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Abstract

We solve the loop equations to all orders in 1/N2, for the Chain of Matrices matrix model (with possibly
an external field coupled to the last matrix of the chain). We show that the topological expansion of the free
energy, is, like for the 1 and 2-matrix model, given by the symplectic invariants of [19]. As a consequence, we
find the double scaling limit explicitly, and we discuss modular properties, large N asymptotics. We also briefly
discuss the limit of an infinite chain of matrices (matrix quantum mechanics).
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1 Introduction

Since the famous discovery of Brezin, Itzykson, Parisi and Zuber [7], it has been known and widely used, that
formal matrix integrals are generating functions for the enumeration of discrete surfaces of given topologies (the
role of topology was first noticed by ’t Hooft [35]). The 1-matrix model is known to count discrete surfaces
obtained by gluing polygonal pieces side by side. It is the partition function of random discrete surfaces [7, 13],
also called random ”maps”.

Other matrix models are also partition functions of random discrete surfaces, with additional ”colors” on
the faces [23, 13].

In particular, the ”2-matrix model” is a partition function of random discrete surfaces, whose polygonal
pieces can have two possible colors (or say, two possible spins + or -), and surfaces are counted according
to the number of edges separating polygons of different colors, that is polygons with different spins. Thus it
counts surfaces with a weight proportional to the exponential of

∑

<i,j> σiσj (where the sum is over pairs of
neighboring pieces, and σi is the spin of the piece i). In other words this is an Ising model on a random discrete
surface [28].

The most natural generalization is the ”Chain of matrices” matrix model. It is the generating function for
counting discrete surfaces, where pieces can have a color i ∈ [1, . . . , n], and where each spin configuration on
the surface is weighted by

∏

<i,j>(C−1)i,j where C is a Toeplitz matrix of the form:

C =












g
(1)
2 −c1,2 0

−c1,2 g
(2)
2 −c2,3

. . .
. . .

. . .

. . .
. . . −cn−1,n

0 −cn−1,n g
(n)
2












(1.1)

The partition function for the chain of matrices is the formal small T expansion of the following matrix integral:

Z =

∫

dM1 . . . dMn e−
N
T

tr(
∑n

i=1 Vi(Mi)−
∑n−1

i=1 ci,i+1MiMi+1) (1.2)

where V ′
i (0) = 0 and V ′′

i (0) = g
(i)
2 :

Vi(x) =
g
(i)
2

2
x2 +

di+1∑

k=3

g
(i)
k

k
xk (1.3)

It is a formal series in T , such that

lnZ =

∞∑

g=0

(
N

T

)2−2g

Fg (1.4)

where:

Fg =
∑

v

T v
∑

S∈Mg(v)

1

#Aut(S)

∏

i,k

(−g
(i)
k )ni,k(S)

∏

<i,j>

(
(C−1)i,j

)nedges<i,j>(S)
(1.5)

where Mg(v) is the set of all connected orientable discrete surfaces of genus g with v vertices, with ni,k polygonal
pieces of size k (i.e. k−angles) of color i, and nedges<i,j> edges separating colors i and j, and #Aut is the number
of automorphisms of the surface. Notice that for fixed g and v, Mg(v) is a finite set, and therefore Fg is indeed
a formal series in T .

One may also be interested in discrete surfaces with m marked faces, whose generating function is given by:

〈

tr

(
1

x1 − Mi1

)

. . . tr

(
1

xm − Mim

)〉

c

=

∞∑

g=0

(
N

T

)2−2g−m

W
(g)
i1,...,im

(x1, . . . , xm) (1.6)

W
(g)
i1,...,im

(x1, . . . , xm) =
∑

S∈Mg,i1,...,im

T #vertices(S)

#Aut(S)

∏

i,k(−g
(i)
k )ni,k(S)

∏m
k=1 x

lik
(S)+1

k

∏

<i,j>

(
(G2

−1)i,j

)nedges<i,j>(S)
(1.7)
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where Mg,i1,...,im
is the set of all connected discrete surfaces of genus g, with ni,k k−angles of color i, and

nedges<i,j> edges separating colors i and j, and with m marked faces (and with one marked edge on each
marked face), of respective perimeters l1, . . . , lm, and colors i1, . . . , im. Again, for fixed m and g, there are
finitely many such surfaces with a given number of vertices, and the sum is a formal power series in T . Notice
that if there is only one marked face m = 1, i.e. one marked edge, we have a rooted map, and #Aut(S) = 1.

Recently, the computation of the Fg’s and W (g)’s was completed for the 1-matrix model (n = 1) in [16, 8],
and 2-matrix model (n = 2) [9, 18, 19], and our goal is to extend the method of [19] to the chain of matrices of
arbitrary (but finite) length n ≥ 1.

In fact, the method of [19] allows to find the solution for a generalization of the chain of matrices, where in
addition, the last matrix is coupled to a fixed matrix Mn+1, called external field. Matrix models with external
fields also have some combinatorial interpretations, and have been studied for various applications. The most
famous is the Kontsevich integral, which is the generating function for intersection numbers [33, 24, 19].

Here, we solve this more general model.

Multimatrix model also play an important role in quantum gravity and string theory, where they play the
role of a regularized discrete space-time. The 1-matrix model, counts discrete surfaces without color, and is a
model for quantum gravity without matter, whereas the chain of matrices counts discrete surfaces with n colors,
and is interpreted as a model of quantum gravity with some matter field [27, 10, 1, 29, 30, 13], namely a matter
which can have n possible states. More recently, matrix models have played a role in topological string theory
[12].

Outline of the article:

• In section 2 we introduce all the definitions and notations necessary for the derivation of the loop equations.
These are quite clearly inspired by the work on [15] where the loop equations were already found in a
slightly less compact way.

• In section 3 we derive the master loop equation that will allow us to solve the model. We also consider
the 1

N2 expansion here and find the spectral curve for this model.

• In section 4 we overview all the important algebraic geometry tools and the algebraic curve properties
that are relevant for us.

• In section 5 we apply the same techniques of [9] to prove uniqueness of the solution and to find the actual
solution for the correlators of the first matrix M1 of the chain.

• In section 6 we find the variation of the curve, and all the correlation functions, in terms of the moduli
of the chain of matrices. This leads us to an expression for the whole topological expansion of the free
energy for the chain of matrices.

• In section 7, we study some corollaries of the properties of the symplectic invariants of [19], in particular
we get the double scaling limit, and modular properties.

• In section 8, we briefly discuss the ”matrix quantum mechanics”, i.e. the limit of an infinite chain of
matrices.

• Finally, section 9 is the conclusion.
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2 Notations and Definitions

2.1 The formal chain matrix model with external field

The formal chain matrix model with external field, is a formal matrix integral3, with n matrices of size N with
potentials Vi(Mi), arranged in a chain with Itzykson-Zuber like interactions:

ZCh =

∫ n∏

i=1

dMi e−
N
T

tr(
∑n

i=1(Vi(Mi)−ci,i+1MiMi+1)) (2.1)

where Mn+1 is a constant matrix, which we may choose diagonal Mn+1 = Λ , with s different eigenvalues λi

and multiplicities li (
∑

i li = N):

Λ = diag(λ1, · · · , λ1
︸ ︷︷ ︸

l1

, · · · , λi, · · · , λi
︸ ︷︷ ︸

li

, · · · , λs, · · · , λs

︸ ︷︷ ︸

ls

). (2.2)

It reduces to the usual ”Chain of Matrices” when Λ = Mn+1 = 0.

