i 1fn instead of Rk
i λgk. Let nk be the number of

vectors hk
i  obtained by using the previous method.

After multiplying (10) by a row vector hk
iT

, interval
analysis leads to the following two-sides inequality:
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At the time k, (15) defines one of the strip constraints
describing S R rυ, , , , ,k s k s k sυ + 0h L and leads to:
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At the time k, the parameter λ has to verify an
inequality system composed of the s sr+ −1 1f n
constraints (14) and the nk other ones (16). In fact, the
value of the coefficient λ imposes the volume of
S R rυ, , , , ,k s k s k sυ + 0h L. Therefore, in order to obtain the
most precise domain (i.e. the smallest one), λ must be
minimized. Thus, by assuming that the coefficient υc
is fixed, the optimal value of the positive real
parameter λ corresponds to the minimal value of λ
satisfying the previous constraints for every index k
on the time horizon h s−2 :
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As explained in (Ploix et al., 1999), by taking (11) as
initial condition, υc can be optimized by using an
additional level of minimization based on a simplex
algorithm. Thus, the optimized criterion J is defined

by the sum of the volumes of S R rυ, , , , ,k s k s k sυ + 0h L
(Lasserre, 1983) on the horizon h s−2 :
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4.2. Fault detection

The principle of consistency tests is explained in
sections 2.3. This test checks whether the origin O of
the residual space belongs to S rlin k,h L. Let us notice
λà the value obtained during the parameter estimation
when temporal dependence is not taken into account
(by applying the previous method on rlin k,  instead of
rlin k s, ,  and imposing the same center υc). Then ′≤λ λ
since omitted dependencies entertain additional
constraints increasing the value of λ. Therefore,
testing whether the origin O of �C sr �belongs to
Sλ rlin k,h L instead of S ′λ rlin k,h L reduces the fault

detection quality since S S′ ⊂λ λr rlin k lin k, ,h L h L. Thus,
consistency tests must be modified in order to exploit
parameter estimation results: it is needed to test
whether the origin of C s sr+1f n  belongs to S rlin k s, ,h L,

i.e. S R rυ, , , , ,k s k s k sυ + 0h L.

At each instant k, strip constraints defining S rlin k s, ,h L
are given by (13) and (15) adapted to the fact that a
fault may be present (i.e. rlin k s, ,  is not necessary
equal to 0) with the couple (υc,λ) computed in the
section 4.1:
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At the end, S rlin k s, ,h L is exactly described by the
system Mr nlin k s, , ≤  generated by previous
inequalities. In this way, consistency tests for fault
detection consist in verifying whether 0≤n  holds.

5. EXAMPLE

In order to illustrate previous developments, let us
consider the following state representation:
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Normalized bounded variables θ k
i , i∈{1,2}, describe

multiplicative uncertainties. The chosen time horizon
(i.e. the smallest integer s for which Os  is not full row
rank) is s=2 , what leads to an alone residual rk  (3).
Then the linearization procedure is applied and the
residual rlin k,  (4) is built. Even if the chosen model is
simple, 15 bounded variables intervene in rlin k, :
µ k ∈C 15. Due to temporal dependencies, rlin k,  is
stacked on the time horizon [k,k+2] and the residual
vector rlin k, ,2  (5) is obtained: rlin k, ,2

3∈C , υ k,2
35∈C .

In order to show residual structure, only the three first
terms of rlin k, ,2  are detailed:
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For a chosen center υ c  which coincides with the
origin of the parameter space, the set-membership
parameter estimation gives λ =0 76. . This value
shows that the linearization procedure has entertained
an important overestimation of the normal operation
domain since S Sλ= . λ=0 76 2 1 2r rlin k lin k, , , ,h L h L⊂ .
Checking whether the origin O of the residual space
belongs to Sλ= .0 76 2rlin k, ,h L is more precise than the

same operation with Sλ=1 2rlin k, ,h L.
In figure 3, the parallelotope Sλ= .0 76 2rlin k, ,h L is
represented at a particular instant k (sample k=43). To
realize consistency tests without taking into account
temporal dependencies would consist in using the
axis-aligned orthotope (in gray in figure 3)
circumscribed to the value set Sλ= .0 76 2rlin k, ,h L. This
orthotope may entertain some no-detections since O
may be inside this one whereas it may not belong to
Sλ= .0 76 2rlin k, ,h L.
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Fig 3. Value set of rlin k, ,2  for k=43

The system is simulated by adding two multiplicative
faults and 200 observations are generated. For
observations, which index belongs to [20,70] and
[140,190] (gray areas in figure 4), θ k

1  is equal to a
bias of magnitude 2. The results of the proposed fault

detection procedure are presented in figure 4, where
the value 1 corresponds to an inconsistency. The fault
detection depends on operation points and unknown
uncertain parameter values, thus sometimes,
Sλ= .0 76 2rlin k, ,h L contains O even if a fault is present.
But globally, faults are well detected and the set-
membership parameter estimation is conclusive since
no false alarm is present.
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Fig 4. Consistency test

6. CONCLUSION

Against to our previous works on fault diagnosis
using interval analysis, the method proposed in this
paper takes into account temporal dependence
between residuals. This additional information
increases time consuming since a bigger number of
bounded variables intervene in residuals, but the
precision of the fault detection procedure is
theoretically improved. Notice that for complicated
models, this method becomes problematic because of
the number of bounded variables to treat.
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