The measures dMi =
∏N

j=1 dM
(i)
jj

∏N
j<k dℜ(M

(i)
jk )dℑ(M

(i)
jk ) are the usual Lebesgue measures for hermitian

matrices. The potentials Vi(x) are polynomials of degree di + 1,

Vi(x) =

di+1∑

k=1

g
(i)
k

k
xk (2.3)

but the same results contained in this paper can clearly be extended to functions Vi whose derivatives V ′
i are

rational functions. In general we are interested in formal expectation values of functions of Mi defined by

〈f(M1, · · · , Mn)〉 =
1

ZCh

∫ n∏

i=1

dMi f(M1, · · · , Mn) e−
N
T

tr(
∑n

i=1(Vi(Mi)−ci,i+1MiMi+1)) (2.4)

but we will also be interested in the free energy defined as the logarithm of the partition function ZCh.
The 1

N2 expansion can be considered when we work with the formal version of this matrix integral. What
that means is that we must interpret the integrals as a formal expansion of all the non-gaussian terms in the
exponential and perform the integral as a perturbation integral around a minimum of the action

tr

(
∑

i

Vi(Mi) −
∑

i

ci,i+1MiMi+1

)

. (2.5)

The equations that define a minimum are

V ′
1 (M1) = c1,2M2 , V ′

k(Mk) = ck−1,kMk−1 + ck,k+1Mk+1 k ≥ 2 (2.6)

In particular we can choose a minimum such that all Mk’s are diagonal Mk = diag(µ̄
(k)
1 , . . . , µ̄

(k)
N ), which satisfy:

V ′
1(µ̄

(1)
i ) = c1,2µ̄

(2)
i

V ′
k(µ̄

(k)
i ) = ck−1,kµ̄

(k−1)
i + ck,k+1µ̄

(k+1)
i k = 2, · · · , n

(2.7)

with µ̄
(n+1)
i = µ

(n+1)
i = Λi. Note that cn,n+1 can be absorbed into Λ, so that we will fix it to 1. These equations

have D = d1d2 · · · dns solutions. Choosing which minimum we are going to perturb around, means choosing
how many eigenvalues we are going to put on each of the D different solutions. Let us call these n1, · · · , nD,
with the restriction

∑

i ni = N . In the following we are going to refer to ǫi = T ni

N as the filling fractions.
In other words, for each choice of filling fractions ǫ = (ǫ1, . . . , ǫD−1), we can define a formal integral by

perturbation around the corresponding minimum. Almost by definition, there must exist anti-clockwise contours
Ai, i = 1, . . . , D, such that

−
T

2iπ N

∮

Ai

〈

tr

(
1

x − M1

)〉

dx = ǫi = T
ni

N
(2.8)

3A formal integral is defined as the exchange of the integral and the Taylor expansion of the exponential of non-quadratic terms
in the potentials, see [23].
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2.2 Definitions of correlation functions

In order to define the good observables of our model, we first need to introduce (like in [15]) the following
polynomials fi,j(x1, . . . , xn)

fi,j(xi, · · · , xj) =

j
∏

k=i

1

ck−1,k
det

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

V ′
i (xi) −ci,i+1xi+1 0

−ci,i+1xi V ′
i+1(xi+1)

. . .

. . .
. . . −cj,j+1xj

0 −cj,j+1xj−1 V ′
j (xj)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

if i ≤ j

= 1 if i = j + 1

= 0 if i > j + 1

(2.9)

They satisfy the recursion relation

ci−1,ifi,j(xi, . . . , xj) = V ′
i (xi)fi+1,j(xi+1, . . . , xj) − ci,i+1xixi+1fi+2,j(xi+2, . . . , xj) (2.10)

with the initial conditions fk+1,k = 1, and fk+l,k = 0 for all l > 1. The first polynomials generated by this
recursion relation are

fi,i(xi) =
V ′

i (xi)

ci−1,i

fi−1,i(xi−1, xi) =
V ′

i−1(xi−1)

ci−2,i−1

V ′
i (xi)

ci−1,i
−

ci−1,i

ci−2,i−1
xi−1xi

fi−2,i(xi−2, xi−1, xi) =
V ′

i−2(xi−2)

ci−3,i−2

V ′
i−1(xi−1)

ci−2,i−1

V ′
i (xi)

ci−1,i

−
V ′

i−2(xi−2)

ci−3,i−2

ci−1,i

ci−2,i−1
xi−1xi −

ci−2,i−1

ci−3,i−2
xi−2xi−1

V ′
i (xi)

ci−1,i

(2.11)

Define also the following functions

wi(xi) =
1

xi − Mi
, Q(z) =

1

cn,n+1

S(z) − S(Λ)

z − Λ
(2.12)

where S(z) is the minimal polynomial of Λ:

S(z) =

s∏

i=1

(z − λi) (2.13)
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The loop equations in following sections will be written in terms of the following matrix model observables or
correlation functions.

W0(x1) =

〈
T

N
tr (w1(x1))

〉

P (x1) = Pol
x1

f1,1(x1)W0(x1) = Pol
x1

V ′
1(x1)W0(x1)

Wi(x1, xi, . . . , xn, z) = Pol
xi,...,xn

fi,n(xi, . . . , xn)

〈
T

N
tr (w1(x1)wi(xi) · · ·wn(xn)Q(z))

〉

,

for i = 2, . . . , n − 1

W1(x1, . . . , xn, z) = Pol
x1,...,xn

f1,n(x1, . . . , xn)

〈
T

N
tr (w1(x1) · · ·wn(xn)Q(z))

〉

→ is a polynomial in all variables

Wn(x1, z) =

〈
T

N
tr (w1(x1)Q(z))

〉

W0;1(x1; x
′
1) =

∂

∂V1(x′
1)

W0(x1) = 〈tr (w1(x1)) tr (w1(x
′
1))〉c

Wi;1(x1, xi, . . . , xn, z; x′
1) =

∂

∂V1(x′
1)

Wi(x1, xi, . . . , xn, z) =

=

〈

tr (w1(x
′
1)) Pol

xi,...,xn

fi,n(xi, . . . , xn)tr (w1(x1)wi(xi) · · ·wn(xn)Q(z))

〉

c

(2.14)

At some point we will write the topological expansion4 of some of these functions, for example

W0(x1) =

∞∑

h=0

(
T

N

)2h

W
(h)
0 (x1), (2.15)

and similarly for other functions. These are all the definitions we need for the derivation of the loop equations

3 Master Loop Equation

To find the master loop equation (proceeding as in [15]) we are going to consider the following local changes of
variables

δMi = ǫ Pol
xi+1,...,xn

fi+1,n(xi+1, . . . , xn)wi+1(xi+1) · · ·wn(xn)Q(z)w1(x1) + O(ǫ2), 1 ≤ i < n

δMn = ǫQ(z)w1(x1) + O(ǫ2)
(3.1)

with ǫ a small parameter. Notice that δMi does not contain Mi except for i = 1. We must then consider δM1

separately.

3.1 Loop Equation for δM1

Consider the change of variables

δM1 = ǫ Pol
x2,...,xn

f2,n(x2, . . . , xn)w2(x2) · · ·wn(xn)Q(z)w1(x1) + O(ǫ2) (3.2)

4The topological expansion of a formal integral, is not a large N expansion, it is a small T expansion, and for each power of T ,

the coefficient is a polynomial in N−2. The W
(h)
0 (x) is merely the formal series in T , containing the degree h terms.
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The first order variation in ǫ of the integral (2.1) gives the Schwinger-Dyson equation (called loop equation in
the matrix model context):

〈
T 2

N2
tr (w1(x1)) tr

(

w1(x1) Pol
x2,...,xn

f2,n(x2, . . . , xn)w2(x2) · · ·wn(xn)Q(z)

)〉

=

〈
T

N
tr

(

w1(x1) (V ′
1(M1) − c1,2M2) Pol

x2,...,xn

f2,n(x2, . . . , xn)w2(x2) · · ·wn(xn)Q(z)

)〉

(3.3)

Using (2.10) we find, after some algebra, the loop equation

T 2

N2
W2;1(x1, x2, . . . , xn, z; x1) + (c1,2x2 − V ′

1(x1) + W0(x1))W2(x1, x2, . . . , xn, z) =

= − W1(x1, . . . , xn, z) + (V ′
2(x2) − c1,2x1)W3(x1, x3, . . . , xn, z) − c2,3x2W4(x1, x4, . . . , xn, z)

−

〈
T

N
tr

(

w1(x1) (V ′
2(M2) − c1,2M1) Pol

x3,...,xn

f3,n(x3, . . . , xn)w3(x3) · · ·wn(xn)Q(z)

)〉

+

〈
T

N
tr

(

w1(x1)c2,3M2 Pol
x4,...,xn

f4,n(x4, . . . , xn)w4(x4) · · ·wn(xn)Q(z)

)〉

(3.4)

3.2 Loop Equation for δMi

The rest of the loop equations follow the same principle. We will compute the remaining in one shot.

δMi = ǫ Pol
xi+1,...,xn

fi+1,n(xi+1, . . . , xn)wi+1(xi+1) · · ·wn(xn)Q(z)w1(x1) + O(ǫ2) (3.5)

from which the order ǫ variation of the partition function is

0 =

〈
T

N
tr

(

w1(x1)
(
V

′

i (Mi) − ci−1,iMi−1

)
Pol

xi+1,xn

fi+1,n(xi+1, . . . , xn)wi+1(xi+1) · · ·wn(xn)Q(z)

)〉

− ci,i+1xi+1Wi+1(x1, xi+1, . . . , xn, z) + V
′

i+1(xi+1)Wi+2(x1, xi+2, . . . , xn, z) − ci,i+1xi+1Wi+3(x1, xi+3, . . . , xn, z)

−

〈
T

N
tr

(

w1(x1)V
′

i (Mi) Pol
xi+2,...,xn

fi+2,n(xi+2, . . . , xn)wi+2(xi+2) · · ·wn(xn)Q(z)

)〉

+

〈
T

N
tr

(

w1(x1)ci,i+1Mi+1 Pol
xi+3,...,xn

fi+3,n(xi+3, . . . , xn)wi+3(xi+3) · · ·wn(xn)Q(z)

)〉

(3.6)

In particular, for i = n due to the fact that fn+2,n = fn+3,n = 0 we have

0 =

〈
T

N
tr (w1(x1) (V ′

n(Mn) − cn−1,nMn−1)Q(z))

〉

− cn,n+1zWn+1(x1, z) + S(z)W0(x1)

(3.7)

3.3 Master Loop Equation

When we sum up equations (3.4) and (3.6) for i = 2, . . . , n we find the master loop equation

T 2

N2
W2;1(x1, x2, . . . , xn, xn+1; x1)+(c1,2x2 − V

′

1(x1) + W0(x1)) (W2(x1, x2, . . . , xn, xn+1) − S(xn+1)) =

= − W1(x1, . . . , xn, xn+1) + (V ′

1(x1) − c1,2x2)S(xn+1)

+

n∑

i=2

(V ′

i (xi) − ci−1,ixi−1 − ci,i+1xi+1)Wi+1(x1, xi+1, . . . , xn+1)

(3.8)

where we have redefined z ≡ xn+1. Remember that W1(x1, · · · , xn) is a polynomial in all its variables and that
Wi(x1, xi, · · · , xn) is a polynomial in all its variables except x1. In particular, we may choose xi = x̂i(x1, x2),
i = 3, . . . , n such that

V ′
i (xi) = ci−1,ixi−1 + ci,i+1xi+1 , ∀i = 2, . . . , n (3.9)
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and in that case (3.8) reduces to

T 2

N2
Ŵ2;1(x1, x2; x1) + (c1,2x2 − Y (x1))Û (x1, x2) = − Ŵ1(x1, x2) + (V ′

1(x1) − c1,2x2)Ŝ(x1, x2)

=Ê(x1, x2)

(3.10)

where we have defined

Y (x1) = V ′
1(x1) − W0(x1)

Û(x1, x2) = W2(x1, x2, x̂3, . . . , x̂n+1) − S(x̂n+1)

Ŵ2;1(x1, x2; x1) = W2;1(x1, x2, x̂3, . . . , x̂n+1; x1)

Ŵ1(x1, x2) = W1(x1, x2, x̂3, . . . , x̂n+1)

Ŝ(x1, x2) = S(x̂n+1)

(3.11)

and x̂i are defined recursively from the constraints (3.9)

c2,3x̂3 = c2,3x̂3(x1, x2) = V ′
2(x2) − c1,2x1

c3,4x̂4 = c3,4x̂4(x1, x2) = V ′
3(x̂3(x1, x2)) − c2,3x2

ci−1,ix̂i = ci−1,ix̂i(x1, x2) = V ′
i−1(x̂i−1(x1, x2)) − ci−2,i−1x̂i−2(x1, x2) , for i > 4

(3.12)

Note the resemblance between equations (3.9) and (2.7).

3.4 Planar limit

To leading order at large N , we drop the T 2/N2 term in the loop equation (3.10) and we get:

(c1,2x2 − Y (0)(x1))Û
(0)(x1, x2) = Ê(0)(x1, x2) (3.13)

Notice that Ê(0)(x1, x2) is a polynomial in its 2 variables x1 and x2.
The algebraic equation

Ê(0)(x1, x2) = 0 (3.14)

is called the spectral curve. In some sense it is the large N limit of the loop equation when we choose c1,2x2 =
Y (0)(x1).

The equation (3.10) is of the same form as the one solved in [9] for the 2-matrix model, or the one solved
in [19] for the 1-matrix model with external field. It can thus be solved using the same methods. Note that (as
we said above) we consider fixed filling fractions in the formal model, which means that the

ǫi = −
1

2iπ

∮

Ai

W
(0)
0 (x1(p))dx1(p) (3.15)

are fixed data of the model. As a consequence of that, all the differentials W
(h)
0 (x1(p))dx1(p) with h ≥ 1 may

have poles only at the branch points αi, and all their A cycles integrals are zero due to the fixed filling fractions
condition

0 =

∮

Ai

W
(h)
0 (x1(p))dx1(p). (3.16)

4 Algebraic geometry of the spectral curve

The solution of the model relies on the understanding of the underlying large N spectral curve, and its algebraic-
geometry properties. Let us see first what are the main features of Ê(0)(x1, x2) and then we will present a set
of tools and concepts that we will need latter.

First, Ê(0)(x1, x2) = −W
(0)
1 (x1, x2, x̂3, . . . , x̂n+1) + (V ′

1 (x1) − c1,2x2)S(x̂n+1) as we have noted before, is a

polynomial in all its variables. W
(0)
1 is a polynomial of degree di − 1 in the variable xi and s − 1 in z while

(V ′
1(x1) − c1,2x2)S(xn+1) is clearly a polynomial of degree d1 in x1, 1 in x2 and s in z = xn+1.
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The relations (3.12) express x̂i (i ≥ 3) as a polynomial of x1 and x2. For example, x̂3(x1, x2) is a polynomial

of degree 1 in x1 and d2 in x2. In general, for i > 3, x̂i(x1, x2) a polynomial of degree
∏i−1

j=3 dj in x1 and
∏i−1

j=2 dj

in x2.
With this information we see that for n > 1, Ŵ

(0)
1 (x1, x2) is a polynomial of degree d1 + d3 . . . dns − 2 in

x1 and a polynomial of degree d2 · · · dns − 1 in x2, while (V ′
1(x1) − c1,2x2)S(x̂n+1) is a polynomial of degree

d1 + d3 . . . dn s in x1 and 1 + d2d3 . . . dn s in x2, i.e.

degx1
Ê(0) = d1 + d3 . . . dn s = d1 + D1 , degx2

Ê(0) = 1 + d2d3 . . . dn s = 1 + D2 (4.1)

One can check from algebraic geometry usual methods (Newton’s polytope for instance), that an algebraic curve
with those degrees, has a genus g:

g < d1d2 . . . dn s (4.2)

So far, most of the coefficients of Ê(0) are not known, because they come from the unknown polynomial W1.
However, the number of unknown coefficients of W1, is d1d2 . . . dn s − 1, and it matches precisely the generic
genus of the spectral curve g (all the terms of W1 lie in the interior of Newton’s polytope), and therefore the
polynomial W1 (and thus Ê(0)) is entirely determined by the filling fraction conditions (we have

∑

i ǫi = T ):

∀i = 1, . . . , d1d2 . . . dn s, ǫi =
1

2iπ

∮

Ai

Y (x)dx , Ê(0)(x, Y (x)) = 0 (4.3)

Those d1d2 . . . dn s equations determine W
(0)
1 and thus Ê(0).

4.1 Analytical structure, sheets and poles

The algebraic curve Ê(0)(x1, x2) = 0 has the following structure. For each value of x1 there are D2 +1 different
values of x2, and for every value of x2 we find D1+d1 values of x1. This observation is what defines, respectively,
the x1 sheet structure and the x2 sheet structure.

The algebraic curve Ê(0)(x1, x2) = 0 can be parametrized as follows: there exists a compact Riemann surface
L and two meromorphic functions x1 and x2 on L, such that

Ê(0)(x1, x2) = 0 ⇔ ∃p ∈ L | x1 = x1(p) and x2 = x2(p) (4.4)

Notice that the functions xi(p) = x̂i(x1(p), x2(p)) are also meromorphic functions on L, which satisfy:

∀ p ∈ L , V ′
i (xi(p)) = ci−1,ixi−1(p) + ci,i+1xi+1(p) (4.5)

There are s + 1 different points on the curve where x1 (and all the other xi(p), i ≤ n) becomes infinite. Around
one of these points, that we will call p = ∞, a good local coordinate is z∞(p) = 1

x1(p) . The ∞ point in the curve is

quite important as it marks the so called physical sheet. The other ”infinity” points correspond to the situation
where xn+1(p) = λi, and will be called p = λ̂i. A good local coordinate around these points is zλ̂i

(p) = 1
xn(p)

(a different good local coordinate could be zλ̂i
(p) = xn+1(p) − λi which behaves as ∼p→λi

1
cn,n+1

Tli
N

1
xn(p) ).

Explicitly, the negative divisor of xk(p) is

[xk(p)]− = −rk∞− sk

∑

i

λ̂i

where r1 = 1, rk = d1d2 . . . dk−1

sn+1 = 0, sn = 1, sk = dk+1dk+2 . . . dn

(4.6)

Locally, near ∞ we have:

x2(p) =
p→∞

V ′
1(x1(p))

c1,2
−

T

x1(p)
+ O

(
x1(p)−2

)
(4.7)

xk(p) ∼
p→∞

x1(p)rk (4.8)
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and near λ̂i:

xn(p) =
p→λi

1

cn,n+1

T li
N

1

xn+1(p) − λi
+ O (1)

xn+1(p) =
p→λi

λi +
1

cn,n+1

T li
N

1

xn(p)
+ O

(
xn(p)−2

)
(4.9)

xk(p) ∼
p→λ̂i

(xn+1(p) − λi)
−sk (4.10)

4.2 Branchpoints and conjugated points

From Riemann-Hurwitz, there are s+2g+s1 points αi on L, such that ∂x2Ê
(0)(x1, x2) = 0 and ∂x1Ê

(0)(x1, x2) 6=
0. They are called the x1 branch points. They are the zeros of the differential dx1(p).

For the moment, we assume that the branch points are simple, i.e. that at those points dx1(p) vanishes
linearly when p → α. The spectral curve is said to be regular. A spectral curve with non simple branch-points
is called singular or critical. We study critical points below in section 7.2.

Assuming that the spectral curve is regular means that near any branch-point α, Y = c1,2x2 behaves locally

like a square root Y (x1) ∼ Y (x1(α))+ C
√

x1 − x1(α), and therefore, for any p in the vicinity of α, there exists
a unique point p̄ 6= p in the same vicinity of α, such that

x1(p̄) = x1(p). (4.11)

We say that p̄ is the conjugate point of p. The conjugate point, is defined locally near every branch-point, and
in general it is not defined globally (see [19]).

4.3 Non-trivial cycles

If L is of genus g, there exists a symplectic basis of non-trivial cycles Ai,Bj , i, j = 1, . . . , g, such that:

Ai ∩ Bj = δi,j , Ai ∩ Aj = 0 , Bi ∩ Bj = 0 (4.12)

Such a basis is not unique, and we have to choose one of them. Different choices give different solutions of the
loop equations. The choice is related to the choice of filling fractions.

Changes of symplectic basis are called modular transformations, and, following [19, 22] we study modular

transformations of the Fg’s and W
(h)
0 ’s in section 7.3.

Once we have chosen a basis of non-trivial cycles, the domain L\(∪iAi ∪i Bi) is simply connected and is
called the fundamental domain.

4.4 Bergmann kernel

We use the notations of [19], and we refer the reader to [19] for a more detailed description.
On every compact Riemann surface L, with a given symplectic basis of non trivial cycles , is defined uniquely

a 2nd kind differential called the Bergmann kernel [2] B(p1, p2) (which we regard as a 2nd kind differential in
the variable p1 ∈ L), that satisfies

i) B(p1, p2) has a double pole, with no residue, when p1 → p2, and normalized such that

B(p1, p2) ∼
p1→p2

dx(p1)dx(p2)

(x(p1) − x(p2))2
+ finite (4.13)

where x(p) can be any local parameter in the vicinity of p2.

ii)
∮

Ai

B(p1, p2) = 0.
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It is easy to see that the Bergmann kernel is unique, because the difference of 2 Bergmann kernels would
have no pole and vanishing A−cycle integrals, i.e. it would vanish.

More explicitly we have:

B(p1, p2) = dp1 dp2 log (θ(u(p1) − u(p2) − κ)) (4.14)

where θ is the theta-function, u(p) is the Abel map, and κ is some odd characteristics.

For example, in the case the spectral curve has genus zero (the so-called 1-cut case), L is the Riemann sphere,
i.e. the complex plane with a point at ∞, and B(p1, p2) is the meromorphic bilinear form B(p1, p2) = dp1 dp2

(p1−p2)2
.

Another example is the case where L is a torus of modulus τ : L = C/(Z + τZ), for which the Bergmann kernel
is the weierstrass function: B(p1, p2) = (℘(p1 − p2; τ) + C)dp1dp2.

4.5 Third kind differential

For any p ∈ L and two points q and o in the fundamental domain, we define:

dSq,o(p) =

∫ q

o

B(p, q′) (4.15)

where the integration contour lies in the fundamental domain (i.e. it does not intersect any A or B cycles).
dSq,o(p) is a meromorphic differential form in the variable p, whereas it is a scalar function of q and o. It has a
simple pole at p = q with residue +1 and a simple pole at p = o with residue −1:

Res
p→q

dSq,o(p) = +1 , Res
p→o

dSq,o(p) = −1 (4.16)

i.e. it behaves locally like dx(p)
x(p)−x(q) when p → q, in any local parameter x(p). Moreover it has vanishing A cycle

integrals: ∮

Ai

dSq,o = 0 (4.17)

Since it has only one simple pole in the variable q, this 3rd kind differential is very useful for writing Cauchy
residue formula. For any meromorphic differential form ω(p) we have:

ω(p) = −Res
q→p

dSq,o(p)ω(q) (4.18)

and, using Riemann bilinear identity [25, 26], if ∀i,
∮

Ai
ω = 0, and ω has poles αi’s, we may move the integration

contour and get:

ω(p) =
∑

i

Res
q→αi

dSq,o(p)ω(q) (4.19)

This identity was the main ingredient in solving loop equations for the 1-matrix model in [16].

5 Solution of the Loop Equation

In this section we solve the loop equation to all orders in the topological T 2/N2 expansion.
We first need a technical lemma which consists in proving that the solution is unique, and then we use this

unicity to try a guess similar to that introduced in [9] which makes the loop equations easier to solve.
We find the one point resolvent and the k point resolvent for the first matrix of the chain, and in fact we

find that they coincide with the correlators defined in [19] for the spectral curve Ê(0).
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5.1 Unicity of the solution

Equation (3.10) fixes the large N/T expansion of W0(x1(p))5. Take equation (3.10) and substitute the T 2

N2

expansion of Ŵ2;1(x1, x
′
1), W0(x1), Û(x1, x2) and Ê(x1, x2). Then to order T 2h

N2h we obtain

(c1,2x2 − Y (x1))Û
(h)(x1, x2) + W

(h)
0 (x1)Û

(0)(x1, x2) =

= Ê(h)(x1, x2) −
h−1∑

m=1

W
(h−m)
0 (x1)Û

(m)(x1, x2) − Ŵ
(h−1)
2;1 (x1, x2; x1).

(5.1)

Suppose you know Û (h′)(x1, x2), W
(h′)
0 (x1) and Ê(h′)(x1, x2) for h′ < h. We prove that we can find those three

functions for h′ = h. Consider x1 = x1(q) and x2 = x2(p) (and so Y (x1(q)) = c1,2x2(q)) with p and q living on
the algebraic curve

c1,2(x2(p) − x2(q)) Û (h)(x1(q), x2(p)) + W
(h)
0 (x1(q))Û

(0)(x1(q), x2(p)) =

= Ê(h)(x1(q), x2(p)) −
h−1∑

m=1

W
(h−m)
0 (x1(q))Û

(m)(x1(q), x2(p))−Ŵ
(h−1)
2;1 (x1(q), x2(p); x1(q)).

(5.2)

Begin with h = 0. Consider the solutions for the equations Ê(x1(q), x2(p)) = 0. For every x1(q) there are
D2 + 1 different solutions Y (x1(q

(i))) (sitting at points that we call q(0), q(1), . . . , q(D2) on the curve, with the
convention that q(0) = q). Then we can write

Ê(0)(x1(q), x2(p)) = K

D2∏

i=0

(

c1,2x2(p) − Y (x1(q
(i)))

)

Û (0)(x1(q), x2(p)) =
Ê(0)(x1(q), x2(p))

(c1,2x2(p) − Y (x1(q)))
= K

D2∏

i=1

(
c1,2x2(p) − Y (x1(q

i))
)

(5.3)

where the constant K is derived in the next section. Recall that x1(q
(i)) = x1(q

(j)) but in general6 Y (x1(q
(i))) 6=

Y (x1(q
(j))) for i 6= j.

Consider now h > 0.
Write now the equation for an arbitrary h and take p → q0 = q

W
(h)
0 (x1(q))Û

(0)(x1(q), x2(q)) = Ê(h)(x1(q), x2(q))

−
h−1∑

m=1

W
(h−m)
0 (x1(q))Û

(m)(x1(q), x2(q)) − Ŵ
(h−1)
2;1 (x1(q), x2(q); x1(q)).

(5.4)

This equation shows (by recursion) that W
(h)
0 (x1(q)) is a meromorphic function on the spectral curve, and

because of our hypothesis, it has poles only at branch-points, and it has vanishing A cycle integrals. Let us
write Cauchy residue formula (4.18):

W
(h)
0 (x1(q))dx1(q) = − Res

q′→q
dSq′,o(q) W

(h)
0 (x1(q

′))dx1(q
′) (5.5)

Using Riemann bilinear identity, and the fact that both dS and W
(h)
0 dx have vanishing A cycle integrals, we

can move the integration contour and get (4.19):

W
(h)
0 (x1(q))dx1(q) =

∑

α

Res
q′→α

dSq′,o(q) W
(h)
0 (x1(q

′))dx1(q
′) (5.6)

5As we show latter all the k-functions of the type

W
(h)

0;1k−1 (x1(p), x1(q
(l)), . . . , x1(p

(l))) =

(
k−1∏

l=1

∂

∂V ′

1(x1(q(l)))

)

W
(h)
0 (x1(p))

can be determined from the equation (3.10) exactly in the same way as in [19, 9]. . . .
6The function Y (x1(q(i))) is multi valuate in the x1 plane. On the other side on the algebraic curve it is not multi valuated.

The index i indicates precisely different x1-sheets, and thus different values of Y (x1).
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Now we replace W
(h)
0 (x1(q

′)) in the RHS with the loop equation 5.4, and using that Ê(h)(x1, x2) is a polynomial

and has no poles at finite x1, that Û (0)(x1(q), x2(q)) vanishes at most as a square root at the branch points and
that dx1(p) vanishes linearly at the branchpoints, we find:

W
(h)
0 (x1(q))dx1(q) =

∑

α

Res
q′→α

W
(h)
0 (x1(q

′))dx1(q
′)dSq′,o(q) =

= −
∑

α

Res
q′→α

dx1(q
′)dSq′,o(q)

Û (0)(x1(q′), x2(q′))

(
h−1∑

m=1

W
(h−m)
0 (x1(q

′))Û (m)(x1(q
′), x2(q

′))

+ Ŵ
(h−1)
2;1 (x1(q

′), x2(q
′); x1(q

′))

)

.

(5.7)

where everything on the RHS is known from the recursion hypothesis, and thus determine uniquely W
(h)
0 (x1(q)).

Then, consider again equation (5.4) and find Ê(h)(x1(q), x2(q)) (equal to Ê(h)(x1(q
(i)), x2(q)) by the defini-

tion of q(i))

Ê(h)(x1(q
(i)), x2(q)) = Ê(h)(x1(q), x2(q)) = W

(h)
0 (x1(q))Û

(0)(x1(q), x2(q))

−
h−1∑

m=1

W
(h−m)
0 (x1(q))Û

(m)(x1(q), x2(q)) − Ŵ
(h−1)
2;1 (x1(q), x2(q); x1(q))

(5.8)

and reconstruct Ê(h)(x1(q), x2(p)) using the Lagrange interpolation formula

Ê(h)(x1(q), x2(p)) =
∑

i

Ê(h)(x1(q), x2(q
(i)))

∏

j 6=i(x2(q
j) − x2(p))

∏

j 6=i(x2(qj) − x2(q(i)))
. (5.9)

Finally equation (5.2) gives Û (h)(x1(q), x2(p)).
Therefore we have proved our recursion hypothesis to order h.
All this procedure allows us to solve recursively the master loop equation, thus indicating that the solution

is unique once E(0)(x1, x2) (or equivalently Y (x1(p)) and x1(p)) is given. We could iterate this procedure
indefinitely. We now show a much better way to solve the master loop equation.

5.2 Solution of the equation

The solution being unique, we only have to find one solution. The equation

T 2

N2
Ŵ2;1(x1, x2; x1)+(c1,2x2 − V ′

1(x1) + W0(x1))Û(x1, x2) =

= − Ŵ1(x1, x2) + (V ′
1 (x1) − c1,2x2)Ŝ(x1, x2) = Ê(x1, x2)

(5.10)

is indeed solved by the expressions

Ê(x1(p), x2) = −K”

〈
D2∏

i=0

(

c1,2x2 − V ′
1(x1(p)) +

T

N
tr

(
1

x1(p(i)) − M

))〉

”

Û(x1(p), x2) = −K”

〈
D2∏

i=1

(

c1,2x2 − V ′
1(x1(p)) +

T

N
tr

(
1

x1(p(i)) − M

))〉

”.

(5.11)

and can be proved following [9]. The product runs over the D2 + 1 sheets of the algebraic curve viewed from
the x1 variable point of view. The 0th sheet is by definition the sheet in which the point p is sitting (that is,
p = p(0)). The notation ” 〈· · ·〉 ” means that if we expand the product in cumulants, the connected two point
correlators must be replaced by W 0;1(x1(p); x1(p

′)) = W0;1(x1(p); x1(p
′)) + 1

(x1(p)−x1(p′))2 .

These expressions are not of practical immediate use, but if we expand them in powers of x2 they reveal the
equation that lead us to the explicit solution. All the information is contained in the highest powers.
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• (c1,2x2)
D2+1

:
(

1

c1,2

)d2···dns

(

g
(2)
d2+1

c2,3

)d3···dns(

g
(3)
d3+1

c3,4

)d4···dns

· · ·

(

g
(n)
dn+1

cn,n+1

)s

= K (5.12)

• (c1,2x2)
D2 :

K

[

V ′
1(x1) − d3 · · · dns

c1,2g
(2)
d2

g
(2)
d2+1

]

= K

D2∑

i=0

(

V ′
1(x1(p)) −

〈
T

N
tr

(
1

x1(p(i)) − M

)〉)

V ′
1 (x1) − d3 · · ·dns

c1,2g
(2)
d2

g
(2)
d2+1

=

D2∑

i=0

Y (x1(p
(i)))

(5.13)

where we have defined as usual V ′
1(x1) − W0(x1(p

(i))) = Y (x1(p
(i)))

• (c1,2x2)
D2−1:

P (x1) − d3 · · ·dns

c1,2g
(2)
d2

g
(2)
d2+1

(

V ′
1(x1) − (d3 · · · dns − 1)

1

2

c1,2g
(2)
d2

g
(2)
d2+1

−
c1,2g

(2)
d2−1

g
(2)
d2

)

=

=
1

2

D2∑

i6=j

(

Y (x1(p
(i)))Y (x1(p

(j))) +
T 2

N2
W 0;1(x1(p

(i)), x1(p
(i)))

) (5.14)

where P (x1) = Polx1 V ′
1(x1)W0(x1) was already defined in (2.14) and

W 0;1(x1(p), x1(q)) = W0;1(x1(p), x1(q)) +
1

(x1(p) − x1(q))2
. (5.15)

refers to the substitution mentioned above for two point correlators.

The equation (5.12) allows us to determine the constant K. The equation (5.13) allows us to modify the last
equation. When doing the T 2/N2 expansion, equation (5.13) implies

D2∑

i=0

W
(h)
0 (x1(p

(i))) = 0 for h > 0 (5.16)

Apply ∂
∂V1(x(q)) to equation (5.13) we find also

D2∑

i=0

W
(h)

0;1 (x1(p
(i)), x1(q)) = δh,0

1

(x1(q) − x1(p))2
(5.17)

Using all these equations we find that equation (5.14) can be transformed into

D2∑

i=0

[

Y (x1(p
(i)))

2
+

T 2

N2
W0;1(x1(p

(i)), x1(p
(i)))

]

=

= (V ′
1(x1))

2
− P (x1) − d3 . . . dns (d3 . . . dns − 2)

(

c1,2g
(2)
d2

g
(2)
d2+1

)2

− 2d3 · · · dns

c1,2
2g

(2)
d2−1

g
(2)
d2+1

(5.18)

Expanding the equation in T
N = ~ as in [9] we get for h ≥ 1 the equation (with y(p) = Y (x1(p)))

2

D2∑

i=1

y(p(i))W
(h)
0 (x1(p

(i))) =

=

D2∑

i=1

h−1∑

m=1

W
(m)
0 (x1(p

(i)))W
(h−m)
0 (x1(p

(i))) +

D2∑

i=1

W
(h−1)
0;1 (x1(p

(i)), x1(p
(i))) + 2P (h)(x1)

(5.19)
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The rest follows exactly the same lines as in [9]. We will however recall the main steps. Let us define the
following meromorphic differentials from the correlation functions

ω
(h)
k (p1, . . . , pk) =





k∏

j=1

dx1(pj)





(
k∏

i=2

∂

∂V1(x1(pi))

)

W
(h)
0 (x1(p1)) (5.20)

and rewrite equation (5.19) as

2

D2∑

i=1

y(p(i))ω
(h)
1 (p(i))dx1(p

(i)) =

=

D2∑

i=1

h−1∑

m=1

ω
(m)
1 (p(i))ω

(h−m)
1 (p(i)) +

D2∑

i=1

ω
(h−1)
2 (p(i), p(i)) + 2P (h)(x1(p))dx1(p)

2

(5.21)

Define also the third kind differential dEp,p̄(q) = dSp,o(q) − dSp̄,0(q), where p̄ is the conjugated point of p.

Finally apply the operator
∑

α Resp→α
1
2

dEp,p̄(q)
y(x1(p))−y(x1(p̄)) (where α are the branch points of the curve) to the

equation (5.20). After some algebra we find

ω
(h)
1 (q) = −

∑

α

Res
p→α

1

2

dEp,p̄(q)

(y(p) − y(p̄))dx1(p)

(
h−1∑

m=1

ω
(m)
1 (p)ω

(h−m)
1 (p̄) + ω

(h−1)
2 (p, p̄)

)

(5.22)

which is the first of a tower of recursion relations. The rest can be obtained by applying the loop insertion
operator to this first one and reads

ω
(h)
k+1(q, {pK}) = −

∑

α

Res
p→α

1

2

dEp,p̄(q)

(y(p) − y(p̄))dx1(p)

(

ω
(h−1)
k+2 (p, p̄, {pK})

+

h∑

m=0

∑

J⊂K

ω
(m)
j+1(p, {pJ})ω

(h−m)
k+1−j(p̄, {pK\J})

) (5.23)

where {pK} is a collective notation for k points on the curve, and K = {1, . . . , k} is the set of indices. In the
expression, J stands for a subset of j elements of K, K\J for the complement of J in K and the sum over J
and m counts all different subsets and genus, except (J, m) = (∅, 0) and (J, m) = (K, h).

Therefore we have found that the meromorphic differentials ω
(h)
k (q1, . . . , qk) are exactly the same as those

of [19].

6 Moduli of the chain of matrices and topological expansion of the

free energy

In order to find the free energy it is important to understand which are the moduli of the chain of matrices,
and how they change when we change the curve (always within the matrix chain moduli space).

6.1 Moduli of the chain of matrices

The chain of matrices is completely characterized by the potentials V1(x), . . . , Vn(x), the interaction parameters
ci,i+1

7, the temperature parameter T , the eigenvalues and multiplicities of Λ and the filling fractions ǫi.

7Note that cn,n+1 can be absorbed in a redefinition of Λ. We will see latter how this appears in the moduli variations.
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It is clear that we can express all these parameters in terms of the meromorphic functions on the curve
x1(p), . . . , xn(p) as follows (with notations borrowed from [4, 19, 5]):

ǫi =
1

2πi

∮

Ai

c1,2x2dx1 =
1

2πi

∮

Ai

ck,k+1xk+1dxk = −
1

2πi

∮

Ai

ck,k+1xkdxk+1

t∞ =T = Res
∞

c1,2x2dx1 = Res
∞

ck,k+1xk+1dxk = −Res
∞

ck,k+1xkdxk+1

tλ̂i
= −

li
N

T = −Res
λ̂i

cn,n+1xndxn+1 = −Res
λ̂i

ck,k+1xkdxk+1

= Res
λ̂i

ck,k+1xk+1dxk = Res
λ̂i

c1,2x2dx1

g
(1)
j =c1,2 Res

∞
x−j

1 x2dx1

j > 2 : g
(k)
j =ck,k+1 Res

∞
x−j

k xk+1dxk = ck−1,k Res
λ̂i

x−j
k xk−1dxk ∀i

tλ̂i
λi = − tλ̂i

xn+1(λ̂i) = −cn,n+1 Res
λ̂i

xn+1(p)xn(p)dxn+1(p)

(6.1)

Something deserves attention here: note that g
(k)
j can be expressed in s + 1 different ways by changing which

pole λ̂i or ∞ we consider. As we will see latter, in order to stay within the matrix chain moduli space, any
variation of the curve around one of these points should bring associated other variations around the other
points so that the new g’s can still be obtained from any of them. Also note that we have not specified how
to obtain ci,i+1. They appear in the other equations as to indicate that they are free to chose. Indeed these
parameters can always be absorbed into the other parameters of the model (as the equations above indicate).
It can also be viewed as a rescaling of the meromorphic functions xi(p).

Now, we study how the spectral curve changes when we change these parameters (or vice versa).
Let us define the variations Ω of the curve by their effect on the differential c1,2x2(p)dx1(p). Variations of func-
tions or forms, are defined with respect to some fixed variable. There is a Poisson-like structure (thermodynamic
identity) indicating how to relate variations with respect to different fixed parameters. The meromorphic form
Ω is defined as:

δΩ (c1,2x2(p)dx1(p))|x1(p) = δΩ(c1,2x2(p))|p dx1(p) − δΩ(x1(p))|p c1,2dx2(p) = −Ω(p) (6.2)

In general we want Ω to be written in the form

Ω(p) =

∫

∂Ω

B(p, q)Λ(q) (6.3)

where ∂Ω is a path which does not intersect circles around branch points.

6.2 Variation of filling fractions

For variations of the filling fractions we choose

Ω(p) = −2iπduj(p) = −

∮

Bj

B(p, q) (6.4)

so that ∂Ω = Bj and Λ(q) = −1. From (6.1) we have

δΩǫl = δjl , δΩtα = 0 , δΩg
(m)
j = 0 , δΩλi = 0 (6.5)

so that indeed, δ−2iπduj
= ∂

∂ǫj
. Using Theorem 5.1 in [19] we can write

∂

∂ǫj
w

(h)
k (p1, . . . , pk) = −

∮

Bj

w
(h)
k+1(p1, . . . , pk, q) (6.6)
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6.3 Variation of the temperatures

Similarly we define for t∞ ≡ T and tλ̂i
,

Ω(p) = −dSα,α′ =

∫ α′

α

B(p, q), i.e. δΩ = [α, α′], Λ = 1 (6.7)

where α, α′ ∈ {∞, λ̂1, . . . , λ̂s}. This variation produces the following modifications of parameters

δΩǫl = 0 , δΩtβ = δα,β − δα′,β , δΩg
(m)
j = 0 , δΩλi = 0 (6.8)

which can be written as δ−dSα,α′
= ∂

∂tα
− ∂

∂t′α
. This makes sense since

∑

α tα = 0. Again Theorem 5.1 in [19]

enables us to write
(

∂

∂tα
−

∂

∂t′α

)

w
(h)
k (p1, . . . , pk) =

∫ α′

α

w
(h)
k+1(p1, . . . , pk, q) (6.9)

6.4 Variation of the potentials

Observe that if we don’t consider variations in ci,i+1 we have

c1,2(δx2.dx1 − δx1.dx2) = δx2.(V
′′
2 (x2)dx2 − c2,3dx3) − ((δV ′

2 )(x2).dx2 + V ′′
2 (x2)δx2.dx2 − c2,3δx3.dx2)

= −(δV ′
2)(x2).dx2 + c2,3(δx3.dx2 − δx2.dx3)

...

= −(δV ′
2)(x2).dx2 − · · · − (δV ′

n)(xn).dxn + cn,n+1(δxn+1.dxn − δxn.dxn+1)

(6.10)

In particular, if the λi are kept fixed, the last term δxn+1.dxn − δxn.dxn+1 has no pole at λ̂i.

Variations of V1

If we vary only V1, more precisely if we vary only g
(1)
j , we see that Ω = c1,2(δx1.dx2 − δx2.dx1) has no pole at

the λ̂i’s, and near ∞, if we work at fixed x1, we have c1,2δx2 ∼ δg
(1)
j xj−1

1 + O(x−2
1 ), and in addition, since we

don’t vary the filling fractions, we know that
∮

Ai
Ω = 0. All these considerations imply that the variations of

V1(x) are given by the same formulas as in [9]:

Ω(p) = −B∞,j(p) =
1

j
Res
q→∞

B(p, q)xj
1(q) (6.11)

thus δΩ is a small circle around ∞ and Λ(q) = 1
2iπ

x1(q)
j

j . With this variation it is easy to check that

δΩǫl = 0 , δΩtα = 0 , δΩg(k)
m = δk,1δj,m , δΩλi = 0 (6.12)

and so we can say that δ−B∞,j
= ∂

∂g
(1)
j

, and from Theorem 5.1 in [19]:

∂

∂g
(1)
j

w
(h)
k (p1, . . . , pk) = Res

∞

x1(q)
j

j
w

(h)
k+1(p1, . . . , pk, q). (6.13)

Variations of V2, . . . , Vn

For the other potentials Vk with 2 ≤ k ≤ n, if we vary g
(k)
j , near ∞, at fixed x1, we have δx2 = c1,2δ(V

′
1(x1) −

T/x1 + O(x−2
1 )) = O(x−2

1 ), therefore Ω has no pole at ∞. We have seen that the pole of Ω at λ̂i is given by

δ(V ′
k)(xk)dxk, therefore near λ̂i we have Ω ∼ −xj−1

k dxk. This implies that

Ω(p) = −
∑

i

Bλ̂i,k,j(p) = −
1

j

∑

i

Res
q→λ̂i

B(p, q)xj
k(q) (6.14)
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thus ∂Ω is a contour which surrounds all λ̂i (and no other poles), and Λ(q) = − 1
2iπ

xk(q)j

j . Then, we can say

that δ−
∑

i
B

λ̂i,k,j
= ∂

∂g
(k)
j

, and from Theorem 5.1 in [19]:

∂

∂g
(k)
j

w
(h)
l (p1, . . . , pl) =

∑

i

Res
λ̂i

xk(q)j

j
w

(h)
l+1(p1, . . . , pl, q). (6.15)

6.5 Variation of the λi’s

Similarly, we see that when we vary λi, Ω has no pole at ∞, and near λ̂i, it behaves like −dxn. Therefore we
have:

Ω(p) = T
li
N

Bλ̂i
(p) = Res

q→λ̂i

B(p, q)xn(q) = T
li
N

B(p, λ̂i)

dxn+1(λ̂i)
(6.16)

∂

∂λi
w

(h)
l (p1, . . . , pl) = T

li
N

Res
λ̂i

w
(h)
l+1(p1, . . . , pl, q)xn(q) . (6.17)

6.6 Variation of the ck,k+1

Again, allowing variations in ck,k+1 we find that Ω behaves like xkdxk+1, therefore

Ω(p) =
∑

i

Bλ̂i,k→k+1 =
∑

i

Res
λ̂i

B(p, q)xk(q)xk+1(q) (6.18)

∂

∂ck,k+1
w

(h)
l (p1, . . . , pl) =

∑

i

Res
λ̂i

w
(h)
l+1(p1, . . . , pl, q)xk(q)xk+1(q) . (6.19)

6.7 Summary of moduli

Using Cauchy formula, we may write:

c1,2x2(p)dx1(p) = −Res
q→p

dSq,o(p) c1,2x2(q)dx1(q) (6.20)

Then, we move the integration contour, and we take into account the boundary terms using Riemann bilinear
identity, we get:

c1,2x2(p)dx1(p) = Res
q→∞,λ̂i

dSq,o(p) c1,2x2(q)dx1(q) + 2iπ
∑

i

ǫidui(p) (6.21)

The residues near the poles ∞ and near the λ̂i are computed by the local behaviors.

• near ∞, we have x2 ∼ V ′
1(x1) −

T
x1

+ O(x−2
1 ), i.e.

Res
q→∞

dSq,o(p) c1,2x2(q)dx1(q) = Res
q→∞

dSq,o(p) dV1(x1(q)) − T Res
q→∞

dSq,o(p)
dx1(q)

x1(q)

= − Res
q→∞

B(q, p)V1(x1(q)) + TdS∞,o(p)

= −
∑

j

g
(1)
j

j
Res
q→∞

B(q, p) (x1(q))
j + TdS∞,o(p)

=
∑

j

g
(1)
j

j
B∞,j(p) + TdS∞,o(p)

(6.22)
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• near λ̂i, we have

c1,2x2dx1 = c1,2(d(x1x2) − x1dx2) = c1,2d(x1x2) − V ′
2(x2)dx2 + c2,3x3dx2

...

= d(c1,2x1x2 − V2(x2) + c2,3x2x3 − V3(x3) . . .

+ cn−1,nxn−1xn − Vn(xn) + cn,n+1xnxn+1) − cn,n+1xndxn+1

∼ d(c1,2x1x2 − V2(x2) + c2,3x2x3 − V3(x3) . . .

+ cn−1,nxn−1xn − Vn(xn) + cn,n+1xnxn+1) − T
li
N

dxn+1

xn+1 − λi
+ O (() 1)

(6.23)

Therefore we have:

Res
q→λ̂i

dSq,o(p) c1,2x2(q)dx1(q) =

= −T
li
N

dSλ̂i,o
(p) − Res

q→λ̂i

dSq,o(p) d(V2 + · · · + Vn − c1,2x1x2 − · · · − cn,n+1xnxn+1)

= −T
li
N

dSλ̂i,o
(p) + Res

q→λ̂i

B(q, p) (V2 + · · · + Vn − c1,2x1x2 − · · · − cn,n+1xnxn+1)

= −T
li
N

dSλ̂i,o
(p) +

n∑

k=2

∑

j

g
(k)
j

j
Res
q→λ̂i

B(q, p) (xk(q))j −
n∑

k=1

ck,k+1 Res
q→λ̂i

B(q, p)xk(q)xk+1(q)

(6.24)

All this can be summarized as:

c1,2x2dx1 = 2iπ
∑

i

ǫidui +
∑

i

T li
N

dS∞,λ̂i
+
∑

j

g
(1)
j B∞,j +

n∑

k=2

∑

j

g
(k)
j

∑

i

Bλ̂i,k,j

+
∑

i

T li
N

λiBλ̂i
+

n−1∑

k=1

ck,k+1

∑

i

Bλ̂i,k→k+1

(6.25)

Notice that cn,n+1 does not appear, in fact the term that would logically give the associated contribution,
it is better used to encode the variations of λi. It is clear that the λi contain already the information of cn,n+1.

6.8 Topological expansion of the free energy

With all that information we are now ready to derive the free energy F (g). The free energy lnZ = F =
∑

g(N/T )2−2gF (g), is determined by its derivatives:

1

j
< Tr (Mk)j >= −

∂F

∂g
(k)
j

. (6.26)

The result that we wish to prove is that:
F (g) = Fg(Ê

(0)) (6.27)

where Fg’s are the symplectic invariants of [19], for the spectral curve Ê(0). In particular for g ≥ 2 we have:

Fg(Ê
(0)) =

1

2 − 2g

∑

α

Res
α

w
(g)
1 Φ , dΦ = c1,2x2dx1 (6.28)

The expressions of F0 and F1 are a little bit more difficult to write [34, 31], and we refer the reader to [19].
Notice that when there is no external field, i.e. Λ = 0, F (0) was already computed in [15], and it coincides with
F0.

The Fg’s of [19] have the property, that under any variation Ω, we have:

δFg =

∫

∂Ω

w
(g)
1 (q) Λ(q) (6.29)
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In particular with k = 1, it proves that

∂Fg

∂g
(1)
j

=
1

j
Res
∞

w
(g)
1 xj

1 =
∂F (g)

∂g
(1)
j

(6.30)

Then, we prove it by recursion on the length of the chain n.
The n = 1 case was done in [19]. Now, assume that it is true for n − 1.
We have just seen that F (g) − Fg is independent of V1, therefore we may compute it for the case where V1

is quadratic. When V1 is quadratic, the integral over the first matrix of the chain, M1, is a gaussian integral,
and M1 can be integrated out, so that when V1 is quadratic we are left with a chain of n − 1 matrices, and

we get F
(g)
n = F

(g)
n−1. From the recursion hypothesis, we have F

(g)
n−1 = Fg(Ê

(0)(x2, x3)), and one should notice
that the Fg’s of [19] have the symplectic invariance property, i.e. they are unchanged if we make a symplectic
transformation of the spectral curve, or in other words, if we add an exact differential to c1,2x2dx1. In particular

we may work with c2,3x3dx2, and thus Fg(Ê
(0)(x1, x2)) = Fg(Ê

(0)(x2, x3)). This proves the result.

7 Other Considerations

In the previous two sections, we have solved the loop equations to all orders, and we have found that the solution
is given by the symplectic invariants introduced in [19], for the spectral curve Ê(0)(x1, x2). As a consequence,
all the properties studied in [19] apply.

7.1 Symplectic transformations

Remember that the spectral curve Ê(x1, x2) = 0 is equivalently given by the data of two meromorphic func-
tions x1(p), x2(p) on L. Indeed, given two meromorphic functions, it is always possible to find a polynomial
relationship between them. We shall write the spectral curve:

Ê1,2 = {(x1(p), x2(p)) / p ∈ L} = (x1, x2) (7.1)

Since any xi is a meromorphic function, we can also define the following algebraic spectral curves:

Êi,j = {(xi(p), xj(p)) / p ∈ L} = (xi, xj) (7.2)

It was found in [19, 20], that the Fg’s are unchanged under symplectic transformations of the spectral curve,
for instance if we add to x1 any rational function of x2, or if we exchange x1 ↔ x2, or if we change x1 → −x1.

For instance we could change c1,2x1 → c1,2x1 −V ′
2 (x2) = −c2,3x3, and then x3 → −x3, and then recursively

ci,i+1xi → ci,i+1xi − V ′
i+1(xi) = −ci+1,i+2xi+2. This shows that:

Fg = Fg(Êi,i+1) = Fg(Êi+1,i) ∀ 1 ≤ i ≤ n (7.3)

However, one should keep in mind that the correlation functions are not conserved under symplectic trans-
formations, only the Fg’s are.

7.2 Double scaling limits

We have seen that as long as the spectral curve is regular (all branch-points are simple), the Fg’s and all
correlation functions can be computed, and it was found in [19] that they diverge when the curve becomes
singular.

In particular, it was found in [19], that if the spectral curve depends on some coupling constant (T for
instance), if the spectral curve develops a cusp singularity at say T = Tc of the form

y ∼ xp/q (7.4)

then the Fg’s diverge as

Fg ∼ (1 −
T

Tc
)(2−2g) p+q

p+q−1 F̃g (7.5)
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where F̃g = Fg(Ẽ) are the symplectic invariants of another spectral curve Ẽ which is the blow up of the vicinity
of the singularity, and which is the spectral curve of the (p, q) minimal model [11, 29]. All this is detailed in
[19] and we refer the reader to that article for more details.

As usual, singularities of formal series are related to the large order asymptotic expansion of the general term
of the series [13], and the double scaling limit is thus related to the asymptotic enumeration of large discrete
surfaces, and in some sense to their continuous limit, i.e. Riemann surfaces. Here, we find that the double
scaling of the chain of matrices, is, as expected [30, 13, 32, 11], related to the Liouville conformal field theory
coupled to minimal models (p, q).

7.3 Modular transformations and holomorphic anomaly equations

In order to compute the Fg’s and the solution of loop equations, we have made a choice of cycles Ai, related to
the choice of the minimum around which the formal matrix integral is defined. However, it is interesting to see
what happens if one makes a different choice of cycles, i.e. if one makes a modular transformation. This was
studied in [19] and [22].

A modular transformation changes the Bergmann kernel B(p, q) with a constant symmetric matrix κ:

B(p, q) → B(p, q) + 2iπ
∑

i,j

κi,j dui(p)duj(q) (7.6)

where dui are the holomorphic forms on L such that
∮

Aj
dui = δi,j .

In particular, if

κ =
i

2
(ℑτ)−1 (7.7)

(where τi,j =
∮

Bj
dui is the Riemann matrix of periods of L) then the Bergmann kernel is called Schiffer kernel

and is modular invariant.
More generally, the modular transformations were computed in [19], and they satisfy the so-called holomor-

phic anomaly equations, and that gives a strong support to the Dijkgraaf-Vafa conjecture that matrix models
are topological type B string theory partition functions [3, 22].

7.4 Convergent matrix integrals and filling fractions

So far, we have considered formal matrix integrals, defined by expanding the integrand in the matrix integral,
near a given extrema specified by a set of filling fractions. We worked at fixed filling fractions.

On the other hand, convergent matrix integrals should correspond to integrals over (HN )n. The integration
path can always be written as a linear combination of steepest descent paths (those used for formal integrals),
and the full convergent matrix integral is obtained as a linear combination of formal matrix integrals. More
precisely, the convergent matrix integral should be a sum over filling fractions of the formal ones.

The summation over filling fractions was computed in [21], and just amounts to multiply the formal matrix
integrals by a theta function. We refer the reader to [6, 21] for more details.

8 Limit of a continuous chain of matrices

In this section, we briefly explore some consequences of our method for the continuous chain of matrices.
The ”matrix-model quantum mechanics”, is obtained [14] as the limit n → ∞, and with the choice: ci,i+1 =

1
ǫ , and:

ci,i+1 =
1

ǫ
, V1(x) = ǫV(x, ǫ) +

x2
1

2ǫ
, Vi(x) = ǫV(x, ǫi) +

x2
i

ǫ
(8.1)

The index i is rescaled as a continuous time t = ǫi:

t = ǫi , 0 ≤ t ≤ tf = ǫn (8.2)
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The matrix integral thus becomes:

Z =

∫

D[M(t)] e−
N
T

∫ tf
0 dt Tr[V(M(t),t)+ 1

2 Ṁ(t)2] (8.3)

The spectral curve is determined by the equations V ′
i (xi) = ci,i+1xi+1 + ci,i−1xi−1 which become Newton’s

equation of motion [14] to leading order in ǫ:

V ′(x, t) = ẍ(t) (8.4)

and the resolvent of the first matrix is:

W (x, 0) = V ′
1(x1) − c1,2x2 ∼ −ẋ(0) (8.5)

The topological expansion is thus:

Z = e
∑

g(N/T )2−2gFg (8.6)

Fg = Fg(E(t)) , E(t) = (x(t),−ẋ(t)) (8.7)

The spectral curve E(t) = (x(t),−ẋ(t)) is thus the dispersion relation, i.e. the relationship between velocity
and position, it may depend on the time t, but from symplectic invariance, we see that Fg(E(t)) is a conserved
quantity, independent of the time t.

For example, if the potential V(x, t) = V(x) is independent of t, the kinetic energy K is conserved and the
dispersion relation is:

1

2
ẋ2 − V(x(t)) = K (8.8)

and the spectral curve is:
E(t) = (x(t),

√

2(V(x(t)) + K)) (8.9)

Consequences of those relations need to be further explored, and we leave the continuous chain of matrices
for another work.

9 Conclusion

We have computed explicitly the topological expansion of the chain of matrices with an external field, and we
have found that the Fg’s are precisely the symplectic invariants of [19].

We have also computed some of the correlation functions, but not all of them, in particular we have not
computed mixed traces (which count discrete surfaces with non-trivial boundary conditions). Mixed traces were
computed in the 2-matrix model case in [20, 17], and it would be interesting to see how that could be extended
to the chain of matrices.

We have also briefly started to explore the limit of matrix quantum mechanics, i.e. the limit of an infinite
chain of matrices, but this topic needs to be studied in deeper details.
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